
Is the Uplink Enough? Estimating Video Stalls from
Encrypted Network Traffic

Frank Loh⇤, Florian Wamser⇤, Christian Moldovan⇤, Bernd Zeidler⇤, Dimitrios Tsilimantos†,
Stefan Valentin‡, Tobias Hoßfeld⇤

⇤University of Würzburg, Germany, {firstname.lastname}@informatik.uni-wuerzburg.de
†Paris Research Center, Huawei Technologies France SASU, {dimitrios.tsilimantos}@huawei.com

‡Darmstadt University of Applied Sciences, Department of Computer Science, Germany, {stefan.valentin}@h-da.de

Abstract—Today’s traffic projections speak of almost 58 %
video traffic across the Internet. Nearly all video traffic is
encrypted, accounting for more than 50 % encrypted traffic
worldwide. To analyze video traffic today, or even estimate its
quality in the network, a deep look into the traffic characteristics
has to be done. But then, important quality metrics from the
traffic behavior can be derived. Based on extensive measurements
we show in this work how to measure and estimate video stalls for
mobile adaptive streaming. The underlying dataset includes more
than 900 hours of video footage from the native YouTube app,
measured over 18 different videos in 56 network scenarios in two
cities in Europe. We outline a possible approach to estimate the
video playback buffer size based on uplink video chunk requests
in real-time to break down the video stalls. This work is intended
as a tool for network operators to receive further knowledge of
the characteristics of video streaming traffic to quantify the most
important QoE degradation factors of one of the most important
applications today.

I. INTRODUCTION

The amount of traffic transfered all around the world in
today’s Internet is tremendous. Besides the rapidly changing
environment, from a network operators point of view, dealing
with the vast amount of data is one of the largest challenges.
According to recent estimates, almost 58 % of Internet traffic
is video [1], [2]. In mobile networks it is more than 70 % [3].
YouTube and Netflix are the biggest contributors [1], both
using adaptive video streaming due to the fluctuating mobile
conditions [4]. In addition, more than 50 % of network traffic
is encrypted in the Internet [1], with YouTube and Netflix
both completely encrypting their streaming. Thus, as a network
operator, the challenge is to recognize the application quality
of video streaming from the encrypted traffic and draw correct
conclusions in order to ensure the best possible and cost-
efficient transport [5].

Studies show that video experience depends on stalling,
initial delay, playback quality, and the frequency of quality
changes [6], [7], [8]. This does not only apply to the users’
Quality of Experience (QoE) but also to User Engagement [9]
or user churn [10]. For that reason, it is important for the
network operator and also for the streaming service provider
to be able to estimate the traffic characteristics for video
streaming. With this knowledge the streaming quality at the
users side can be quantified and improved. First of all, this

requires a profound understanding of video streaming and
a mapping of application situation to traffic characteristics.
Second, measurements of different scenarios and network
conditions allow an assessment of the situation in order to
develop a general approach. Since most streaming traffic is
encrypted, the measurements have to be made, both at network
layer and on the application side to correlate them and evaluate
the network traffic.

This paper examines one of the key factors influencing
the user’s video QoE degradation: the video stalls. Initially,
traffic patterns are presented, causally related to video stream-
ing application properties. Statements about the patterns are
developed that the buffer filling status can be successively
tracked during the whole playback. This knowledge is used
to estimate video stalls, i.e. an empty buffer level is estimated
out of the traffic patterns. By drawing conclusions from the
uplink requests to received video seconds without taking the
downlink into consideration, the approach is lightweight from
a computational point of view and simple for implementation
and utilization.

The contribution of this work is a simple characterization
of video streaming in connection with the causal traffic char-
acteristics. The work is intended to give network operators an
approach for greater understanding of video streaming traffic
within their network without the needs of keeping track of
every single packet in the downlink. The work can be seen as
a step towards a comprehensive but also simple and efficient
video stalling analysis from encrypted network traffic. It allows
statements about a well-functioning video streaming or a video
streaming session with problems.

The remainder of this paper is structured as follows.
Section II outlines basics that help understanding the pa-
per’s approach and terminology. It sets the fundamentals for
adaptive video streaming that are required for the rest of
the work. Section III presents the dataset for validation of
the estimation algorithm, after which, in Section IV, chunk
requests are analyzed in detail. Based on this, traffic patterns
are presented and linked to application situations. Section V
uses the knowledge from Section IV to derive an estimator
for video stalls. Afterwards, the evaluation takes place in
Section VI. We conclude the work with a comparative related
work in Section VII and a final conclusion in Section VIII.978-1-7281-4973-8/20/$31.00 c� 2020 IEEE

1

c ©
20

20
IE

E
E

.
Pe

rs
on

al
us

e
of

th
is

m
at

er
ia

l
is

pe
rm

itt
ed

.
Pe

rm
is

si
on

fr
om

IE
E

E
m

us
t

be
ob

ta
in

ed
fo

r
al

l
ot

he
r

us
es

,
in

an
y

cu
rr

en
t

or
fu

tu
re

m
ed

ia
,

in
cl

ud
in

g
re

pr
in

tin
g/

re
pu

bl
is

hi
ng

th
is

m
at

er
ia

l
fo

r
ad

ve
rt

is
in

g
or

pr
om

ot
io

na
l

pu
rp

os
es

,

cr
ea

tin
g

ne
w

co
lle

ct
iv

e
w

or
ks

,
fo

r
re

sa
le

or
re

di
st

ri
bu

tio
n

to
se

rv
er

s
or

lis
ts

,
or

re
us

e
of

an
y

co
py

ri
gh

te
d

co
m

po
ne

nt
of

th
is

w
or

k
in

ot
he

r
w

or
ks

.
T

he
de

fin
iti

ve
ve

rs
io

n
of

th
is

pa
pe

r
ha

s
be

en
pu

bl
is

he
d

in
32

th
IE

E
E

/I
FI

P
N

et
w

or
k

O
pe

ra
tio

ns
an

d
M

an
ag

em
en

t
Sy

m
po

si
um

(N
O

M
S)

,
20

-2
4

A
pr

il.
20

20
,

ht
tp

://
dx

.d
oi

.o
rg

/1
0.

11
09

/N
O

M
S.

20
20

.9
78

-1
-7

28
1-

49
73

-8
/2

0.

II. BACKGROUND

This section contains substantial definitions and essential
streaming background information. The technical terminology
of streaming-related terms is established followed by a differ-
entiation of streaming at application layer and network layer.

Adaptive Video Streaming: In the past, when a user
requested a video stream, it was downloaded in a single quality
independent of the available bandwidth in a best effort manner.
However, if the average download rate is insufficient, the
stream can not be played without stalling. To accommodate
the average playback rate to the available download rate,
HTTP adaptive streaming (HAS) was introduced. HAS selects
the video encoding bitrate to match the downlink bandwidth.
This process, standardized as DASH [11], allows continuous
streaming with a stable buffer in the highest possible quality
used by, among others, YouTube and Netflix [4].

The streaming process with the YouTube android app in
detail is as follows: An end-user requests video content from
Google servers by YouTube, exemplary available in three
qualities, in Figure 1. Since audio in YouTube is available
with constant bitrate (CBR), only one quality level, AQ1, is
available. The video player sends requests for content via the
HTTP protocol and opens or re-uses existing encrypted TCP
connections. Based on the requests and downloaded data, a
video session can be reconstructed by estimating parameters
like downloaded video playback, initial delay, and stalling. The
detailed process of video flow and chunk request separation
is described in [12]. By separating video flows based on IP-
address port combinations it is also possible to distinguish
between different videos, and thus different users at the same
time.

Chunks: From a network layer point of view, only
the requests for video and audio data of the stream, called
chunks, are contained in the uplink. The requested data is in
the downlink back to the end-user’s device. In typical video
streaming, the video and audio chunks can have up to a specific
amount of data in byte. Video chunks are usually much larger
than audio chunks. The size of video chunks is defined by the
currently available bandwidth and the requested quality level.

Considering YouTube, there is no parallel download of
chunks of the same type, although video and audio can
be downloaded in parallel. This behavior is detected in our
measurements for QUIC and TCP streaming. In case of TCP,
two different TCP ports are used for audio and video if
downloading in parallel.

Segments: In contrast to chunks, segments are the appli-
cation layer portion of streaming data. Segments are separated
by the duration while chunks by the size in byte. It is common
to request multiple segments at network layer, usually one or
two, in one chunk. For the application layer, this means that
once the part of the chunk that covers an entire segment has
been downloaded, this segment can be played out. Further-
more, quality changes can only be performed after a segment
is downloaded completely. Typically, a video segment in
YouTube contains roughly 5 s of video data, varying depending
on the format. An audio segment has about 10 s.

Video Buffer: In the video buffer, several seconds of
playback can be stored. After the playback starts, it is essential
that the video buffer never runs empty, otherwise the playback
stalls. If the buffer is full, no more video data is requested. If
the buffer level decreases below a specific threshold, a lower
quality is requested to adapt the video rate against the changing
downlink rate to ensure smooth playback. Additionally, the
usage of a buffer helps to prevent the unnecessary download
of video data. This is required, since the video playback is
often aborted by the user before it is played out completely.

A study in 2011 [13] showed that about 60 % of all
requested videos in YouTube were watched for less than 20 %
of their duration. Thus, prebuffering the complete video wastes
much bandwidth. For that reason, the appropriate buffer size
must be chosen according to three factors: the tolerable amount
of data that can be thrown away when a user aborts; the
maximum variation in end-to-end network download rate to
avoid running empty; the variations in the video encoding
rate. Compared to on-demand streaming, in live streaming the
buffer is also used as parameter for allowed delay. A study
about a proper video buffer size is presented in [14].

The mobile YouTube player has an audio and a video buffer.
Each arriving chunk is split in its segments and added to the
associated buffer. Regarding Figure 1, video chunk 1 contains
two segments, played out after each other. The different colors
show the available qualities. Audio chunk 1 contains one
segment that is added to the audio buffer shown in blue.

III. DATA SET

In this section, all measured data is summarized. The testbed
for data collection is placed in two large cities in two different
countries according to [15]. In total more than 900 h of video
data are collected. First, for ground truth determination and
testbed validation, 2464 measurement runs corresponding to
more than 450 h of video playback time were recorded, 374 h
are already published in [16]. For a better reproducibility
of the results, an overview of all network layer data and
network layer data flows is created and available in [17]. The
focus of the first part of the dataset was correctness, usability
for the estimation, validation purpose and plausibility check.
Therefore, chunk request extraction, video flow determination,
and QoE ground truth determination including quality changes
and stalling is done according to [18]. The second focus
is based on the geographical distribution of both peering
points for measurement validation. The focus of the second
dataset in [17] is the presentation of postprocessed data for
reproducibility of the results and easier usage in the research
community.

Data Set Overview: For the estimation of stalling, addi-
tionally a total of 2618 valid measurement runs equal to more
than 475 h of video data were captured between April and
February 2019. During playback, 877 of all video runs stalled.
According to Table I, 18 different videos were measured. The
duration of the videos is between 2.27 min and more than 9 h.
The goal in the video selection was to cover a large set of
different videos concerning duration, video topic, scene- and

2

YouTube'CDN end-user

uplink'

downlink

Network(layer

• Request'to'YouTube'CDN
• Video'data'request'(1)'[Quality'VQ2]
• Audio'data'request'(1)'[Quality'AQ1]
• Video'data'request'(2)'[Quality'VQ2]
• Video'data'request'(3)'[Quality'VQ3]
• Audio'data'request'(2) [Quality'AQ1]
• …

Network(layer

• Response'from'YouTube'CDN
• Video'chunk'download'(1)'[Quality'VQ2]
• Audio'chunk'download'(1)'[Quality'AQ1]
• Video'chunk'download'(2)'[Quality'VQ2]
• Video'chunk'download'(3)'[Quality'VQ3]
• Audio'chunk'download'(2)'[Quality'AQ1]
• …

Application(layer

• Video'segment'1'(V1)'
playout'(from'video'chunk'1)

• Audio'segment'1'(A1)'
playout'(from'audio'chunk'1)

• Video'segment'2'(V2)'
playout'(from'video'chunk'1)

• Audio'segment'2'(A2)'
playout'(from'audio'chunk'2)

• Video'segment'3'(V3)'
playout'(from'video'chunk'2)

• …

Video'buffer

Audio'buffer

V1 V2 V3

A1 A2

VQ1'
500kbps

VQ2'
1000kbps

VQ3'
2000kbps

AQ1'
const.'br

DASH'video'in'YouTube

Constant'bitrate'audio'
in'YouTube

Fig. 1: YouTube streaming behavior at network and application layer

0 6020 40 80 100
0

5

10

15

in
te

r-r
eq

ue
st

 ti
m

e
[s

]

time [s]
(a) Low IRT pattern

100 150 200 250 300 350
0

5

10

15

time [s]

in
te

r-r
eq

ue
st

 ti
m

e
[s

]

(b) Repeating pattern

50 100 200150
0

5

10

15

20

in
te

r-r
eq

ue
st

 ti
m

e
[s

]

time [s]
(c) High IRT pattern

Fig. 2: Detected main traffic patterns

camera perspective changes resulting in different bitrates, and
frames per second.

Furthermore, a diversity of representative streaming situ-
ations are measured and evaluated listed in Table II. For
scenarios 22 to 56, each of the listed qualities are measured
with each of the presented throughput limits. Additionally, the
4G bandwidth traces collected in [19] and the 3G traces of [20]
are set as throughput limits to measure realistic scenarios. The
other scenarios are chosen as follows:

Scenario 1 has a fixed bandwidth of 5000 kbit/s with a
changing quality from 720p to 360p and back every 60 s.
The goal of this scenario is to trigger quality changes and
detect differences to stalling request patterns. Scenarios 2 -
6 are defined with an automated quality setup and slowly
decreasing bandwidths in different time intervals. This is done
to trigger quality changes by throttling the bandwidth stepwise.

Scenarios 7 - 9 simulate network outages. Scenarios 10 and
11 are characterized by slowly decreasing bandwidth limits.
Compared to previous scenarios, the limit nearly drops to
zero to trigger stalling scenarios or decrease the quality to
144p. In scenario 11, the rate increases again after the outage.
Lastly, scenarios 12 - 21 describe an automatic quality setting
with different bandwidth limits without stallings. Scenarios
22 - 56 use different quality settings with different bandwidth
limitation for validation. In total, we cover a wide set of typical
scenarios in mobile video streaming including representative
cases with stalling occurrences during video playback and
realistic scenarios of real 3G and 4G bandwidth traces.

IV. TRAFFIC PATTERNS

Analyzing all captured data, three different traffic patterns
are detected summarized in Figure 2. Traffic patterns are the

3

TABLE I: Video overview

Index Type Video ID Duration [s] Index Type Video ID Duration [s]

V1 T1 2d1V rCvdzbY 561 V10 T1 14GFLpsV 068 147
V2 T2 N2sCbtodGMI 559 V11 T1 4 9PhJ0Ao7E 144
V3 T1 OHOpb2fS � cM 734 V12 T1 1ixCkNCLfA4 32609
V4 T1 0y2qOY emiLs 537 V13 T1 3NttMN0z Iw 223
V5 T1 0mrfImiI0Q8 425 V14 T1 1dLuiA4T � Dc 2316
V6 T1 1fhdHPBqUa8 653 V15 T2 2ypwI56JGLM 329
V7 T1 3iube � nnsr8 1615 V16 T2 2 jdPTfbngs 364
V8 T1 3ogzQjdSArw 234 V17 T2 3hp7xwJHEko 211
V9 T1 12rp64JoY 6A 418 V18 T2 1e0gvDiPRdk 4306

TABLE II: Scenario overview

Scenario Quality Throughput limit (Mbit/s)

1 720p
60 s
�
60 s

360p 5

2 auto 5 10 s! 3 5 s! 2.5 5 s! 2 5 s! 1.5 5 s! 1

3 auto 3 60 s! 2.5 5 s! 2 5 s! 1.5 5 s! 1 20 s! 0.8 5 s! 0.7 5 s! 0.5

4 auto 3 30 s! 2.5 5 s! 2 5 s! 1.5 5 s! 1 20 s! 0.8 5 s! 0.6 5 s! 0.3

{5, 6} auto 2.5
{60,30} s! 2 5 s! 1.5

{7, 8} auto 2.5 45 s! 0.05
{30,15} s! 0.3

9 auto 2.5 45 s! 0.1 15 s! 0.3

10 auto 2.5 45 s! 2 10 s! 1.5 10 s! 1 15 s! 0.5 15 s! 0.25

11 auto 2.5 20 s! 1.5 5 s! 1 5 s! 0.5 5 s! 0.2 5 s! 0.1 5 s! 0.05 60 s! 2.5
12-21 auto {0.5 | 1 | 2 | 3 | 4 | 5 | 8 | 10 | 25 | 400}
22-56 {144p | 240p | 360p | 480p | 720p} {1 | 2 | 3 | 4 | 5 | 25 | 400}

mapping of the video behavior at application layer to network
traffic. A pattern is a sequence of network packets correspond-
ing to the requested network chunks. The understanding of
the traffic patterns forms the basis for the stalling estimator in
this document. In the following, the detected traffic patterns
are presented in detail in Figure 2 based on an example
measurement and afterwards mapped to streaming phases. All
subfigures present the inter-request time (IRT) at the y-axis
and the measurement time of the example run at the x-axis.

Chunk Request Traffic Patterns: Figure 2a shows an
irregular pattern. Most of the IRTs are close to 0 s or dis-
tributed around 5 s. The maximum IRT is about 7 s, the mean is
2.13 s. Thus, the chunks are requested very frequently without
high delay. Figure 2b shows a repeating pattern with a mean
IRT of 4.89 s. The time between two consecutive requests
is 5 s at 120 s of the measurement snippet, followed by an
alternating pattern between smaller and larger values. At 200 s
the IRT between two values is 10 s. Afterwards, the duration
is alternating back to 5 s at 260 s and the pattern is repeated.
Last, Figure 2c shows a more irregular pattern with a mean
IRT of 6.64 s. Between most requests, there is an IRT of more
than 10 s or a value close to 0 s.

Audio and Video Request Separation: The traffic pat-
terns presented above represent video and audio chunk re-
quests. For an accurate stalling estimation it is essential to

separate the video from the audio stream. This is mainly due
to three reasons: First, the video buffer is the primary buffer.
For stalling estimation, it is enough to consider the video
stream since the YouTube player will not stream if the video
buffer is empty. Second, the buffer level is estimated wrong
for a complete chunk size if a chunk is classified falsely as
audio or video. Last, transition detection between video phases
presented above is more accurate if the video and audio stream
is separated.

Since audio in YouTube is streamed with a CBR, each audio
chunk is about the same size. For that reason, it is sent in the
same amount of packets, to our findings in 116, 117, or 118
packets. To prove this, Table III shows statistics about the
packets of each chunk for all measured data. The first column
shows the chunk type or the quality level, the second one the
mean amount of packets for each chunk of that specific quality.
The third column shows the mean absolute deviation (MAD)
and the last column the amount of video chunks received
for each quality. The presented statistics show an increasing
variance in the amount of packets for each video chunk with
increasing video quality. Comparing 144p video with 720p, the
MAD increases from 3.81 to more than 230. Compared to that
there is only small variance in the amount of packets for each
audio chunk. Based on these findings, audio and video chunks
of the steady phase of Figure 2b are separated exemplary in

4

TABLE III: Packets per chunk statistics

Quality mean MAD # chunks

audio 117.07 0.13 8774
144p 89.71 3.81 2877
240p 172.47 20.59 679
360p 308.57 49.63 743
480p 533.23 108.60 708
720p 1080.00 230.63 2092

100 150 200 250 300 350
time [s]

0

5

10

15

in
te

r-r
eq

ue
st

 ti
m

e
[s

]

audio
video

Fig. 3: Audio and video requests

Figure 3 while all chunks sent in 116, 117, or 118 packets are
classified as audio during our measurements. This value results
from the CBR in audio and thus, segments of the same size in
byte transmitted in the same amount of packets. The amount
of packets is determined by the maximum transmission unit
(MTU) size that is 1500 B.

Relation between Traffic Patterns and Video Streaming
Phases: After separating audio and video, the traffic patterns
can be mapped to streaming phases that are states of the
internal streaming process. From an application point of view,
three phases in video streaming can be defined according
to [21]: an initial buffering phase, a periodic buffer refill phase
and a buffer depletion phase. In the initial buffering phase or
filling phase, video data is requested and delivered in a best
effort manner until the target buffer threshold is reached. A
small IRT like shown in Figure 2a is a typical reference for
this phase. When the buffer is filled completely, the player
switches to the periodic buffer refill phase or steady state
phase. It corresponds to the normal streaming behavior, where
as much data is downloaded as taken out from the buffer for
playback. This results in a very periodic uplink request pattern
like shown in Figure 2b. The reason for this pattern is the
concatenation of video and audio chunk requests with slightly
different but almost fixed intervals. In the buffer depletion
phase, the buffer level decreases. The uplink request pattern
can be very irregular or have a high IRT pattern, depending

Algorithm 1: Stalling estimation algorithm
Data: arrdiff : array with inter-request times of all video

chunk requests,
r: requesting threshold [s],
B: target buffer size [s],
U : remaining buffer level [s],
Z: video chunk duration [s]
f = 0: prestall flag

1 foreach j 2 arrdiff do
2 if j > r and f = 0 then
3 f = 1,
4 U = U � j + Z,
5 if U 0 then
6 add poscurr + U to stalling event positions

7 if f = 1 then
8 U = U � j + Z,
9 if U > B then

10 f = 0

11 if U 0 then
12 add poscurr + U to stalling event positions

13 return stalling event positions;

on the currently available bandwidth, c.f. Figure 2c.

V. STALLING ESTIMATOR ALGORITHM

Based on the findings presented above, this section describes
a network layer stalling estimation approach based on chunk
requests in encrypted network traffic. The variables required
for the stalling estimation approach presented in Algorithm 1
are defined as follows: the requesting threshold r is used for
detecting the buffer depletion phase start. If no request is
received for r seconds, the player is assumed to be in the
depletion phase. The target buffer level B is a specific buffer
threshold. If the remaining buffer U drops below B, new data
is requested. Z describes the amount of video seconds received
with one chunk download. f is a boolean variable which is
set when the player is in the buffer depletion phase.

Practical Implementation: Algorithm 1 shows the
pseudo-code for the stalling estimation approach. The input
arguments are the IRTs of video chunk requests in the uplink
(arrdiff) and the variables defined above. All parameters can
be set to fixed values at the beginning of the estimation or
variable, based on the current video playback position. (Note:
since the stalling algorithm works independently of the used
player, the parameters must be defined for each player and
adaptation algorithm with preliminary measurements.) The
buffer level U is assumed to be equal to B, if the player
is in the steady state phase before the buffer depleting phase
is reached. For data cleaning, all empty chunk requests are
deleted indicating server changes and empty requests.

For the stalling algorithm, all chunk request IRTs are
compared to the requesting threshold r to check if the player

5

enters the buffer depleting phase. If f = 0, and the IRT is
larger than the requesting threshold r, f is set to 1 in line
3. Then, the player is assumed to be in the buffer depletion
phase. The remaining buffer level U is decreased by the IRT
j while increased by the next chunk duration Z. If U drops
to zero, an outrunning buffer is estimated and the player is
assumed to stall. Thus, at poscurr + U , a stalling event is
estimated, while poscurr describes the current video position.
Since events are only triggered when a new chunk is requested,
U might become a negative value that has to be added to
the current position. If f = 1 each IRT j during the buffer
depletion phase is taken into consideration. In this situation,
either U increases until the buffer is filled again completely
and f = 0 described in line 9 and 10 of the algorithm. If the
buffer depletes the player stalls according to line 11 and 12.

VI. EVALUATION

The evaluation presented in this section is threefold. First,
results of a video session study are shown followed by
the presentation of the stalling detection accuracy with the
approach described in Algorithm 1. At the end of this section,
the estimator performance is discussed.

Video Session Study: For the video session study, three
main observations are done: the average chunk size in dif-
ferent streaming phases, the error made while tracking the
complete video, and the buffer state B during the steady
phase. Therefore, the average chunk size in the filling, steady,
and depleting phase is analyzed. Two different video types
are detected regarding downloaded video playback time in
one chunk, listed in Table I. For simplicity and presentation
overview purpose, only videos V1, V2, and V3 are depicted.
The other videos behaved similar according to the listed types.

The average chunk duration for video V1 representing
the first type and video V2 representing the second type is
presented in Figure 4. All lines in the figure show the average
chunk duration during a specific phase as a cumulative distri-
bution function (CDF). Type 1 requests about two segments
with each chunk in the steady phase shown by the solid black
line. For V1, each segment contains 5.34 s of video while the
average requested chunk duration is 10.46 s. The difference
between the duration of two segments and the chunk duration
can be explained by requesting smaller chunks at the end of the
video and before a bandwidth degradation. There, a complete
segment can not be downloaded anymore. The dashed black
line shows the chunk duration in the buffer filling phase
with 11.33 s on average. Thus, to fill the buffer two or more
segments are requested in one chunk. The dotted black line
shows the chunk duration in the buffer depletion phase with
an average value of 9.42 s representing the download of one,
two, or three segments in a chunk. This is caused by different
bandwidths and quality levels requested in this phase.

Regarding the second type, shown in orange and represented
by video V2, mainly one segment is requested by one chunk in
the steady phase. The average playback time requested is 5.42 s
for V2, while the segment duration is 5.12 s. Thus, sometimes
more than one segment is requested. With 10.11 s on average,

a larger amount is requested in the filling phase. The results
for the depletion phase is presented with the dotted line. In
about 40 % on average about half a segment, in close to 60 %
1.5 - 2 segments are requested by a single chunk. The average
value is 6.61 s. Requesting less than one segment is possible,
for example, if only the duration between two key-frames is
requested.

Based on the amount of chunk requests in each streaming
phase and the average video playback time downloaded by
one chunk, the video duration can be estimated according to
Figure 5. The x-axis shows the tracking error, while 0 indicates
no deviation between estimation and real video duration. It is
shown, that for all three exemplary videos, more than 60 %
are captured with less than 5 % deviation from the real value.
More than 90 % of all runs are tracked with less then 10 %
error in positive or negative direction. The negative deviation
can be described by wrongly classified chunks. This can occur
for small qualities, when the amount of packets for one video
segment is the same than for one audio segment. Additionally,
one reason is the large variance in chunk durations in the
buffer filling and depleting phase. Another reason for the
overestimation is not played out video before quality changes
in case of bandwidth degradations.

Additionally, an accurate buffer size determination is re-
quired for stalling estimation. Figure 6 shows the CDF of the
average buffer size in the steady phase for all runs of V1,V2,
and V3. The buffer size is between 119.5 s and 125 s for all
videos and all runs, independent on the defined type. In the
steady phase, the variance of the overall buffer size is slightly
larger. Figure 7 shows the buffer size in the steady phase as a
box plot for V4, V5, and V6 presenting T1 and V15, V16, and
V17 for T2. It is to mention that similar results are detected for
other videos of the same type. The variance in the buffer size is
larger for T1 than T2, explained by the higher chunk duration
in the steady phase according to Figure 4. Furthermore, the
buffer is always kept above 120 s.

Estimation Accuracy: Based on the findings above,
Algorithm 1 is used for stalling estimation in the presented
data set. The requesting threshold for detecting the buffer
depletion phase is set to 17.9 s exposed as the best value
during the evaluation. For the chunk duration Z of video T1,
10.5 s is used covering the average chunk duration best. For
type two, 6 s is used. At the beginning, the buffer level is
tracked until 120 s are reached. If the buffer depletion phase
is reached before the buffer is filled completely, the estimated
buffer level is used as value U for the algorithm, otherwise
U = B = 120s. Additionally, when the buffer depletion phase
is reached, the real buffer level is measured.

The stalling estimation result for the estimated buffer [EB]
and the measured buffer [MB] for different videos, scenarios,
and overall is summarized in Table IV. The first column shows
the constrains on the dataset. The first four lines show different
videos. V3 is used for video type T1, V2 for T2. These
videos are selected to show the correct detection but also
outliers, other videos of the same type show similar results.
The second column shows correct stalling detection called

6

0 5 10 15
avg. chunk size [s]

0

0.2

0.4

0.6

0.8

1
C

D
F

V1 filling
V1 steady
V1 depl.
V2 filling
V2 steady
V2 depl.

Fig. 4: Avg. chunk size comparison

-30 -20 -10 0 10 20 30
tracking error [%]

0

0.2

0.4

0.6

0.8

1

C
D

F

V1
V2
V3

Fig. 5: Video duration tracking error

118 120 122 124 126
avg buffer size in steady phase [s]

0

0.2

0.4

0.6

0.8

1

C
D

F

V1
V2
V3

Fig. 6: Avg. buffer steady

V4 V5 V6 V15 V16 V17

120

122

124

126

128

130

bu
ffe

r [
s]

Fig. 7: Overall buffer steady

true positive rate. The third one presents video measurements
characterized falsely as stalling named false positive rate. The
fourth column shows videos that did not stall, classified correct
as true negative rate. The last column lists the percentages that
videos did not stall classified as stalling named false negative
rate.

The table shows that the true positive rate is more than
90 % for all scenarios. The exact determination of the buffer
shows a higher true positive rate than estimating it. The lowest
value with 91.58 % for the true positive rate is received
in slowly decreasing bandwidth scenarios. There, the player
resides in the buffer depletion phase very long where the
variance in chunk durations is high. Compared to that, the
true negative rate is received with 83.81 % to 97.22 %. The
highest value is determined for video V2. There, less video
seconds are requested with one chunk. Thus classifying one
chunk wrongly has less influence on the difference between
estimated and real remaining buffer. The different phenomena
are shown for video V3, where 13.5 % false negative rate is
received. Especially the exact knowledge of the buffer size
at the beginning of the buffer depletion phase has a large

influence on the received result for this video type. If the
buffer level is overestimated in this case, short stallings can
not be detected. The same is visible for slowly decreasing
buffer scenarios. Regarding the overall correct detection, an
estimation true positive rate of more than 90 % for all scenarios
is measured. From a QoE perspective, the correct stalling
detection is of high relevance, done with more than 93 %
with the presented approach. In scenarios with obvious stalling
(scenario 7 - 9 and 11) and obvious no stalling (scenario 1, high
bandwidth scenarios) all valid runs are classified correctly. But
to react on changing network conditions and avoid stallings,
buffer depletion phases must be detected, that was possible
with the algorithm for all measurement runs. Thus, issues at
the network layer can be identified in advance, and as soon
as the issue is detected at network layer, additional bandwidth
can be provisioned before stalling occurs. This avoids stalling
as the most severe QoE degradation factor.

Estimator Performance: The estimator is capable of a
worst case prediction. By adding the buffer level U to the
current video position when reaching the buffer depletion
phase, the earliest possible stalling position can be detected.

7

TABLE IV: Stalling estimation accuracy [EB: est. buffer; MB: measured buffer]

true positive rate false positive rate true negative rate false negative rate

V3 EB 94.12 5.88 86.49 13.50
V3 MB 94.80 5.20 96.54 3.46
V2 EB 92.88 7.12 96.47 3.53
V2 MB 94.80 5.20 97.22 2.78

bw slowly dec. EB 91.58 8.42 83.81 16.19
bw slowly dec. MB 93.77 6.23 94.26 5.74

overall EB 93.16 6.84 90.75 9.25
overall MB 93.61 6.39 96.44 3.56

This prediction can be extended to a real time observation if
receiving additional video chunks during the buffer depleting
phase. Then, for each request during this phase, one additional
video chunk duration Z is added to the currently tracked
buffer. If the calculated buffer runs empty, the player is
assumed to stall. The accuracy of the worst case prediction
and the real time observation method depends on the accurate
buffer tracking and the chunk size Z.

VII. RELATED WORK

A deep understanding of parameters influencing the QoE is
required for a detailed analysis. A comprehensive overview is
given by Seufert et. al. [7]. Furthermore, stalling is detected
as the parameter influencing the QoE in the most negative
way [8]. For that reason, a diversity of techniques quantifying
QoE in video streaming are in literature. Hoßfeld et. al. uses
crowdsourcing to quantify the QoE by subjective studies [22],
[23].

Especially for YouTube, several methods and monitoring
applications exist to receive data for QoE determination [24],
[25], [26]. Nevertheless, it is essential to not only monitor
application layer parameters. The network traffic for request-
ing and receiving a video from YouTube for a widespread
understanding of the streaming process is observed in [27].
Additionally, with the increasing amount of traffic encryption
in the Internet, new methods arise to detect video flows
on transport layer [28], [29] or by machine learning ap-
proaches [30], [31] and classify video QoE from encrypted
traffic [32], [33], [34], [35]. Especially in transport layer
monitoring approaches, it is important to keep track of the
complete downlink traffic by monitoring throughput, packet
inter-request times, or packet sizes.

Compared to current literature, we detect video flows,
classify them as video or audio and draw conclusion about the
complete video session with an easy and accurate approach.
Based on this session reconstruction process, it is possible
for us to estimate QoE parameters on network layer with a
very lightweight measuring instance. The main advantage of
this approach compared to other literature like [36] or [37] is,
that almost only uplink traffic has to be taken into consider-
ation. For a 10 minutes video, only about 115 uplink request
packets must be analyzed in this approach, independent on

the playback quality. With state-of-the art approaches, using
all packets in downlink direction for stalling prediction, about
20.000 packets are analyzed for the same video in 144p quality.
For a 720p video, it is more than 100.000 packets. After
detecting the requesting pattern in the steady state phase, the
approach is independent of downlink traffic monitoring. In
case of insufficient bandwidth or a not completely filled buffer,
it is only necessary to distinguish between audio and video
according to the amount of packets per request. The average
chunk size can be determined in advance. No modification to
the native YouTube app is required that is, to the best of our
knowledge, not defined in this detail in current literature.

VIII. CONCLUSION

Based on a large amount of video data collected with the
native YouTube mobile app, this paper presents a lightweight
approach to detect stalling events from encrypted network traf-
fic. By analyzing the characteristics of HTTP-adaptive stream-
ing in detail, different application parameters are extracted
from network traffic. First, video flows are detected and audio
and video requests are separated. By analyzing the received
requests, three different chunk request patterns are observed
and mapped to downloaded playback time. Second, based
on these information, a real time buffer tracking approach is
presented used to detect video stalls. The results show correct
stalling detection over all scenarios for more than 90 % of
all video runs. Furthermore, this simple approach shows the
possibility to detect changing streaming conditions at network
layer early by only monitoring the uplink request pattern. For
that reason, a network operator or cloud streaming provider
has time to react on a buffer depletion situation. At the end,
further investigation of the worst case stalling prediction are
pointed out.

REFERENCES

[1] Sandvine. (2018) The global internet phenomena report. Accessed:
2018-10-17. [Online]. Available: https://www.sandvine.com/hubfs/
downloads/phenomena/2018-phenomena-report.pdf

[2] YouTube. (2018) YouTube for press - statistics. Accessed: 2018-10-
17. [Online]. Available: https://www.youtube.com/intl/en-GB/yt/about/
press/

[3] Cisco. (2017) Cisco visual networking index: Forecast and methodology.
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/complete-white-paper-c11-481360.pdf.
Accessed: 2018-10-17.

8

[4] Bitmovin. (2018) Why YouTube and Netflix use MPEG-DASH.
Accessed: 2018-10-17. [Online]. Available: https://bitmovin.com/
status-mpeg-dash-today-youtube-netflix-use-html5-beyond/

[5] C. Moldovan, F. Metzger, S. Surminski, T. Hoßfeld, and V. Burger,
“Viability of wi-fi caches in an era of HTTPS prevalence,” in IEEE
International Conference on Communications Workshops (ICC Work-
shops). IEEE, 2017.

[6] F. Wamser, P. Casas, M. Seufert, C. Moldovan, P. Tran-Gia, and
T. Hossfeld, “Modeling the YouTube stack: From packets to quality
of experience,” Computer Networks, 2016.

[7] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-
Gia, “A survey on quality of experience of HTTP adaptive streaming,”
IEEE Communications Surveys & Tutorials, 2015.

[8] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and
C. Lorentzen, “Initial delay vs. interruptions: Between the devil and
the deep blue sea,” in Fourth International Workshop on Quality of
Multimedia Experience (QoMEX). IEEE, 2012.

[9] C. Moldovan and F. Metzger, “Bridging the gap between QoE and user
engagement in HTTP video streaming,” in 28th International Teletraffic
Congress (ITC 28),. IEEE, 2016.

[10] M. Fiedler, K. De Moor, H. Ravuri, P. Tanneedi, and M. Chandiri, “Users
on the move: On relationships between QoE ratings, data volumes and
intentions to churn,” in 2017 IEEE 42nd Conference on Local Computer
Networks Workshops (LCN Workshops), Singapore. IEEE, 2017.

[11] I. O. for Standardization. (2014) Iso/iec 23009-1:2014. Accessed: 2018-
08-31. [Online]. Available: https://www.iso.org/standard/65274.html

[12] F. Loh, F. Wamser, C. Moldovan, B. Zeidler, T. Hoßfeld, D. Tsilimantos,
and S. Valentin, “From click to playback: a dataset to study the response
time of mobile YouTube,” in Proceedings of the 10th ACM Multimedia
Systems Conference. ACM, 2019.

[13] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
“YouTube everywhere: Impact of device and infrastructure synergies
on user experience,” in Proceedings of the 2011 ACM SIGCOMM
conference. ACM, 2011.

[14] T. Hoßfeld, C. Moldovan, and C. Schwartz, “To each according to
his needs: Dimensioning video buffer for specific user profiles and
behavior,” in IFIP/IEEE International Symposium on Integrated Network
Management (IM). IEEE, 2015.

[15] T. Karagkioules, D. Tsilimantos, S. Valentin, F. Wamser, B. Zeidler,
M. Seufert, F. Loh, and P. Tran-Gia, “A public dataset for YouTube’s
mobile streaming client,” pp. 1–6, 2018.

[16] ——. (2018) Dataset: A public dataset for YouTube’s mobile streaming
client. Open Dataset. [Online]. Available: http://qoecube.informatik.
uni-wuerzburg.de/

[17] F. Loh, F. Wamser, C. Moldovan, B. Zeidler, T. Hoßfeld, D. Tsilimantos,
and S. Valentin. (2019) From click to playback: a dataset to study the
response time of mobile YouTube. Open Dataset. [Online]. Available:
https://go.uniwue.de/initialdelaydataset

[18] M. Seufert, B. Zeidler, F. Wamser, T. Karagkioules, D. Tsilimantos,
F. Loh, P. Tran-Gia, and S. Valentin, “A wrapper for automatic mea-
surements with YouTube’s native android app,” in 2018 Network Traffic
Measurement and Analysis Conference (TMA). IEEE, 2018.

[19] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck, “HTTP/2-based adaptive streaming of
HEVC video over 4G/LTE networks,” IEEE Communications Letters,
2016.

[20] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute
path bandwidth traces from 3G networks: analysis and applications,” in

Proceedings of the 4th ACM Multimedia Systems Conference. ACM,
2013.

[21] D. Tsilimantos, T. Karagkioules, A. Nogales-Gómez, and S. Valentin,
“Traffic profiling for mobile video streaming,” in IEEE International
Conference on Communications (ICC). IEEE, 2017.

[22] T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz,
“Quantification of YouTube QoE via crowdsourcing,” in IEEE Interna-
tional Symposium on Multimedia (ISM). IEEE, 2011.

[23] T. Hossfeld, C. Keimel, M. Hirth, B. Gardlo, J. Habigt, K. Diepold, and
P. Tran-Gia, “Best practices for QoE crowdtesting: QoE assessment with
crowdsourcing,” IEEE Transactions on Multimedia, 2014.

[24] P. Casas, M. Seufert, and R. Schatz, “Youqmon: a system for on-
line monitoring of YouTube QoE in operational 3G networks,” ACM
SIGMETRICS Performance Evaluation Review, 2013.

[25] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “Yomo:
a YouTube application comfort monitoring tool,” New Dimensions in
the Assessment and Support of Quality of Experience for Multimedia
Applications, Tampere, Finland, 2010.

[26] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“Yomoapp: A tool for analyzing QoE of YouTube HTTP adaptive
streaming in mobile networks,” in 2015 European Conference on Net-
works and Communications (EuCNC). IEEE, 2015.

[27] T. Hoßfeld, R. Schatz, E. Biersack, and L. Plissonneau, “Internet
video delivery in YouTube: from traffic measurements to quality of
experience,” in Data Traffic Monitoring and Analysis. Springer, 2013.

[28] F. Li, J. W. Chung, and M. Claypool, “Silhouette: Identifying YouTube
video flows from encrypted traffic,” in Proceedings of the 28th ACM
SIGMM Workshop on Network and Operating Systems Support for
Digital Audio and Video. ACM, 2018.

[29] D. Tsilimantos, T. Karagkioules, and S. Valentin, “Classifying flows
and buffer state for YouTube’s HTTP adaptive streaming service in
mobile networks,” in Proceedings of the 9th ACM Multimedia Systems
Conference. ACM, 2018.

[30] J. Khalife, A. Hajjar, and J. Dı́az-Verdejo, “Performance of opendpi in
identifying sampled network traffic,” Journal of Networks, 2013.

[31] T. T. Nguyen, G. Armitage, P. Branch, and S. Zander, “Timely and con-
tinuous machine-learning-based classification for interactive IP traffic,”
IEEE/ACM Transactions On Networking, 2012.

[32] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “emimic: Estimat-
ing HTTP-based video QoE metrics from encrypted network traffic,”
Network Traffic Measurement and Analysis Conference (TMA), 2017.

[33] R. Dubin, A. Dvir, O. Pele, and O. Hadar, “I know what you saw last
minute-encrypted HTTP adaptive video streaming title classification,”
IEEE Annual Consumer Communications & Networking Conference
(CCNC), 2017.

[34] W. Pan, G. Cheng, H. Wu, and Y. Tang, “Towards QoE assessment
of encrypted YouTube adaptive video streaming in mobile networks,”
in IEEE/ACM 24th International Symposium on Quality of Service
(IWQoS). IEEE, 2016.

[35] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A machine
learning approach to classifying YouTube QoE based on encrypted
network traffic,” Multimedia tools and applications, 2017.

[36] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan, “Buffest:
Predicting buffer conditions and real-time requirements of HTTP (S)
adaptive streaming clients,” in Proceedings of the 8th ACM on Multi-
media Systems Conference. ACM, 2017.

[37] M. H. Mazhar and Z. Shafiq, “Real-time video quality of experience
monitoring for HTTPS and QUIC,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018.

9

