
Performance Evaluation of Service Functions Chain
Placement Algorithms in Edge Cloud

Lam Dinh-Xuan1, Michael Seufert1, Florian Wamser1, Phuoc Tran-Gia1

Constantinos Vassilakis2, Anastasios Zafeiropoulos2

1Institute of Computer Science, University of Würzburg, Würzburg, Germany
2Ubitech Ltd, Research Department, Athens, Greece

1lam.dinh-xuan|seufert|florian.wamser|trangia@informatik.uni-wuerzburg.de
2constantinosvassilakis@gmail.com, azafeiropoulos@ubitech.eu

Abstract—The emergence of Network Function Virtualization
(NFV) paradigm has become a potential solution dealing with the
rapid growth of the global Internet traffic in the last decades.
There, network appliances are transformed into Virtual Network
Functions (VNF) running on standard server. This promises
to significantly reduce overall cost and energy consumption.
Additionally, hardware-based network function chain is replaced
by a chain of the VNFs, called Service Function Chain (SFC).
The expected benefit of SFC is the reduction in the complexity
when deploying heterogeneous network services. However, the
considerable drawback of SFC is the distribution of the VNFs
over different hosts. An inefficient placement of VNFs can induce
a high latency within the chain and wasted server resources.

In this work, we propose four placement algorithms that
aim to efficiently place the SFC in servers with regard to
minimizing service response time and resource utilization. Herein,
heuristic approaches are evaluated against optimal solutions for
the placement problems, which are formulated by using Integer
Linear Programming. We evaluate and compare these placement
strategies in a simulator. Our result shows that the optimized
solutions produce lowest service response time and least server
utilization in all types of simulated SFCs. On the other hand, the
heuristic algorithms are also able to come close to the optimum
by simple placing rules.

Index Terms—Network Function Virtualization, Service Func-
tion Chain, Placement, Optimization, Edge Cloud

©
20

18
IE

E
E

.
Pe

rs
on

al
us

e
of

th
is

m
at

er
ia

l
is

pe
rm

itt
ed

.
Pe

rm
is

si
on

fr
om

IE
E

E
m

us
t

be
ob

ta
in

ed
fo

r
al

l
ot

he
r

us
es

,
in

an
y

cu
rr

en
t

or
fu

tu
re

m
ed

ia
,

in
cl

ud
in

g
re

pr
in

tin
g/

re
pu

bl
is

hi
ng

th
is

m
at

er
ia

l
fo

r
ad

ve
rt

is
in

g
or

pr
om

ot
io

na
l

pu
rp

os
es

,
cr

ea
tin

g
ne

w
co

lle
ct

iv
e

w
or

ks
,

fo
r

re
sa

le
or

re
di

st
ri

bu
tio

n
to

se
rv

er
s

or
lis

ts
,

or
re

us
e

of
an

y
co

py
ri

gh
te

d
co

m
po

ne
nt

of
th

is
w

or
k

in
ot

he
r

w
or

ks
.

T
he

de
fin

iti
ve

ve
rs

io
n

of
th

is
pa

pe
r

w
ill

be
pu

bl
is

he
d

in
30

th
In

te
rn

at
io

na
l

Te
le

tr
af

fic
C

on
gr

es
s

(I
T

C
30

),
V

ie
nn

a,
A

us
tr

ia
,

Se
pt

em
be

r
20

18

I. INTRODUCTION

The tremendous growth of global Internet traffic has been
forcing network operators to struggle with reducing capital and
operational costs [1]. Additionally, they must cope with the
increasing demand for flexibly provisioned services. Thereby,
the network service must be provided by the network operators
with a high Quality of Experience (QoE) in order to achieve
high customer satisfaction and to avoid user churn [2], [3].

To handle these problems, a more innovative and agile net-
work technology has been emerged, called Network Function
Virtualization (NFV) [4]–[6]. The main idea of this paradigm
is to decouple the network functions from their physical
hardware. For example, the routing function of a router can
be detached from its expensive dedicated hardware to become
a plain software, which can run on any commodity server.
Such kind of function is called Virtual Network Function
(VNF). In the NFV architecture, multiple VNFs can be chained
together. The resulting construct is called Service Function

Chain (SFC) [7], [8]. In such a chain, typically, each VNF
executes a certain function and all VNFs must be processed
in a specific order. Thereby, the VNFs can be dynamically
deployed in a server or distributed over different servers
in datacenters to meet various requirements. For example,
multiple VNFs can be instantiated for a particular function
in order to increase resilience or for load balancing. Thus, the
advantage of SFCs is promising to reduce the complexity of
deploying heterogeneous network services.

However, deploying such a SFC in an NFV system has
several challenges. On the one hand, VNFs distributing in mul-
tiple servers will increase the length of the chain, if the servers
are placed in different datacenters. This will considerably rise
the latency within the SFC itself and can reduce the QoE.
On the other hand, since the VNFs can be placed in different
servers, their resource utilization must be taken into account.
In fact, complex optimization problems can be formulated for
a given system, but their solution can be time consuming.
Thus, heuristics are needed to quickly obtain solutions, which
achieve a close-to-optimal performance.

To address these problems, we propose and evaluate two
heuristics for distributing VNFs of service chains in datacen-
ters of an edge cloud, named centralization and orchestration
algorithms. These placement algorithms aim to minimize
total latency or server utilization. They are evaluated against
optimal solutions for the placement problems, which are
formulated and solved by using Integer Linear Programming
(ILP). For the performance evaluation, we extend the event-
based EdgeNetworkCloudSim simulator [9] with the inclusion
of the CPLEX Optimizer toolbox1. This toolbox uses Opti-
mization Programming Language (OPL) to express the ILP
mathematical model. Then, the OPL model is solved by using
the CPLEX Optimizer.

In fact, SFC placement problem is widely studied on differ-
ent directions. The objective of existing works has focused on
cost reduction [10], [11], virtualization and trade-off between
different objectives [12], [13] or optimizing energy consump-
tion [14], [15] among others. Our study is different from
these research works, where we consider the SFC placement

1https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-
optimizer

problem in the context of edge cloud computing. Wherein, the
user is near to datacenter and his device is included as the end
point of the whole chain.

In this study, we use EdgeNetworkCloudSim to simulate
a fixed network topology in an edge cloud. Users randomly
request service chains consisting of three VNFs that can be
placed on different servers. The performance of all placement
algorithms is evaluated with respect to QoE in terms of service
response time, and with respect to resource consumption in
terms of number of utilized servers. Our simulation result
shows that the optimized solutions obtained by using ILP
model achieve lowest service response time and least service
utilization rate among the others. However, the heuristic al-
gorithms are able to come close to the optimum by simple
placing rules. Our insights may help network operators and the
research community to quickly compute good SFC placements
for NFV infrastructures in an edge cloud context.

The remainder of the paper is structured as following. After
the introduction, background and related work are presented
in Section II. Thereafter, Section III describes the extension
of EdgeNetworkCloudSim, edge cloud topology, and perfor-
mance metrics. The description of four placement algorithms is
presented in Section IV. The outcome of our study is detailed
in Section V. Finally, Section VI concludes this work.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce edge cloud and the
definition of service function chain in Section II-A. Thereafter,
we give an overview of related works in Section II-B.

A. Background

Edge computing is a method of enhancing cloud computing
systems by off-loading applications, services, and hardware
resources to the edge of the network [16]. Therefore, the
edge cloud introduces a new intermediate layer at the edge
of the network, which is physically placed in between cloud
datacenter and user. This removes a major bottleneck and
reduces high latencies in services due to the long distance to
the user. Thus, in edge computing, time is the key parameter. In
contrast to a conventional cloud datacenter, the latency here
between the user and the SFC is relatively small, since the
user device is located next to the datacenter. Consequently, the
latency between the VNFs in the chain is important and has a
high impact on the overall latency. A good SFC placement
strategy produces a low internal delay in the SFC, which
contributes much to the overall service response time. Thereby,
study on SFC placement algorithms in the edge cloud is
essential. In contrast, in cloud computing, the VNFs of a SFC
are placed at datacenters. With a high latency between the
user and the datacenter, the influence of an SFC optimization
algorithm on the overall service response time is negligible
with a fixed user compared to an edge cloud scenario.

In this paper, we assume that a user device is directly
connected to an edge cloud with four datacenters. The user
requests a service in the edge cloud, and receives response
from servers located in these datacenters. We simulate three

types of personal services, Video Streaming (STR), Web, and
Database (DB). These services are characterized by their own
virtual machine resource demands, and are requested and used
by only one single user. Note that, these services do not re-
semble real cloud applications, but they were mainly specified
in order to have different service chain characteristics. Each
service is requested and processed as a chain of VNFs, thus,
in the remainder of this paper, the terms SFC and service
will be used interchangeably. In the simulation, we define a
SFC consisting of three VNFs that must be executed in order
to provide full service functionality. This definition is also
consistent with the SFC described in [7]. Figure 1 shows an
overview of communication between a user and a SFC.

edit slide master to edit author name
1

edit slide master to edit title

VM-1

VNF1
User

Service Function Chain (SFC)

VM-2

VNF2

VM-3

VNF3

Fig. 1. Overview of Service Function Chain Communication

In Fig. 1, each VNF is installed in a Virtual Machine (VM).
Herein, the type of a VM also represents the VNF require-
ments. The VM types are predefined based on instance types
introduced by Amazon Elastic Compute Cloud2. Table I shows
the definition of the VM types in EdgeNetworkCloudSim.

TABLE I
VM TYPE DEFINITION

VM Type CPU RAM
T2Nano 1 1024MB
T2Small 2 2048MB
T2Large 4 4096MB

In Fig. 1, the arrows represent the direction of data flow
and the sequence of processing VNF tasks. Specifically, when
the user requests a service, the request is processed at VNF1,
followed by VNF2, and VNF3. Then, the response message
will also be sent back in sequence from VNF3 to the user.
Therefore, the placement of VMs primarily influences the
latency between the VNFs in the chain, and thus, also the
service response time. This makes it crucial to design place-
ment strategies, which quickly find a good possible placement
of SFCs in terms of QoE and resource utilization.

B. Related Work

In [17], Calheiros et al. present their original work on
an event-based simulator for cloud computing infrastructure,
called CloudSim. An extension of CloudSim with a GUI is
CloudAnalyst [18]. In [19], Garg et al. introduce another
extension of CloudSim that enables network communication,
called NetworkCloudSim. In [9], Seufert et al. introduce
EdgeNetworkCloudSim that is an extension of Network-
CloudSim. There, EdgeNetworkCloudSim moves from batch-
like processing of computation jobs to more persistent and
personalized cloud services that are implemented in an edge

2https://aws.amazon.com/ec2/instance-types/

cloud. In the simulation, the authors allow to define several
characteristics of cloud services, which can be processed in
a chain of VMs. The framework is able to simulate user
requesting a service and can compute response times and
resource utilization among others.

The architecture for the specification of SFCs is officially
described in [7] by IETF. In fact, the concept of SFC receives
a considerable interest from research community. In [8], John
et al. introduce several research topics on network service
chaining. In [10], Savi et al. study the impact of processing
capability on the placement of service chains. They model a
set of NFV nodes hosting service chains using an ILP model.
The main objective of the model is to minimize the number
of active NFV nodes with regard to the cost of processing
task. The authors conclude that with the increasing number of
service chains, the context switching costs strongly influence
the implementation cost of NFV.

In [12], Luizelli et at. consider the placement of SFC where
the placement problem is formulated by using an ILP model.
The main objective of the model is to minimize the number of
VNF instances mapped to infrastructure. The authors conclude
that the ILP model leads to a reduction of up to 25% in
the end-to-end delay compared to a baseline. However, their
baseline solution is another ILP model, where the objective
function is changed to minimize the chain length.

The authors in [13] formalize the chaining of VNFs using
a context-free language. Then, they formulate the placement
problem of chained VNFs as a Mixed Integer Quadratically
Constrained Program with regard to three different objectives.
Their results show a trade-off between optimizing the remain-
ing data rate, latency, and number of used nodes. In [14],
the authors propose the Merge-RD algorithm to place service
functions with respect to minimizing energy consumption.
They use GreenCloud to simulate a datacenter topology and to
evaluate the performance of the proposed algorithm. However,
with O(n4), the complexity of the algorithm is quite high
and time consuming. Other approaches in energy-efficient
and bandwidth-efficient SFC placement are presented in [15]
and [20], respectively. In [11], Bari et al. propose a heuristic
algorithm and an ILP model for optimizing SFC placement.
The algorithms aim to reduce capital and operational cost of
VNF deployment in the operator network. They conclude that
the heuristic algorithm outperforms the optimal solution in the
aspect of execution time.

The method of using an ILP model to formulate the place-
ment problem of VNFs is widely studied. In [21], Bouet et al.
propose a study that aims to minimize the overall cost of vDPI
deployment in an NFV infrastructure. The authors conclude
that the network structure and costs strongly influence the
execution time of the vDPI function. However, the authors do
not consider the chaining form of vDPI in their ILP model.
Similar studies on solving the placement problem of VNFs
formulated by using ILP are presented in [13], [22], [23].

The existing studies use similar methods as our study to
some extents in the aspect of optimizing SFC placement.
Most of the works are based on mixed integer programming

with different objective functions and constraints. Although,
their approaches can deliver optimal solutions for individual
problems, the performance of their proposals still need to be
assessed in a real scenario. Moreover, their result is mostly
obtained by solving the ILP model using CPLEX.

Our study is different from the mentioned research works
since we compare four different approaches for SFC place-
ment. This helps the network operator to have a comparative
view of the advantages and drawbacks of each solution. More-
over, we consider an edge cloud context where the user is close
to the datacenter. In our heuristic algorithms and ILP model,
the user device is also included as the end point of the whole
chain. Furthermore, to the best of our knowledge, this study
is the first that uses EdgeNetworkCloudSim to simulate and
evaluate the influence of different SFC placement strategies
on service response time or server utilization. Wherein, user
requests and SFC placement are done consecutively on the
same platform that increases the practical of our approach.

III. SFC SIMULATION IN EDGENETWORKCLOUDSIM

In this section, we first present the EdgeNetworkCloudSim
extension. Subsequently, we introduce the edge cloud topol-
ogy, simulation configurations, and service chain characteris-
tics used for the simulation. Finally, we present several metrics
to evaluate the performance of the algorithms.

A. EdgeNetworkCloudSim Extension

Placement algorithms for virtual machines can be easily
implemented in EdgeNetworkCloudSim. However, the frame-
work did not provide means to compute an optimal placement
with the help of ILP. In this work, EdgeNetworkCloudSim
is extended to be able to implement OPL models and solve
them with a CPLEX Optimizer. The following new classes are
added to the simulator to achieve the mentioned goal.

First, the AvailableResource class is implemented when-
ever a new service is requested. It monitors resource utilization
(e.g., CPU, RAM) of all servers in datacenters. Additionally,
the resource demand of the VMs in SFCs is also provided.
This information is used for the OPLData class.

The OPLModel class contains the pre-defined OPL model
with two objectives, which are minimizing service time and
resource utilization. The mathematical expression of the model
can be found in Section IV. The OPLData class contains the
data of the OPL model. The data consists of static and dynamic
information. The static information like topology and link
resources between nodes is initially provided. The dynamic
information consists of available resources of the servers (e.g.,
CPU, RAM), resource demand of the VMs, and location of the
user. Note that the user in EdgeNetworkCloudSim is simulated
as another VM, called UserVM. This UserVM is located in a
server of a dedicated datacenter, called UserDC, which can
not be used to place virtual machines of SFCs. The dynamic
information is gathered by the AvailableResource class and
regularly updated whenever a new SFC is requested.

Lastly, the PlacementSolver class is triggered when a new
service has been requested and the UserVM has been already

specified by the simulator. This class exploits the CPLEX
Optimizer toolbox to solve the OPL model and returns one
optimal solution each time. The solution is the specific location
of each VM of the service chain. EdgeNetworkCloudSim
can now make use of the solution and place these VMs
accordingly to start the service. If no solution can be found
due to insufficient available resources in the system, EdgeNet-
workCloudSim will discard the incoming SFC request. Since
we do not modify the placement during service run time, a
new optimal placement will be computed when a SFC has
been terminated and allocated resources are released.

B. Edge Cloud Topology

Figure 2 shows the topology of the simulation. This topol-
ogy is designed based on a real testbed of the EU H2020
INPUT project [24]. It consists of four datacenters (DC) and
four user datacenters (UserDC). One of the DCs has two
servers, and the others have only one. These servers have
different resource capacity. In the simulation, the VMs of
SFCs are distributed over these five servers of the edge cloud
depending on their available resources. The user device is
simulated as a UserVM that is installed within a server in
the UserDC. Each UserDC is connected to a DC, thereby,
representing all users, which are close to that edge datacenter.
Each UserDC is considered to have unlimited resources to
host UserVMs. The interconnection of DCs and UserDCs in
edge cloud is operated by different link capacities via two
types of switch. The server in each datacenter is directly
connected to its EdgeSwitch by a link with 5ms delay.
However, in DC-1, two servers are set to be interconnected
with zero delay. The EdgeSwitch of a DC is connected to
its AggregateSwitch through a 5ms delay connection. While,
in case of the UserDC, this connection has 10ms delay. All
AggregateSwitches are interconnected via a link with 50ms
delay. In the simulation, this topology is mapped with a BRITE
file [25] for modeling link bandwidth and associated latency.
Since we only consider link delay in the topology of the
simulation, we configure the link bandwidth of the topology

edit slide master to edit author name
1

edit slide master to edit title

DC-4 DC-1

DC-3

UserDC-1UserDC-4

UserDC-3 UserDC-2DC-2

10 ms
50 ms

5 msAggregateSwitch

EdgeSwitch

Fig. 2. Overview of Network Topology in Simulation

with a large number to ensure there is not any additional
latency in the network due to bandwidth bottlenecks.

C. Service Chain Characteristic

As briefly described in Section II-A, we simulate three
types of personalized service. Each service chain has a single
UserVM with a fixed location in a UserDC, which sends
requests only to its particular service chain. Each service chain
requires three VMs with various types. Table II summarizes
the required VMs type of each service.

TABLE II
SUMMARY OF SFCS WITH MULTIPLE VM TYPES

Service VM-1 VM-2 VM-3
Video Streaming T2Small T2Nano T2Large

Web T2Large T2Small T2Nano
Database T2Nano T2Nano T2Small

The table shows that the Streaming and Web services require
a similar total size of VMs. However, their characteristics
are different. The Streaming service is simulated to deliver
video with different lengths. Specifically, the video length
is distributed exponentially around a mean of 30 s. Each
delivered video chunk has 2 s in length and 1100KB in
size. Consequently, when a Streaming service is requested,
the number of responses is corresponding to the number of
video chunks. On the other hand, Web and Database services
have only one response per request, but their response data
size is distributed around a mean of 2000KB and 50KB,
respectively. Besides, to simulate user-like behavior in the
simulation, we use an exponential distribution for service
requests (i.e., the time at which the service is instantiated)
with the mean value of 5min.The service life times and user
request inter-arrival times also use exponential distribution and
are different among simulated SFCs. Specifically, the mean
service life times of the Web, Database, and Streaming ser-
vices are 15min, 80min, and 20min, respectively. Whereas,
the corresponding mean request inter-arrival times are 1min,
10min, and 5min, respectively.

D. Performance Metrics

In this subsection, we define several metrics that are used
to evaluate the performance of SFC placement algorithms.

1) Service Response Time and Hop Count: Service re-
sponse time is the amount of time between the user request a
SFC and the reception of its response. In the simulation, the
service response time consists of the sum of all link delays and
the processing times at all VNFs. Herein, the processing time
at each VNF is set by default of 50ms in the simulator for all
services. Therefore, the total link delay is the main factor that
impacts the service response time of a SFC. Additionally, the
total hop count from the user to the SFC, which is the number
of intermediate nodes including switches between the UserVM
and the datacenter can be analyzed. It shows insights into the
dispersion of the SFC over different servers in the topology.

2) Resource Utilization: This is an important metric, since
reducing power consumption saves energy. In that way, addi-
tionally greenhouse gas emission is reduced, decreasing carbon
footprint. To this end, the idea is to place all VMs on the
smallest set of servers capable to deal with all running tasks.
Empty servers can then be shut down to save energy. Based
on this, we consider the number of servers, which are utilized
to provide a given number of services.

IV. SFC PLACEMENT ALGORITHMS

In this section, we present four SFC placement strategies,
which are Centralization (CEN), Orchestration (ORC), Service
Time Optimization (STO) and Resource Optimization (RO). On
the one hand, CEN and ORC are heuristic approaches. These
algorithm are designed and included within EdgeNetwork-
CloudSim to search quickly for a proper placement of SFCs.
On the other hand, STO and RO are optimal solutions, where
the placement problems of SFC are formulated using Integer
Linear Programming (ILP). In the simulation, the UserVM is
randomly chosen with equal probability among four UserDC
locations and is applied for all algorithms.

A. Centralization Algorithm

The centralization (CEN) placement algorithm tries to place
all VMs of a SFC as close as possible to the user, meaning
to have the lowest delay between the VMs and the user.
This algorithm is useful in classical cloud computing where
independent VMs of a user should be placed close to him.
However, it is unclear how the CEN performs in case of
service chains with communicating VMs. Algorithm 1 shows
the simplified pseudo-code of the centralization approach.

Algorithm 1 Centralization
1: Input: List of VMs, requested service and UserVm
2: Initialization;
3: for each vm in chain do
4: DC = findClosestDcToUser(uservm);
5: if DC == -1 then
6: abandonService();
7: end if
8: createVmInDc(vm, DC);
9: end for

Data provided for the algorithm are an ordered list of VMs,
UserVM location, and type of service. When receiving requests
to create VMs in a data center (DC), the simulator starts to
find a closest DC to the user for each VM. If there is still
an available DC, then the VM is placed in sequence and the
service can be processed. All the VMs can be placed in one
DC or distributed over different data centers. If at least one
VM could not be placed, there are not enough resources (i.e.,
CPU or RAM) in the system to deploy the entire SFC. In this
case, the requested SFC will be discarded or blocked.

In the CEN approach, all VMs of the service chain will be
placed around and close to the UserVM, but the algorithm does
not try to reduce the length of the chain. A large VM might be
placed far away from the UserVM due to the lack of resources

at the closer DC, but a smaller VM later in the chain may fit.
As a consequence, the length of the chain is increased and
data oscillate between data centers. This might significantly
influence the efficiency of the algorithm with respect to service
response time.

B. Orchestration Algorithm

The orchestration (ORC) algorithm differs from the CEN,
where only the first VM in the chain is attempted to be placed
as close as possible to the user. For the subsequent VMs, the
aim is to place them close to the previous VM. Based on this,
ORC tries to shorten the length of the chain that reduces the
latency. Algorithm 2 shows the simplified pseudo-code of the
orchestration algorithm.

Algorithm 2 Orchestration
1: Input: List of VMs, requested service and UserVm
2: Initialization;
3: DC = findClosestDcToUser(uservm);
4: if DC == -1 then
5: abandonService();
6: else
7: createVmInDc(firstVm, DC);
8: for next vm in chain do
9: DC = findClosestDcToPreviousVm();

10: if DC == -1 then
11: abandonService();
12: end if
13: createVmInDc(vm, DC);
14: end for
15: end if

Similar to CEN, this algorithm is provided with the ordered
list of VMs, UserVM location, and type of service. At first, it
tries to find a closest DC to the UserVM for the first VM in
chain. Afterwards, the algorithm tries to place the next VM
in chain as close as possible to the previous one in sequence.
Additionally, the next VM is only sent if the previous one has
been successfully placed. Thus, ideally all VMs are placed in
the same DC if it has enough resources. If no DC is found in
any case, the requested service is abandoned.

This algorithm overcomes the limitation of CEN, as it avoids
placing later VMs close to the user rather than close to the
previous VMs if possible. This helps to reduce the delay
within the SFC. Nevertheless, prioritizing the closest dc for
the first VM is not always the best option. Especially, when
this closest dc has only resources for some VMs and the other
VMs must be distributed to another farther dc. This leads to
an increased hop count within the chain and increased latency.
In this case, placing all VMs in the farther dc might be better,
since the delay within the chain would be zero. However, a
heuristic for this idea is not evaluated in this work. In the
next subsection, we present an optimized approach where the
placement problem of SFC is formulated by using ILP model.

C. Service Response Time and Resource Optimization

To formulate the problem and align with the definition of
the infrastructure and SFC described before, we consider that
each server is a member of a datacenter. We assume that all
servers within a datacenter are fully connected with links of
practically infinite bandwidth and zero delay. The first node of
a network inside a datacenter is considered to be the network
gateway. A UserVM is declared as statically allocated in a
server within a dedicated UserDC. The UserVM only acts as
the source of requests to a particular service chain. Table III
shows the notations that are used for the formulation of the
optimization problem.

TABLE III
SUMMARY OF PARAMETERS USED IN THE ILP MODEL

Parameters Description
T Set of application components
C Set of channels between application components, C ⊆ T × T
H Set of hosts
L Set of links between hosts, L ⊆ H ×H
S Set of user application components statically allocated at hosts, S ⊂ T
HS Set of hosts where static user application components are placed, HS ⊂ H ,

f : S → HS | ∀h′ ∈ HS , ∃t′ ∈ S : h′ = f(t′) (f is subjective)
R Set of unique resources offered by hosts
R′ Set of unique resources offered by links
M Set of monitored metrics at hosts
M ′ Set of monitored metrics at links
art Amount of resource r demand by application component t
irh Capacity of resource r at host h
βr
h Amount of resource r available at host h

mk
h Measured value of metric k at host h

crsd Amount of resource r demand required by channel (s, d)
bruv Amount of resource r available at link (u, v)

µkuv Measured value of metric k at link (u, v)

Based on the notations and the considerations mentioned
before, the optimization problem is formulated as follows.

Given:
R = {CPU,Memory}
R′ = {Bandwidth}

M = ∅

Minimize:
• Objective 1: Minimize service response time (STO)

Objective1 =
∑

(s,d)∈C

πuv,sdµ
Delay
uv , ∀(u, v) ∈ L. (1)

• Objective 2: Minimize resource utilization (RO)

Objective2 =
∑
h∈H

(min{
∑
t∈T

σht, 1}
100βCPU

h

iCPU
h

). (2)

Objective 2 aims to minimize the product of the number of
servers used in a placement and the percentage of available
CPU. This optimization procedure will attempt to collocate
VMs in a server but will have the preference to an already
utilized server. Thus, the servers that have zero utilization will
not be activated until the others have been fully utilized. By
doing this, unused servers can be put in the idle state to save
energy. However, at the initial placement all servers will have
the same probability to be selected. The objective function
does not favor any of them (e.g., a server with high capacity).

Subject to:

πuv,sd ∈ {0, 1}, (s, d) ∈ C, (u, v) ∈ L. (3)

In Equation (3), πuv,sd is a decision variable and equals to 1
if task channel (s, d) is routed from link (u, v), 0 otherwise.

σht ∈ {0, 1}, h ∈ H, t ∈ T. (4)

In constraint (4), σht is a decision variable and equals to 1 if
task t is assigned to host h, 0 otherwise.∑

h∈H

σht = 1, ∀t ∈ T, (5)

σht = 1, h ∈ HS , t ∈ S, (6)∑
t∈T\S

σht = 0, ∀h ∈ HS . (7)

Constraint (5) ensures that a task (or application component) is
assigned only to one host. The static placement of the user task
is defined in Eq. (6), it is given as an input to the problem
and not decided. Whereas, constraint (7) specifies that user
applications are only placed in hosts assigned for them.∑

t∈T
σhtα

r
t ≤ βr

h, ∀r ∈ R,∀h ∈ H. (8)

Equation (8) stipulates that the considered host h must have
enough resources to allocate the application component t.∑

(u,h)∈L

πuh,sd + σhs =
∑

(h,v)∈L

πhv,sd + σhd. (9)

Constraint (9) captures and expresses in one equation,
• the unsplittable flow constraint: A channel uses a single

outgoing link from source and a single incoming link at
destination and does not split,∑

(u,h)∈L

πuh,sd = 1 if σus = 1,∑
(h,v)∈L

πhv,sd = 1 if σvd = 1,

• the collocation of tasks: A communication path is not
required in the case that both s and d are assigned to the
same host (and no capacity checking),

σhs = σhd,
πuu,sd = 0,

• the flow conservation constraint: No traffic is stored in a
node unless this node is the source or the destination or
collocated source and destination,∑

(u,h)∈L

πuh,sd =
∑

(h,v)∈L

πhv,sd,

∀h ∈ H : σhs = 0, σhd = 0.∑
(u,h)∈L

σhsπuh,sd = 0. (10)

Constraint (10) makes sure that there is no loop in the path
before reaching destination.

πuv,sd = πvu,ds, (s, d), (d, s) ∈ C, (u, v), (v, u) ∈ L. (11)

As determined in Eq. (11), a bidirectional communication
between two tasks is routed through the same bidirectional

overlay path. In addition to this, upstream and downstream of
a flow is not routed separately.∑

(s,d)∈C

πuv,sdcsd ≤ buv, ∀(u, v) ∈ L. (12)

Constraint (12) guarantees that the link (u, v) must have
enough resource required by channel (s, d).

V. RESULT

In this section, we present the simulation results that com-
pare the performance of four SFC placement algorithms. We
simulated three types of personalized services with individual
algorithms in the extended EdgeNetworkCloudSim. The de-
tails of simulation implementation in EdgeNetworkCloudSim
can be found in the original work [9]. Based on the topology
and metrics presented above, we implement 20 replications
for each algorithm to increase the statistical significance. In
the next subsections, we evaluate the performance of the
algorithms according to two criteria, service response time
and resource utilization. The algorithms under evaluation are
Centralization (CEN), Orchestration (ORC), Service Response
Time Optimization (STO), and Resource Optimization (RO).
Wherein, STO and RO are Objective1 and Objective2 for-
mulated in Eq. (1) and Eq. (2), respectively.

A. SFC Placement Algorithms vs. Service Response Time

Figure 3 shows the average service response time of the
three SFCs with different placement algorithms. The x-axis
shows the services, the y-axis shows the service response time
in milliseconds. The bar group with different colors of each
service shows the mean service response time with a 95%
confidence interval of different placement algorithms.

Service Types
Streaming Database Web

Se
rv

ic
e

R
es

. T
im

e
(m

s)

0

100

200

300

400

500
CEN ORC STO RO

Fig. 3. Average Service Response Time of Different SFCs

Figure 3 shows that the Streaming service has a higher
service response time than the Database and the Web service. It
is due to the fact that the Streaming service responds multiple
video chunks per request, depending on the video length as
described in Section III-C. In fact, the average total response
time of the Streaming service is about 6000ms. However,
for the sake of comparability with other services, we only
show in Fig. 3 the average service response time of one
video chunk. The overhead of sending multiple video chunks
increases the average response time of one chunk as shown
in the figure. Conversely, the Database service has the lowest

average response time of about 250ms. Since it requires a
lower total size of all VMs, the placement algorithms have
a higher chance to place the VMs in a desired server which
decreases the overall service response time.

Regarding the service response time produced by different
placement algorithms, STO gains the lowest service response
time of all services, followed by ORC, CEN, and RO. For
instance, when STO is used as placement algorithm for the
Web service, it takes 272.80ms for a user to request the
service until receiving its response. Whereas, by using ORC,
CEN, or RO algorithms, it takes 277.80ms, 328.00ms, and
327.10ms, respectively. This does not come as a surprise, as
STO was designed to compute a placement, minimizing the
service response time by using the ILP model and considering
the whole system state. Note that, since our topology has only
four data centers, the processing time of CPLEX Optimizer
is negligible. However, with a larger network topology, the
solution space created by the CPLEX Optimizer is also large.
As a consequence, the solving time for an optimal placement
can negatively impact the overall service response time, since
the optimal solution is a NP-hard problem.

Thus, heuristic approaches have to be investigated, such as
ORC which reaches the second lowest service response time
for Streaming and Web services. In this algorithm, all VMs in
the chain are placed to have shortest distance between them.
The first VM in the chain is placed as close as possible to
the user. As a result, ORC constantly tries to minimize the
length of the chain. In fact, ORC has to scan all servers with
multiple loops to find the best placement for VMs. The chosen
servers must have enough resources for all VMs as well. This
operation is executed each time for a new coming service.
Thus, with an increasing number of requests from the user, it
also influences the overall service response time.

In fact, the ideal placement for the lowest service response
time is the situation, where all VMs in the chain are placed
in one server. In this case, the delay between the three VMs
in the chain is zero, which substantially decreases the overall
service response time. Figure 4 shows the probability of the
occurrence of this situation. The x-axis indicates the three
service types, the y-axis shows the probability of placing the
whole chain in one server. The bars with different colors
represent the mean probability for the different algorithms with
a 95% confidence interval.

Service Types
Streaming Database Web

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
CEN ORC STO RO

Fig. 4. Probability of Placing the Complete Chain in one Server

It can be seen that RO exhibits a higher results compared to
the other algorithms, since it is specially designed for resource
optimization. This behavior is described in more detail in
the next subsection. Regarding the other algorithms, Figure 4
shows that STO has a considerable higher value than ORC and
CEN algorithms. In the Streaming service, there is 52.44%
chance that STO places the whole chain of the service in one
server, while this number in case of ORC and CEN is 36.86%
and 32.29%, respectively. This tendency is also encountered
in the Database and the Web services. This is reasonable, since
STO calculates the SFC placement based on minimized total
delay. Thereby, it is one option to place all VMs in one server.
For instance, the selected server for the whole chain may not
be the closest one to the user. Since the delay between the VMs
in the chain is zero, the total delay is still smaller than the case
where the VMs are distributed over different servers. This is
the major difference between the optimized solution and the
heuristics. Indeed, ORC and CEN choose the placement of a
SFC based on iteratively scanning every server in data centers.
They try to select the server as close as possible to the user.
As a consequence, the closest servers are rapidly running out
of resources. Afterwards, the VMs of the next SFC must be
distributed over different servers. This is the reason why their
probability of all VMs in one server is lower.

Figure 5 shows the mean hop count calculated from different
algorithms. The x-axis shows the algorithms and the y-axis
displays the mean hop count with a 95% confidence interval.

Placement Algorithms
CEN ORC STO RO

H
op

s
C

ou
nt

0

2

4

6

8

Fig. 5. Average Hop Count of Different Placement Algorithms

The figure indicates that, CEN has the highest average hop
count compared to other algorithms. The average number of
intermediate nodes between the user and SFC calculated by
CEN is 6.04, while in case of STO and ORC is 4.7 and
5.3, respectively. In contrast to ORC, the CEN algorithm
always selects the closest server to the user to place VMs,
without consideration of the length of the chain. Consequently,
although the chosen servers are near to the user, the data flow
might be transferred in a long chain that significantly increases
the service response time.

To conclude this subsection, we have shown that the STO
placement strategy carried out by using ILP model has the
highest performance, since it achieves the lowest service
response time of all types. However, the performance of
STO might be influenced by the processing time of CPLEX

Optimizer in a larger topology. In this situation, the solving
time for the optimization problem would be high and might
considerably increase the overall service response time. The
heuristic algorithm ORC shows an acceptable performance,
since it attempts to minimize the length of the chain. Although
RO has low performance in service response time, it is
particularly designed for resource optimization as presented
in the next subsection.

B. SFC Placement Algorithms vs. Server Utilization

As presented in Section IV-C, the second objective of our
ILP model is to specify the placement of a SFC, where
resource utilization is minimized (i.e., RO algorithm). Figure 4
in the previous subsection indicates that RO has a noticeable
higher probability that it places all VMs of a SFC in one server
compared to the others. To this end, the objective function tries
to minimize the number of servers used for SFCs regarding
their available resources. This means, RO will place as much
SFCs as possible in one server and has the preference to an
already utilized server as well. Thereby, the unused servers
can be put in the idle mode or shut down to save energy.

To evaluate the performance of this placement strategy,
we calculate the number of utilized servers along with the
number of concurrently instantiated SFCs. Herein, a server
is considered as utilized when at least one CPU is allocated
to a VM of a SFC. Figure 6 shows the correlation between
the number of utilized servers and the number of concurrent
services. The x-axis shows the number of concurrent services,
the y-axis indicates the average number of corresponding used
servers, meaning the server utilization (ServUtil) rate. The
different colored lines display the mean ServUtil rate produced
by different placement algorithms. The error bars on each line
indicate the 95% confidence interval of the mean values.

Number of Concurrent Services
0 5 10 15 20 25

N
um

be
r

of
 S

er
ve

rs

1

2

3

4

5

CEN
ORC
STO
RO

Fig. 6. Number of Utilized Servers vs. Number of Concurrent Services

Figure 6 shows that STO, ORC, and CEN placement al-
gorithms produce similar ServUtil rate, when all servers are
handled by more than ten concurrently instantiated SFCs. This
is reasonable, since these algorithms attempt to minimize the
service response time by selecting the closest servers to the
user. Since users are located at different UserDCs as shown
in the topology, their nearest servers are quickly utilized.
Nevertheless, ORC, CEN, and STO are outnumbered by far
by the RO placement algorithm, which has a much lower
ServUtil rate as represented by the separate yellow line. It can

be seen that ten concurrent services only use 3.6 servers on
average. All servers are constantly utilized when there are 21
services instantiated at the same time. This maximum number
of concurrent services doubles the other placement algorithms.
This is due to the fact that the RO algorithm always prioritizes
the collocation of VMs in one server before considering the
others. Furthermore, when a SFC has finished execution and
releases resources of the hosted server, but this server is still
used by other services, it has a higher priority to be chosen
for the next incoming service than the unused ones. Based
on this, the number of utilized servers is minimized and the
other servers can be put to standby state. This can significantly
reduce the power consumption and save energy. To conclude,
it could be seen that the presented heuristic algorithms show
a decent performance in terms of service response time, but
still need improvements in terms of resource utilization.

VI. CONCLUSION

In the NFV paradigm, the usage of SFCs is promising to
reduce the complexity of heterogeneous service deployment.
Nevertheless, the distribution of VNFs over different hosts
increases the overall latency and server utilization. In this
work, we evaluate four algorithms to efficiently place SFCs
in the context of an edge network. These algorithms aim to
decrease the service response time or resource utilization. To
evaluate the performance of these placement algorithms, we
use the event-based EdgeNetworkCloudSim simulator.

Regarding service response time, the result show that STO
performs better than the other algorithms in all types of
service. This demonstrates that, the use of ILP model is able
to compute an optimal solution. Especially, the probability
of placing all VMs of a chain in one server is higher than
CEN and ORC algorithms, which results in reduced service
response time. However, the processing time of the optimizer
is a considerable drawback as the placement problem is NP-
hard. Despite of producing higher service response time than
STO, ORC algorithm always tries to shorten the length of
the chain. This algorithm can be an alternative for STO in
a large network topology where the processing time of STO
might be high. The CEN algorithm produces highest service
response time, since it only places VMs as close as possible
to the user without the consideration of the chain itself and
the communication of the VMs within.

The second objective of the ILP model is to minimize
server utilization. Herein, the placement of SFC is optimized
to utilize the least number of server. Out result shows that, with
the optimized placement, 10 concurrent SFCs only require a
half of all server resources. In contrast, the heuristics and STO
utilize all datacenters to handle the same number of concurrent
SFCs. This insight shows that while the evaluated heuristics
perform well in terms of service response times, they need to
be improved to have the ability to reduce power consumption
and carbon footprint of datacenters.

Future work may extend this study to evaluate these place-
ment algorithms in different network topologies with more
detailed investigation of bandwidth or energy consumption.

REFERENCES

[1] Cisco Systems, “Cisco visual networking index: Forecast and method-
ology, 2016-2021,” White Paper, 2016.

[2] M. Fiedler, T. Hoßfeld, and P. Tran-Gia, “A generic quantitative rela-
tionship between quality of experience and quality of service,” IEEE
Network Special Issue on Improving QoE for Network Services, 2010.

[3] ITU-T Rec. G1030, “Estimating end-to-end performance in ip networks
for data applications,” ITU-T Recommendation, Nov. 2005.

[4] M. Chios, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, and H. Deng, “Network functions
virtualisation: an introduction, benefits, enablers, challenges and call for
action,” White Paper available at http://portal.etsi.org, 2012.

[5] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, 2015.

[6] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, 2015.

[7] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-
ture,” Internet Requests for Comments, RFC, Tech. Rep. 7665, Oct 2015.

[8] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research directions
in network service chaining,” in SDN for Future Networks and Services
(SDN4FNS). Trento, Italy: IEEE, Nov 2013.

[9] M. Seufert, B. K. Kwam, F. Wamser, and P. Tran-Gia, “Edgenetwork-
cloudsim: Placement of service chains in edge clouds using network-
cloudsim,” in IEEE Conference on Network Softwarization (NetSoft
2017). Bologna, Italy: IEEE, Jul 2017, pp. 1–6.

[10] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in IEEE
Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN). San Francisco, CA, USA: IEEE, Jan 2015.

[11] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in 11th International Conference on
Network and Service Management. Barcelona, Spain: IEEE, Nov 2015.

[12] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gas-
pary, “Piecing together the nfv provisioning puzzle: Efficient placement
and chaining of virtual network functions,” in IFIP/IEEE International
Symposium on Integrated Network Management (IM). Ottawa, Canada:
IEEE, May 2015, p. 98106.

[13] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE 3rd International Conference on
Cloud Networking (CloudNet). Luxembourg: IEEE, Dec 2014.

[14] K. Yang, H. Zhang, and P. Hong, “Energy-aware service function
placement for service function chaining in data centers,” in Global
Communications Conference (GLOBECOM), 2016 IEEE. Washington,
DC, USA: IEEE, Dec 2016, p. 16.

[15] N. Huin, A. Tomassilli, F. Giroire, and B. Jaumard, “Energy-efficient
service function chain provisioning,” Journal of Optical Communica-
tions and Networking, vol. 10, no. 3, pp. 114–124, 2018.

[16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, 2016.

[17] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[18] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing envi-
ronments and applications,” in 24th IEEE International Conference on
Advanced Information Networking and Applications (AINA). Perth,
WA, Australia: IEEE, Apr 2010, pp. 446–452.

[19] S. K. Garg and R. Buyya, “Networkcloudsim: Modelling parallel appli-
cations in cloud simulations,” in Fourth IEEE International Conference
on Utility and Cloud Computing. Victoria, Australia: IEEE, Dec 2011.

[20] C.-H. Hsieh, J.-W. Chang, C. Chen, and S.-H. Lu, “Network-aware
service function chaining placement in a data center,” in 18th Asia-
Pacific Network Operations and Management Symposium (APNOMS).
Kanazawa, Japan: IEEE, Oct 2016, p. 16.

[21] M. Bouet, J. Leguay, T. Combe, and V. Conan, “Cost-based placement of
vdpi functions in nfv infrastructures,” International Journal of Network
Management, vol. 25, no. 6, 2015.

[22] M. Bouet, J. Leguay, and V. Conan, “Cost-based placement of virtualized
deep packet inspection functions in sdn,” in MILCOM IEEE Military
Communications Conference. San Diego, USA: IEEE, Nov 2013.

[23] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in 10th International Conference on
Network and Service Management (CNSM). Rio de Janeiro, Brazil:
IEEE, Jan 2014, pp. 418–423.

[24] R. Bruschi, P. Lago, and C. Lombardo, “In-network programmability
for next-generation personal cloud service support (input),” Procedia
Computer Science, vol. 97, pp. 114–117, 2016.

[25] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach
to universal topology generation,” in Ninth International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems. Cincinnati, OH, USA: IEEE, Aug 2001, pp. 346–353.

