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Abstract—Network operators, regulators, and big data compa-
nies use crowdsourced measurements to study the performance
of mobile networks on a large scale. Such a type of measurement
is defined as the collection and processing of data measured by
the crowd, here the crowd of mobile subscribers. Crowdsourced
network measurements make it relatively easy and inexpensive to
obtain large amounts of network data that also reflect the quality
actually received by the end user. However, this measurement
method also involves some uncertainties, since, for example,
it is not possible to precisely control when, where and with
which devices measurements are taken. Thus, there is a trade-
off between the reliability of the individual measurement and
the scope of the measurements. Therefore, how data of this
type is analyzed is particularly important in order to obtain
valid results. To address this issue, our paper defines concepts
and guidelines for analyzing the validity of crowdsourced mobile
network measurements. In particular, we address precision, for
example the number of measurements needed to make valid
statements, and also representativeness, for example the spatial
and temporal distribution of the data. In addition to the formal
definition of these two aspects, we illustrate the issue and possible
evaluation approaches with the help of an extensive example data
set. This data set consists of more than 11.7M crowdsourced
mobile measurements from all over France, measured by a
commercial mobile data provider. In the end, we provide an
evaluation guideline and two possible use cases.

I. INTRODUCTION AND RELATED WORK

For today’s network operators, measurements are an inte-
gral part of quality monitoring. While operators so far have
collected measurement data at the network layer, where they
have direct access to, more and more companies and operators
are striving to measure network quality from a user perspec-
tive. Consequently, the measurement method of crowdsourced
network measurements (CNMs) has emerged. In general, the
term crowdsourcing includes the active participation of vol-
unteers in an outsourced campaign. In the context of network
measurements, this is the active participation of users with
deliberate user actions, for example the use of a typical speed
test application in the mobile network [1]. Crowdsourced
network measurements in combination with traditional quality
measurement methods in the network layer and on a QoS basis
have proven to be a promising approach for a comprehensive
quality view of mobile networks. Fundamentals on CNMs
as well as a classification of use usages and challenges are
provided in [2] and [1].

There are different ways how to use CNM data to evaluate
the networks quality. A survey about end-to-end mobile net-
work measurement testbeds, tools, and services can be found
in [3]. To measure and compare Internet service providers
(ISPs), the authors of [4] used crowd data collected from peer-
to-peer BitTorrent users to compare the performance of ISPs
from an end user perspective. Other well used options are, for
example, the use of video streaming applications to collect
crowd data on the smartphone of end users [5, 6]. Since this
way of getting large amount of network data is relatively sim-
ple and cheap, the number of CNM service providers increased
in the last few years, for example Tutela, Ookla, Umlaut, QoSi,
Opensignal, and Rohde & Schwarz use the smartphone of end
users as measurement device. Their focus is to offer data sets
and device data collected from millions of users every day to
inform the mobile industry and improve the world’s mobile
Internet. These companies regularly publish reports on the
mobile network experience, e.g., in Germany [7–11], in which
they compare network operators, coverage, and speed of their
networks. Their advantage is that these measurements reflect
the actual course of mobile quality on the user side, directly
experienced by the end user. A statistical report for Germany
from a research perspective can be found in [12].

The measurement apps, tools, or websites typically measure
special aspects of the network, for example, signal strength,
Quality of Service (QoS) parameter, or Quality of Experience
(QoE) ratings. As a result, however, a large amount of data is
obtained from uncontrolled measurements through the crowd.
The density, number, and accuracy of the measurements vary
due to the uncontrolled measurement environment.

There is always the question of validity of such mea-
surements. In the simplest case, a final output metric is
based on one measuring point that is one year old. In the
best case, there is high temporal and spatial coverage. This
raises the question of the number of measurements required
for a meaningful and generally applicable statement. This is
particularly clear when looking at the results from various data
providers that determine network performance. In 2019, for
example, Ookla quantifies the throughput during the Super
Bowl 2019 at 102 Mbps with T-Mobile as the fastest network.
According to Tutela, on the other hand, Verizon delivered
the fastest average download speeds in the stadium at around
38 Mbps. AT&T finished second, Sprint third and T-Mobile
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came last [13]. Possible reasons for this include the different
spatial distribution of the respective measurement data as
well as the number of measurements collected and the used
evaluation methods. This shows that it is important to define
guidelines on how to evaluate CNM data to get valid results.
The only work that goes towards validity of crowdsourced
data is the work [1]. The authors state that validity, reliability,
and representativeness play an important role in all stages of a
crowdsourcing campaign: in the design and methodology, the
data capturing and storage, and the data analysis. Nevertheless,
a detailed discussion of the validity of crowdsourced data and
a guideline on how to check data for validity is still missing.

Thus, in this paper, a large-scale commercial CNM data
set from July 2019 to December 2019 in France with 11.7M
crowdsourced mobile measurements throughout the country
is analyzed. We tackle two different aspects for analyzing the
validity of crowdsourced mobile network measurements: First,
we consider the precision of an evaluation, in particular the
precision of a certain metric such as the downlink throughput.
We analyze the mean mobile downlink throughput for certain
regions and derive the number of measurements required to
achieve high precision. Second, we elaborate on the problem
of systematic measurement bias that occurs with CNMs due to
the influence of user-generated measurements in certain times,
such as busy hours, or locations. CNMs should provide results
that are (1) true to expectation with (2) the highest possible
precision. In this context, true to expectation means that the
results are representative, i.e., that no bias (= systematic
error) exists compared to reality, although based on sample
measurements from crowdsourcing.

The reminder of the paper is structured as follows. Section II
presents terms and background information. Definitions for
validity are made in Section III. An explanation of the dataset
is given in Section IV. The aspect of precision is dealt with in
Section V, while measurement bias is discussed in Section VI.
An evaluation guideline and exemplary use cases are given in
Section VII and Section VIII concludes the paper.

II. TERMS AND BACKGROUND

The problem of validity of measurements has generally
been extensively studied in various research in different do-
mains [14–16]. Validity is, in addition to reliability and
objectivity, a quality criterion for models, measurement, or test
procedures [15, 17]. Validity is fulfilled if the measurement
method measures the characteristic with sufficient accuracy
that it is supposed to measure or that it pretends to mea-
sure [17]. In empirical terms, validity denotes the agreement
of the content of an empirical measurement with the logical
measurement concept in reality. In general, this is the degree
of accuracy with which the feature that is to be measured
is actually measured. Definitions can be found in [15, 17].
Fundamental general work on sampling and sample theory is
given, for example, in [18].

The accuracy of a measurement is further given by the
precision and trueness of a measurement [19, 20]. The preci-
sion describes the spread of the results. The trueness ensures

that the results also correspond to the correct or true value
and are not distorted by the measurement concept, i.e., the
representativeness must be ensured in such a way that no bias
or systematic errors occur due to the measurement concept,
even if the results are already precise.

In psychology [15] and medicine [16], studies on medication
or treatment programs are regularly carried out. Generalized
statements are drawn there from a finite number of obser-
vations, in this case a sample. The studies are commonly
performed (i) as representative as possible and (ii) until the
desired precision prevails. In addition, the systematic error
in election polls is kept low in electoral research [21] by a
representative selection of the surveyed citizens in order to
satisfy the validity [14].

III. STATISTICAL VALIDITY FOR CNMS

Given a CNM S with scope n, i.e., a measurement can be
seen as a sample with n observations. Let S ⊆ U be the CNM,
with U as the finite underlying population U = {1, ..., N}
with N ∈ N different elements for the measurement. For each
element i ∈ U the value of a variable y can be measured. The
vector of these values yi is denoted by yU . The aim of the
measurement is now to estimate a characteristic Θ(yU ) of U
with the help of a sample S. The characteristic to be estimated
is often the population mean ȳU =

∑
i∈U

yi
N or the absolute

sum with yU+ =
∑
i∈U yi. The measurement plan p(S) on

S of the possible samples S ⊆ U assigns a measurement
probability to each sample: p : S → [0, 1].

CNMs result in uncontrolled observations without sta-
tistical certainty. The values observed in the measurement
(yi1 , ..., yin) are denoted by yS . This means that Θ(yS),
given from the sample observations, only reproduces exactly
the characteristic relating to the sample subset. Generalized
statements, i.e., conclusions in relation to the population U can
only be estimated. Thus, valid CNMs are required to have an
estimation function (estimator) T = T (yS) for a characteristic
considering the fact that the evaluation is based on samples. A
pair (measurement plan, estimator), i.e. (p, T ), is called a
measurement strategy or concept. A good estimator is precise
and unbiased.

The quality of a CNM is defined by measurement true-
ness and precision according to [19], see Section II, of
the concept (p, T ). Precision is expressed in terms of the
degree of dispersion of yS . Trueness is expressed in terms
of measurement bias [19]. Both are attributed to unavoidable
random errors inherent in every CNM measurement procedure.

(1) For precision, the degree of dispersion indicates the
spread of data when using sample observations for evaluations.
In sample theory, standard error is the measure of dispersion
for an estimator T .

(2) A measurement with no bias means that the results
are representative or “true” (trueness), i.e., that there is no
systematic error. Although sometimes the true value cannot
be known exactly, it may be possible to have an accepted
reference value for the property being measured with CNMs.
The expected value of the estimator with the measurement plan

2



p is E[T (yS)] =
∑
S p(S)T (yS). The bias of an estimator

is therefore the mean deviation from the characteristic to be
estimated: E[T (yS)] − Θ(yU ). An estimator with bias 0 is
called unbiased or “true”.

IV. DATASET

For the investigation of validity of crowdsourced network
measurements, a commercial data set from Tutela Ltd. is
used. Tutela collects data and conducts network tests through
software embedded in a variety of over 3 000 consumer
applications. Although started at random times, measurements
are performed in the background in regular intervals if the
user is inactive, and information about the status of the device
and the activity of the network and the operating system
are collected. The data is correlated, grouped, and evaluated
according to device and network status (power saving mode,
2G/3G/4G connectivity). Tests are conducted against the same
content delivery network. Tutela measures the network quality
based on the real performance of the actual network user,
including situations when a network is congested, or the user
is throttled by tariff. The results in this paper are based on
throughput testing in which 2 MB files are downloaded via
Hypertext Transfer Protocol Secure (HTTPS). The chosen size
reflects the median of the web page size on the Internet.

The used data was collected during half a year from July
2019 to December 2019 in France. Within the used data set,
20 486 257 crowdsourced network measurements are included.
After filtering incomplete entries, 17 620 984 measurements
remain from which we selected 11 799 577 measurements for
further analysis. These measurements were selected based on
their geo-coordinates, as we want to study the validity of
crowdsourced measurements based on a single large area with
sufficient measurements. Therefore, we selected measurements
which were conducted in a specific area in France. Thus, the
coordinates range between 0 and 5.5 for longitude and between
44.2 and 49.2 for latitude.

V. PRECISION

The first part of the investigation is devoted to precision,
which is the description of random errors in the crowdsourcing
measurement process due to the use of samples. More pre-
cisely, it is the measurement deviation from the exact value
due to the scatter of the individual measured values. It is a
measure of the statistical variability, expressed in terms of the
degree of dispersion.

A. Standard Error and Confidence Intervals

The standard error (SE) for a measured characteristic is
the standard deviation of its sample distribution. Speaking
for crowdsourcing, this corresponds to the variability of the
measurement results of the users evaluating the same charac-
teristic Θ with estimator T (yS). The variability is first given
by the spread of the values in the population U , i.e., the
variance V ar(yU ) = E (|yU − yU |) and, second, due to the
non-exhaustive measurement methodology with sample obser-
vations S ⊆ U on the population U . Thus, the standard error

decreases as the population variance decreases. Furthermore,
it decreases the more individual values are measured.

SE is defined as standard deviation σ for the measured char-
acteristic Θ with σΘ = +

√
V ar(Θ). If the characteristic to be

measured is the mean value (Θ =
∑
i∈U yi ·P (Y = yi) = µ),

it is called standard error of the mean (SEM). SEM is defined
as σµ = σU√

n
, where σU is the standard deviation of the

population U and n is the size of the sample. n is inversely
included in the SEM, which means that the SEM decreases
with increasing sample size.

In the case of crowdsourced network measurements, the
standard deviation of the entire underlying population is usu-
ally not known. Therefore, SEM can be estimated by using
the sample standard deviation s of the observations yi, which
is defined as

s =

√
1

n− 1

∑

yi∈S
(yi − yS)2 ,

where yi are the measured values, yS is the sample mean, and
n is the size of the sample. Using s, SEM can be estimated
as

sy =
s√
n
,

resulting in an absolute value for the degree of dispersion in
the given unit of the measurement.

Using SE (or in the case of CNMs: by using its sample
version sy), confidence intervals (CIs) propose a range of plau-
sible values for an unknown parameter of the real population
(e.g., the mean µ). The interval has an associated confidence
level (statistical probability) that the exact parameter µ is in
the proposed range CIα. The confidence interval for the mean
is defined as

CIα = [yS −MOEα
2
, yS +MOEα

2
],

with yS as sample mean and

MOEα
2

= zα
2
· sy

is called the margin of error with zα
2

is the z-score at
position α

2 and α is the chosen confidence level.
For crowdsourced measurements, this gives the possibility

to quantify how precise a characteristic Θ can generally be
determined based on the number of measurements and a given
probability [22]. We use this in the following to define the
minimal number of crowdsourced measurements (i.e., CNM
observations) needed to achieve a certain precision of the data
with respect to the pure number of measurements at a given
confidence level.

In order to maintain a precision given by the maximum
absolute difference δ∗ = |yS − µ| [22] between the estimated
mean value yS of the CNM S and the exact one µ of the
underlying population, the minimum number of measurements
nmina can be calculated as

nmina (δ∗) = min
m≥n

{
MOEα

2
≤ δ∗

}
(1)

= min
m≥n

{
zα

2
· s√

m
≤ δ∗

}
. (2)
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Table I
PRECISION OF DIFFERENT SAMPLE SIZES

Sample size yS SEM CI0.05 MOE0.025

10 33.54 9.26 [12.59; 54.49] 20.96
100 21.20 1.84 [17.54; 24.86] 3.66

1 000 23.89 0.62 [22.67; 25.11] 1.22
1 491 23.51 0.51 [22.52; 24.50] 0.99

10 000 23.51 0.19 [23.13; 23.89] 0.38
26 576 23.57 0.12 [23.34; 23.80] 0.23

100 000 23.82 0.06 [23.70; 23.94] 0.12
1 000 000 23.85 0.02 [23.81; 23.89] 0.04

10 000 000 23.83 0.01 [23.82; 23.84] 0.01

Given the maximum relative error γ∗ = |yS−µ|
|µ| for the

estimated mean value yS and the exact one µ, the number
of required measurements can be determined as follows

nminr (γ∗) = min
m≥n

{
MOEα

2

|yS |
≤ γ∗

1 + γ∗

}
. (3)

B. Example: Determining Precision for Crowdsourced Data

To illustrate the influence of precision on the evaluation
results, Figure 1a shows the cumulative distribution function
(CDF) of the download throughput of the whole data set. Here,
the mean download throughput is 23.83 Mbps, having a stan-
dard deviation of 19.56 Mbps and a maximum of 167.95 Mbps.
To emphasize the need to determine the minimum number of
measurements, Figure 1b shows the mean values for random
samples of different sizes, starting from samples with only 10
measurements up to the full data set. For each sample size,
300 random observations were drawn, which are intended to
serve as random, crowdsourced measurements. In addition to
the estimated values, the black line indicates µ, the exact mean
of 23.83 Mbps. While the estimated mean values for sample
sizes below 1 000 show high deviations, the mean values for
larger sample sizes are getting closer to the real mean.

To precisely quantify the effect for this data set, the standard
error of mean, the confidence interval, and the margin of error
is evaluated for a confidence level of 95% of exemplary sample
sizes from 10 to 10 000 000 measurements of the data set in
Table I. If, for example, a precision of δ∗ = 1Mbps is desired,
the table shows how many measurements are needed to fulfill
this precision: For nmina (δ∗) ≥ 1 491 ⇒ MOE0.025 ≤ 0.99
and thus, the precision is lower than 1Mbps.

If, instead, you prefer to tolerate at most a relative error
of γ∗ = 1%, the following condition must hold: MOE0.025

y ≤
0.01

1+0.01 = 0.0099. This condition is fulfilled for nminr (γ∗) ≥
26 576. Thus, in this case, a sample with 26 576 measurements
would lead to a high accuracy of at most 1% inaccuracy in
relation to the exact mean value when evaluating the mean.

The development of the absolute as well as the relative error
for different sample sizes can also be seen in Figure 1c. Here,
the brown solid line shows the corresponding absolute error
MOE0.025, while the blue solid line shows the corresponding
relative error MOE0.025

|yS | .

VI. MEASUREMENT BIAS

Although having a high degree of precision, it is still
possible that measured values do not represent what is to
be investigated. Any factor that systematically affects the
measurement of a variable across a given sample can cause
systematic errors.

A sample is called representative or true if it corresponds
to the population in the distribution of all statistical charac-
teristics of interest [19]. It is therefore necessary to design
the sampling plan in such a way that representativeness can
be expected. For this purpose, one needs knowledge about the
targeted population. If the statement is to be made from a user
perspective, the distribution of the samples must also reflect
the distribution of the active users. If the evaluation examines
a certain geographical area, for example the mean throughput
in France, the data must be collected evenly distributed over
France. To prevent bias, data may then not only be collected
in densely populated areas, but also in rural areas.

Two frequently occurring factors which can cause measure-
ment biases are the spatial and the temporal distribution of
the measurement data. Thus, in the following, both factors are
investigated in detail including examples of real CNM data.

A. Example: Spatial Distribution

Our data set can be divided in n non-overlapping, equal
sized subareas. When looking at the mean throughput for
each region, clear differences are visible. By comparing the
distributions of values of each equal sized subarea set using a
k-sample Anderson-Darling test, the null hypotheses that these
samples are drawn from the same populations can be rejected
at the 5% level, even for a small number of subareas. This
effect is clearly visible in Figure 2a. The mean values per
number of subareas as well as the overall mean µ as black
line is shown. The mean values differ significantly, having a
maximum difference of 5,26 Mbps. The trend becomes even
more evident for a larger number of subareas. With CNM, the
measuring points are never geographically evenly represented.

To investigate the spatial distribution, Figure 2b shows the
distribution of measurements’ latitude in brown and longitude
in blue. Focusing the latitude, an accumulation of measure-
ment points can be seen at a latitude of about 45.7◦ and
about 48.8◦, as well as at a longitude of about 2.3◦ and
4.8◦. That is not surprising since at these locations two large
cities are located, Paris (48.86◦, 2.35◦) and Lyon (45.75◦,
4.84◦), in which many people live and thus, a high amount
of crowdsourced data points can be collected.

B. Example: Temporal Distribution

Another possible factor for biases in the evaluation of crowd
data is the temporal aspect. As the measurement times at CNM
are often chosen by the user, not all times of the day, weekdays
or months are represented to the same extent. However, the
time has a decisive influence on the bandwidth.

Figure 2c shows the mean download throughput and the
corresponding 95% confidence intervals grouped by the hour
of the day. In addition, gray circles indicate the number
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Figure 1. Determining precision for crowdsourced data by evaluating the estimated mean throughput and absolute/relative errors for different sample sizes.
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Figure 2. Determining spatial and temporal measurement biases for CNM data.

of measurements in thousands. The lowest mean download
throughput is measured at 8pm (19.36 Mbps) while the highest
means is measured at 3am (33.68 Mbps). Here it becomes clear
that the download throughput is significantly influenced by
the time of day. The total mean of the values per daytime
is 25.13 Mbps, which is 1.3 Mbps higher than the overall
mean discussed earlier. For example, at 2am, which is the
time with the second highest mean download throughput, only
148 575 measurement values were collected, while a 11am,
853 743 measurements, which is more than five times as many,
were collected. To avoid this bias, it is possible to adjust the
weighting of the measured values per time.

C. Representativeness

The systematic error caused by the incorrect selection of
samples can be eliminated by ensuring that they are repre-
sentative regarding to the desired statement. (1) Given the
desired metric Θ(yU ) (for example, the mean throughput for
a region) the measurement plan p(S) must be set such that
E[T (yS)]−Θ(yU ) = ∆ with ∆ ≈ 0. (2) This is achieved by
selecting reference statistics for spatial and temporal distribu-
tion, such as the population density of a region or country
or the number of active users in the mobile network. The
distribution of the reference statistics now determines p(S)
and guarantees compliance with the sample distribution.

VII. EVALUATION GUIDELINE AND EXAMPLES

From Section V and VI, the following approach for precise
and unbiased CNMs can be derived. Given a research question

RQ with an evaluation characteristic Θ and a target population
V, the following steps can be performed:

1) Precision
a) Define thresholds for precision with absolute error δ∗

or relative error γ∗

b) Calculate nmin according to δ∗ or γ∗, see Eq. (1), (3)
2) Measurement Bias (representativeness)

a) Determine reference statistics according to V
b) Calculate sample distribution in temporal and spatial

way given by the distribution of reference statistics

A. Example: User-expected Throughput

Given RQ with “What is the expected throughput for
an average active user for provider xy?”. For throughput
measurements, an appropriate threshold is an absolute error
of at most 1 Mbps, i.e., δ∗ = 1Mbps. Here, V is given by the
active users of provider xy. More precisely, either the mobile
contracts or the population density might be appropriate as
reference statistics V . The calculation of nmina can be done
with Eq. (1) with the help of MOE. Sample observations are
chosen or measured in such a way that the temporal and spatial
distribution fits to the temporal and spatial distribution of V .
This means that, for example, in peak hours and urban areas
more measurements have to be taken into account.

B. Example: Network Optimization (Spatial Coverage)

Considering RQ with “How is the average signal strength
in Texas, US?”. Signal strength is commonly given as RSSI
with a precision of 1 dBm, δ∗ = 1 dBm. The calculation of
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nmina can be done with Eq. (1). The CNM should measure in
a uniformly distributed way per km2 all over Texas, V . Here,
observations should be uniformly distributed over all Texas,
i.e. the weighting of the measurement should be adjusted
so that no region is overrepresented. This means that, for
example, accumulations of measurements due to peak times
or densely populated areas must be balanced.

VIII. CONCLUSION

When using crowdsourced network measurements (CNMs),
network operators, regulators, and big data companies are
faced with the challenge of making valid statements out of
uncontrolled measurements. Thus, this article defines concepts
for analyzing the validity of CNMs.

In the first part, we consider CNMs to be a mathematical
sampling process and, as a result, derive from this the need for
high precision and trueness (representativeness). For precision,
we derive the minimum number of measurements required for
a given confidence level and maximum tolerable absolute or
relative error. This gives operators and big data companies
the opportunity to determine the number of measurements
required in advance to ensure a certain precision. Next, we
elaborate on the trueness. Even precise measurements can
show a systematic error if their measurement process and
its samples are not drawn representatively. We point out that
this is often the case with CNMs. Measurements are taken
more often during the day and in metropolitan areas as people
are directly involved. We elaborate on the problem and point
out the need for reference data to ensure representativeness.
We illustrate the importance of both factors, precision and
representativeness, using a large CNM data set and showed
possible evaluation approaches. In the end, we provide a
guideline on how to evaluate CNM data to get valid results.
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