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Abstract—YouTube video streaming is one of the most pop-
ular and most demanding services in cellular networks. Thus,
operators are concerned about the quality of the streaming
delivered by their networks and would like to monitor the
Quality of Experience (QoE) of the end users. In this work,
we conduct a field study of mobile YouTube video streaming,
in which both network flow parameters and application-layer
streaming parameters were monitored, and present the char-
acteristics of current mobile YouTube streaming. The impact of
both approaches is investigated showing that monitoring network
parameters is not sufficient to directly infer the resulting QoE.
In contrast, the streaming parameters, which can be obtained
from application-layer monitoring, show high correlations to the
subjectively experienced quality, and thus, are better suited for
QoE monitoring.

Index Terms—QoE; Video streaming; YouTube; HTTP adap-
tive streaming; Video quality; Mobile networks; Subjective field
study

I. INTRODUCTION

In today’s Internet, YouTube is one of the most popular and
volume-dominant services. Every day, people watch hundreds
of millions of hours on YouTube and generate billions of
views. More than half of these views come from mobile
devices [1]. To satisfy their customers, the performance of
YouTube Mobile is essential for mobile operators, who must
cope with the huge amount of traffic within the constrained
cellular networks. Therefore, they need to understand how the
streaming quality is perceived by the end users in order to
keep the Quality of Experience (QoE) at satisfying levels.

The QoE of video streaming is mainly affected by waiting
times, such as initial delay and stalling, and the video quality
[2]. Due to HTTP adaptive streaming technology, the video
quality can be changed according to the current network
conditions in order to avoid or shorten these waiting times.
In case of YouTube, the resolution of the video is the quality
level, which is switched according to a client-side adaptation
logic when the network conditions change.

To quantify the QoE of end users, network providers used
to estimate streaming characteristics based on traffic char-
acteristics or deep-packet inspection of video packet flows
(e.g., [3]). However, the recent trends towards encrypted HTTP
traffic, impede them to obtain accurate estimates. Thus, they
can only rely on the monitoring of network parameters of
identified video flows, such as flow size, duration, signal

strength, or throughput. A different approach is the monitoring
of application-layer streaming parameters, such as initial delay,
stalling, and video quality, directly at the end user device (e.g.,
[4]). This concept includes that the monitored data need to be
communicated to the network operator, however, QoE-related
parameters can be obtained directly.

To inspect both approaches, a YouTube mobile field study
was conducted. Participants were asked to use their own
cellular ISPs and smartphones, which were equipped with
monitoring applications for both network flow parameters and
application-layer streaming parameters, to stream YouTube
videos. After watching a video, the participants were asked to
fill a web-based questionnaire on their subjective perception
of the streaming. In this paper, the study and the used appli-
cations are presented in detail. The characteristics of current
mobile YouTube streaming as measured in the field study
are presented. Moreover, the applicability of both monitoring
approaches to estimate the QoE of end users is investigated.

The remainder of the paper is structured as follows. First,
related work is presented in Section II in order to give
an overview of work related to HTTP video streaming and
monitoring of QoE. In Section III, the used applications are
described and the field study is summarized. Afterwards,
the results on mobile streaming characteristics, the impact
of network flow parameters, and streaming parameters are
presented in Section IV. Section V concludes the paper.

II. RELATED WORK

The problem of QoE assessment in HTTP video streaming
is already well-known. Initial delays and stallings are the key
parameters defining the QoE of video streaming [5]–[7]. It
was shown that while most users can tolerate moderate initial
delays, stalling has a huge impact, as already little stalling
severely degrades the perceived quality.

Whilst adaptive streaming concepts are well-known for
a long time, their broad commercial usage has only risen
recently, and the topic is getting more and more attention
within the research community. Authors in [8] found that
quality adaptation could effectively reduce stalling by 80%
when bandwidth decreased in a mobile environment, and was
responsible for a better utilization of the available bandwidth
when bandwidth increased. However, quality switches have
an impact on perceived quality themselves, as they increase or
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decrease the video quality according to the switching direction
[9]. Authors in [10] found that only the time on each quality
layer has a significant impact on QoE, but not the number of
quality switches. In [11], authors found that resolution is a key
parameter for video QoE on small displays. They concluded
that low resolutions contributed to enhanced eyestrain of the
subjects. However, authors found in [12] that QoE for YouTube
in modern smartphones is actually not much impaired by the
resolution switches, as the size of the screens are small and
users are already much used to watching YouTube in such
devices. A more comprehensive survey of the QoE of adaptive
streaming can be found in [2].

When it comes to the specific study of YouTube QoE in
mobile networks and mobile devices, there are some recent
papers worth mentioning. In [13], authors study the character-
istics of YouTube traffic for both Android and iPhone mobile
devices connected to a cellular network, showing that mobile
devices have a non-negligible impact on the characteristics
of the downloaded traffic (for example, in terms of video
resolution and flow download control behavior). Closer to our
work, authors in [14] describe a subjective QoE evaluation
framework for mobile Android devices in a lab environment.
Additionally, they perform some basic QoE-based study on
the classical, non-adaptive YouTube streaming using very low
bit rate videos. Authors in [15] study the QoE of YouTube in
mobile devices through a field trial, but completely neglect
the analysis and impact of adaptive streaming as we do.
In [3], authors took a further step and introduced an on-
line monitoring system for assessing the QoE of YouTube
in cellular networks using network-layer measurements only.
Newer papers have evaluated the QoE of current smartphone
apps from both lab subjective tests [12] and field trials [16].

There has also been a recent surge in the development of
tools and software libraries for measuring network perfor-
mance on mobile devices: some examples are Mobiperf [17],
Mobilyzer [18], and the Android version of Netalyzr [19].
Authors in [4], [20] presented YoMoApp, an Android app for
passively monitoring QoE-relevant parameters for YouTube
video streaming in smartphones. Authors in [21] introduced
Prometheus, an approach to estimate QoE of mobile apps,
using both passive in-network measurements and in-device
measurements, applying machine learning techniques to obtain
mappings between QoS and QoE. In [22], authors introduced
QoE Doctor, a tool to measure and analyze mobile app
QoE, based on active measurements at the network and the
application layers. Additional papers in a similar direction
tackle the problem of modeling QoE for Web [23] in cellular
networks, and video [24].

III. STUDY DESCRIPTION

A. YoMoApp

YoMoApp (YouTube Performance Monitoring Application)
[4], is an Android application, which passively, non-intrusively
monitors application-level key performance indicators (KPIs)
of YouTube adaptive video streaming on end-user smart-
phones. The monitored KPIs can be used to analyze the
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Fig. 1. Buffer and video quality of an exemplary video streaming: current
video playtime (green), buffered video playtime (blue), played out video
quality/resolution (horizontal black lines).

QoE of mobile YouTube video sessions. The tool is currently
unique on the market. Comparable apps so far measure only
parameters such as data volume or latency. However, according
to [2], the main influence parameters of the YouTube QoE are
stallings and video quality. To obtain these parameters, we
monitor the buffer and the resolution of the YouTube videos.

The approach is as follows. The original YouTube App
is fully replicated in functionality and design. To this end,
existing libraries from YouTube are used that are available for
YouTube developers. An Android WebView browser element
is embedded to display the YouTube mobile web site on
which HTML5 video playback, including adaptive streaming,
is possible. Additional functions are added, which ultimately
perform the monitoring of the application parameters in the
newly created app. The monitoring is done at runtime via
JavaScript, which queries the HTML5 〈video〉 object (i.e.,
player state/events, buffer, and video quality level). More
details can be found in [4].

Fig. 1 shows the buffer and video quality data of an exem-
plary run in their processed form. Postprocessing of the data
is required because JavaScript can sometimes introduce incon-
sistencies and obvious errors, e.g., missed player events, non-
equidistant data queries, missing/incorrect values. However,
as demonstrated in [4], YoMoApp proved to perform accurate
measurements on a sufficiently small time scale (∼1 s).

B. Network Flow Measurement Tool

To monitor the network usage of the field-trial participants,
we used a simple Android-based passive monitoring tool,
which captures several metrics for all the traffic flows on the
device. Other tools available from the literature (e.g., [17]–
[19], [22]) either rely on active measurements only or are too
specific and could not be used.

Table I lists the different metrics passively monitored for
each traffic flow by our network measurement tool. A flow
is associated to the specific app generating it by using the
Android Developers’ APIs. The first metric is a the IMEI
(International Mobile Station Equipment Identity), which is
a unique number identifying a 3GPP device. Metrics 2 to 6
report results of traffic flow measurements, including the flow
start time, the flow direction (uplink or downlink), the flow
duration, the size of the flow, and the average flow transfer
throughput, which is computed as the ratio between the flow
size and the flow duration. Metric 7 identifies the app, which
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TABLE I
METRICS RECORDED FOR EACH DATA FLOW, WHICH ARE EXTRACTED VIA

THE ANDROID DEVELOPERS’ API.

Metric Metric Name Units Example
1 Device ID (IMEI) - 352668049725157
2 Flow start time s 1430825689
3 Flow direction (up/down) - downlink
4 Flow duration s 10.24
5 Flow size KB 4041.00
6 Avg. flow throughput kbps 3157.03
7 App - de.yomoapp
8 Signal strength dBm -71
9 Operator (MCC.MNC) - 295.4

10 Cell ID - 16815
11 Cell location {lat;lon} degree (◦) {48.194;16.348}
12 RAT - LTE

generated the corresponding flow, using the Android naming
scheme. Metric 8 provides the strength of the signal at the
smartphone. Metrics 9 to 11 report the operator providing the
Internet access, the cell to which the smartphone is attached
at the flow start, and the cell’s position (i.e., longitude and
latitude). Metric 12 indicates the Radio Access Technology
(RAT) used by the smartphone (e.g., LTE, 3G, 2G, EDGE,
etc.). Metrics 7 to 12 are recorded at the time at which a new
flow starts. All metrics are logged locally at the smartphone,
and are periodically uploaded to a server for post-processing
and analysis.

C. Web-based Rating App

The users were asked to provide QoE feedback through
a web-based app immediately after using YoMoApp. On the
webpage, the users were required to rate the overall quality
on a 5-point ACR scale ranging from bad (1) to excellent (5),
and to indicate whether the session quality was acceptable.
Moreover, the users were asked to indicate if to what extend
they were annoyed by the initial delay on a 5-point ACR
scale ranging from very annoyed (1) to not at all (5), and if
they noticed any interruptions or stops during the streaming.
If yes, they had to indicate whether they experienced these
interruptions as annoying on the same scale as for initial delay.
The ratings were stored on the web server for later analysis.

D. Field Study

The field trial consisted of 30 participants using their
own smartphones and cellular ISPs to stream videos using
YoMoApp in Vienna, Austria, for a total span of 2 weeks in
January 2015. Field trial participants were compensated with
vouchers for their participation, which proved to be sufficient
for achieving correct involvement in the study.

After the study, the log files from three sources were
collected, namely, the YoMoApp logs, the network measure-
ments, and the QoE ratings. In total, 85 video sessions were
monitored. To map the corresponding network measurements,
we identify the traffic flows that overlap with the streaming
log. Although this is a straightforward approach, only 30
streaming logs could be mapped to network measurements.
For the other streaming sessions, the network monitoring app
was not actively running on the participants’ devices or an

Internet connection via WiFi was used. WiFi sessions had
to be excluded because the signal strength parameter was
not available, and they performed significantly better than the
mobile sessions. Moreover, for all streaming logs, we matched
the corresponding QoE rating based on the device identifier
and the rating time. Thereby, we only accepted QoE ratings,
which were submitted latest 15 minutes after the streaming.
The other ratings are considered unreliable as users were asked
to rate immediately after the playback. Further filtering was
done based on the noticing of stalling. If the users rated the
presence of interruptions contrary to the monitored stalling, the
rating was not accepted. This resulted in 30 rated streaming
sessions in total. Combining all three logs, only 10 sessions
remained, for which both network measurements and QoE
ratings are available.

IV. RESULTS

In the course of the field study, 85 streaming sessions were
logged by the YoMoApp application. Figure 2 gives statistical
insights in the monitored sessions. Figure 2a presents the
CDF of initial delay (yellow), total stalling time (brown), and
playback time (black). The playback times of a single video
range up to 391.7 s, having a mean of 142.9 s. This means,
the participants did not deliberately watch short video clips
just to finish their task, but playback times show a reasonable
involvement of the participants with the field study and suggest
that liked content was selected. Over all streaming sessions,
short initial delays are observed (avg.: 1.60 s, max.: 4.02 s),
although stalling times are considerably higher (avg.: 10.78 s,
max.: 213.43 s). Nevertheless, the waiting times are generally
low, which results in around 90 % of the sessions having an
initial delay of less than 2.5 s, and around 75 % of the sessions
having a total stalling time of less than 2.5 s.

Figure 2b shows the CDF of the number of stalling events
(yellow) and the number of quality changes (brown). A quality
change means the switching between two different quality
layers, i.e., in the context of YouTube, the switching between
two different video resolutions. The average number of stalling
events is 2.22, which corresponds to the low total stalling
times, but still a maximum number of stalling events of 41
was monitored. In contrast, the number of quality switches is
low (avg.: 0.58, max: 4), which indicates that the adaptation
logic of YouTube is rather conservative and avoids too many
quality changes.

Finally, Figure 2c presents more details on the played out
quality. The bar plot presents the distribution of the playout
time of the different video qualities (time on layer). Moreover,
it shows distributions of the quality played out at the start and
the end of a streaming session. It can be seen that all qualities
were used, although mostly resolutions 240p (15.5%), 360p
(30.8%), and 480p (17.8%) are streamed. Additionally, almost
20% of the time HD content (720p or 1080p) can be watched
on the mobile devices. Note that for some times, the video
resolutions could not be determined by YoMoApp (unknown).
Looking at the start quality, again a conservative behavior
of YouTube can be observed as no session downloads a HD

3



0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time [s]

C
D

F

Initial Delay
Total Stalling Time
Playback Time

(a) Time-related streaming parameters

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

Number [−]

C
D

F

Stalling Events
Quality Changes

(b) Event-related streaming parameters

0

0.2

0.4

0.6

0.8

1

D
is

tri
bu

tio
n

Time on Layer Start End

180p
240p
360p
480p
720p
1080p
unknown

(c) Played out video quality

Fig. 2. Monitoring of streaming during the field study.
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Fig. 3. Correlations between network parameters and QoE ratings.

quality from the start. The end quality distribution, on the other
hand, is similar to the distribution of the time on layer, and
indicates that the streaming sessions tend to improve from the
low start qualities if the network conditions permit.

In the following, the impact of the different network and
streaming parameters will be investigated in detail.

A. Impact of Monitored Network Flow Parameters

Figure 3 presents the correlations of the network mea-
surements to the QoE ratings of the participants. The bar
plot shows the different network parameters on the x-axis.
The black bars indicate the Spearman rank-order correlation
coefficient (SROCC) of the network parameter values and the
mean opinion scores (MOS) of the users. The yellow bars
indicate the correlation between the network parameters and
the acceptability. As acceptability is a dichotomous variable,
the point-biserial correlation coefficient (PBCC) is plotted.

Both the average flow throughput and the maximum flow
throughput show little correlations to both MOS and ac-
ceptability. This means that a higher throughput does not
necessarily result in a better streaming experience. For the
other network parameters flow duration, flow volume, and
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Fig. 4. Correlations between network parameters and streaming parameters.

signal strength, negative correlations can be observed. This
is especially counter-intuitive for signal strength as a higher
signal strength seems to reduce the streaming quality.

Note that the data set consists of only 10 complete streaming
sessions (both network measurements and QoE ratings avail-
able) is too small to show generalizable results. However, it
becomes clear that the network measurement is not sufficient
for an accurate QoE estimation. In the following, we will
investigate the impact of network parameters on the streaming
parameters in more detail.

Figure 4 shows a bar plot of the SROCC between the
two network parameters average flow throughput (dark brown
bars) and signal strength (light brown bars), and different
streaming parameters. The investigated streaming parameters
on the x-axis are initial delay, total stalling time, average and
maximum length of a stalling event, number of stalling events,
number of quality changes, start and end quality, recency time
(i.e., time after last quality change), weighted time on layer
(i.e., a linearly weighted sum of the time spent on different
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Fig. 5. Correlations between streaming parameters and QoE ratings.

quality layers), and playback time. Note that quality (layer)
and quality change refers to the different resolutions used by
the YouTube streaming. The data set consists of 30 records.

The average flow throughput shows a high correlation to
end quality (0.64) and the weighted time on layer (0.64).
This means, a high throughput seems to generally improve
the quality level of the streamed video. Moreover, negative
correlations from -0.64 to -0.36 for all stalling time param-
eters is visible. Thus, a high maximum flow throughput also
reduces the stalling experienced by the end user. A similar
behavior could be observed for the maximum flow throughput
(similar SROCCs) and flow volume (smaller SROCCs). Flow
duration, in contrast, shows an inverse behavior having positive
correlations to stalling parameters and negative correlations
to quality parameters. Confirming the findings from above,
signal strength does also not perform well as an indicator for
streaming parameters. It shows only low correlations having
little SROCCs ranging from -0.19 to 0.22.

To sum up, some network parameters, especially average or
maximum flow throughput, are closely linked to the perfor-
mance of the streaming and the resulting experienced stream-
ing quality. Nevertheless, as observed above, these network
parameters cannot be directly used to infer the resulting QoE.

B. Impact of Monitored Streaming Parameters on QoE

The impact of streaming parameters on the subjective rating
is investigated on a data set containing 30 streaming sessions.
Figure 5 presents the correlations between streaming param-
eters and the QoE ratings. The bar plot depicts the SROCCs
between the streaming parameters, which are on the x-axis,
and the MOS (black), as well as the PBCCs between the
streaming parameters and the acceptability ratings (yellow).

Interestingly, no negative effect is visible for initial delay,
which might be due to the fact that only small initial delay

times were monitored during the field study. Also the ratings
of the dedicated initial delay question were high (avg.: 3.53),
which indicates that initial delay was not an issue here.

It can be seen that only the stalling parameters have a clear
negative correlation to the MOS, which confirms previous
findings that stalling is the worst quality degradation of video
streaming (cf. [2]). The correlation is highest for maximum
stalling event length (-0.48), still reasonably high for total
stalling time (-0.36) and average stalling event length (-0.36),
but smallest for number of stalling events (-0.19). In contrast,
when directly asked about the annoyance caused by stalling,
the correlations are generally small, but are highest for the
maximum stalling event length.

Taking a look at the video quality parameters, positive cor-
relations to the MOS can be observed. The weighted time on
quality layer shows the highest correlation (0.58), but also start
(0.48) and end quality (0.48) have high SROCCs. Confirming
the results from [10], the number of quality switches has
no correlation to MOS (0.04). However, the recency time,
which is an indicator for quality level fluctuation, has a high
correlation to the MOS (0.52). This could still suggest that
the users prefer a stable streaming quality. Finally, a positive
correlation of playback time and MOS is visible (0.34), which
confirms that users tend to watch longer when the streaming
quality is better.

In contrast to the MOS ratings, the acceptability shows
only low correlations to the streaming parameters having
PBCCs ranging from -0.07 to 0.13. This can be explained
by the fact that acceptability of a streaming session is not
strongly influenced by a single streaming parameter but rather
depends on a more complex combination of them. Still, a high
positive PBCC of 0.54 between MOS and acceptability could
be observed from the collected ratings.

All in all, the results of the field study show that it is
important to monitor the parameters of the video streaming
at the application layer. The streaming parameters proved to
provide better insights into the subjective experience of users
than the network flow parameters. This necessitates the usage
of tools like YoMoApp for future QoE monitoring. Based on
these monitored parameters, a holistic QoE model has to be
developed, which allows for an accurate QoE estimation.

V. CONCLUSION

In this work, a field study of mobile YouTube video stream-
ing was conducted with YoMoApp. This custom Android QoE
monitoring application allows the usage of YouTube and pas-
sively measures streaming parameters on the application layer,
e.g., initial delay, stalling, and quality changes. Participants
were asked to use YoMoApp to stream and watch videos on
their own smartphones over their cellular ISPs. In addition
to the application-layer monitoring, network flow parameters
were monitored with a special purpose application, and the
participants rated their subjective perception of the streaming
quality via a web-based questionnaire.

Bringing together all three logs, as initially intended, re-
sulted in a very small data set because of the unreliability
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of some participants and the partly missing usage of the
network monitoring application. This means that not only for
future research studies, but also for practical operation, efforts
should be undertaken to have all monitoring unified into one
application. Nevertheless, also the results for the incompletely
logged streaming sessions provided valuable insights. First,
we observed that the YouTube mobile streaming starts on a
rather low video quality level (i.e., resolution), which results in
short initial delays. The adaptation logic is very conservative
avoiding too many quality changes, but generally tends to
improve the video quality level if the network conditions
permit. Second, it became clear that the network measurements
are not sufficient for an accurate QoE estimation and cannot
be directly used to infer the resulting QoE. However, some
network flow parameters, especially average or maximum
flow throughput, are closely linked to the performance of the
streaming. In contrast, other parameters, like signal strength,
show only little correlations to the streaming parameters.
Finally, the study revealed that the streaming parameters,
like stalling times and times on quality layers, provide much
better insights into the subjective experience of users than the
network flow parameters. They show high correlations to the
subjective experience rated by the participants, which confirms
previous QoE studies.

The field study practically tested the usage of tools like
YoMoApp for QoE monitoring. The app proved to be able to
passively, non-intrusively measure valuable streaming param-
eters on application layer. Thus, future streaming applications
could be equipped with such monitoring to gain better insights
into the user’s QoE. Still, a holistic QoE model has to
be developed, which takes these monitored parameters into
account and allows for an accurate QoE estimation.
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