
Peeking under the Hood: How the Measurement
Setup Influences the Video Streaming Behavior

Anika Schwind, Lea Janiak, Christian Moldovan, Florian Wamser, Tobias Hoßfeld
University of Würzburg, Institute of Computer Science

Würzburg, Germany
{anika.schwind | lea.janiak | christian.moldovan | florian.wamser | hossfeld}@informatik.uni-wuerzburg.de

Abstract—Global Internet video traffic will dramatically in-
crease in the next years. With this rapid growth, interest in the
application behavior of video streaming services and the resulting
user experience rises. In particular, there is a need to understand
the influence of system parameters on the streaming performance.
Thus, several monitoring approaches have been developed which
allow conducting automated measurements on a large-scale, for
example, lightweight approaches for measurements running in
the mobile networks or setups using a virtual frame buffer
for servers without a display running in virtualized cloud
environments. In some cases, the measurement hardware can
totally be controlled, in other cases, there is no knowledge about
parallel running services. In this paper, we answer the question
whether and how much the measurement setup (e.g., virtualiza-
tion, headless browsers, load on machines) influences the video
streaming behavior. Therefore, we compare eight management
setups with the ground truth (an end user watching a video on
the own device) by evaluating the key performance indicators on
application layer during video streaming, i.e. initial video play-
out delays and stalling. Our results reveal important insights:
some of the common measurement setups heavily influence the
measurements and must be avoided to collect reliable results.

Index Terms—video streaming, monitoring, measurement,
streaming behavior, measurement setup

I. INTRODUCTION

Video Streaming has become one of the most popular Inter-
net applications in the past decades. Video service providers
want to optimize the application layer’s Quality of Service
(QoS) by optimizing their CDN architecture and their pro-
tocols. Internet service providers (ISPs) are interested in
measuring their customers Quality of Experience (QoE). It
is therefore necessary to measure a high number of videos
and monitor the QoS and to characterize video streaming
mechanisms. Virtual customers are often emulated in such
measurement studies to investigate specific scenarios and
to run multiple concurrent experiments. From a technical
perspective, the virtualization may occur on several layers,
e.g., operating system level, bare-metal hypervisors, hosted
hypervisors. Virtual machines and containerization are good
possibilities to run test beds since it is easy to set up the
experiments’ configuration.

In this paper, we investigate how the measurement setup
and especially how limitations like CPU load affects the
application layer QoS in HTTP video streaming for different
virtualization methods. The most important QoS parameters in
video streaming include the frequency and duration of stalling

events, the average video quality [1], the initial delay [2],
and the frequency of quality changes [3], [4]. According to
user studies that are summarized in [5], the application layer
QoS parameters stalling frequency and initial delay have the
highest impact on the QoE in a video browsing scenario which
is why we focus on them in this study. Our main research
goal is to determine the impact of the virtualization, video
rendering type, and the available computation resources on
the performance of the video streaming application.

We conduct a measurement study to compare a non-
virtualized system with a virtual machine and Docker with
Xvfb, X window manager, and headless browser. We play
a single YouTube video in different combinations of system
configurations. Furthermore, we vary CPU load to investigate
the influence on stalling, initial delay, and video quality.

The remainder of this paper is structured as follows. In
Section II, we discuss technical background and related work.
Section III describes our testbed and the design of the mea-
surement study. In Section IV, we evaluate the results collected
in the measurement study. Finally, we conclude our paper and
give outlook to future work in Section V.

II. BACKGROUND AND RELATED WORK

The ability to measure video streaming is important for ISPs
and network operators to ensure that video content is rendered,
transmitted, and received according to an appropriate quality
standard. The challenge is to create a measurement setup that
takes into account the most important quality parameters while
not affecting the streaming behavior. Other criteria include the
ability to realize the measurement in the cloud or using a
virtual frame buffer or headless browser for servers without
a display. The open question here is whether the respective
measurement setup influences the streaming behavior.

According to [2], [6]–[9], the most important quality pa-
rameters for video streaming are perceptual factors such as
waiting time and video quality as well as technical factors such
as video codec or adaptation logic. Overall, the factors that a
monitoring for video streaming should consider include video
playback quality, playback interruptions (stalling), the level of
adaptation (how drastically the perceived quality changes), the
frequency of adaptation, and the initial delay. In the literature,
solutions are proposed that make objective quality assessments
by means of models [10], or application or network-layer
monitoring solutions [11]–[15] that can be lightweight for

1

c ©
20

19
IE

E
E

.
Pe

rs
on

al
us

e
of

th
is

m
at

er
ia

l
is

pe
rm

itt
ed

.
Pe

rm
is

si
on

fr
om

IE
E

E
m

us
t

be
ob

ta
in

ed
fo

r
al

l
ot

he
r

us
es

,
in

an
y

cu
rr

en
t

or
fu

tu
re

m
ed

ia
,

in
cl

ud
in

g
re

pr
in

tin
g/

re
pu

bl
is

hi
ng

th
is

m
at

er
ia

l
fo

r
ad

ve
rt

is
in

g
or

pr
om

ot
io

na
l

pu
rp

os
es

,

cr
ea

tin
g

ne
w

co
lle

ct
iv

e
w

or
ks

,
fo

r
re

sa
le

or
re

di
st

ri
bu

tio
n

to
se

rv
er

s
or

lis
ts

,
or

re
us

e
of

an
y

co
py

ri
gh

te
d

co
m

po
ne

nt
of

th
is

w
or

k
in

ot
he

r
w

or
ks

.
T

he
de

fin
iti

ve
ve

rs
io

n
of

th
is

pa
pe

r
ha

s
be

en
pu

bl
is

he
d

in
20

19
22

nd
C

on
fe

re
nc

e
on

In
no

va
tio

n
in

C
lo

ud
s,

In
te

rn
et

an
d

N
et

w
or

ks
an

d
W

or
ks

ho
ps

(I
C

IN
),

Fe
b.

20
19

.
ht

tp
s:

//d
oi

.o
rg

/1
0.

11
09

/I
C

IN
.2

01
9.

86
85

88
9.

Video Streaming (YouTube)

PC

Virtual Machine Docker

Xvfb Window Manager

Browser/Video Player Streaming

Emulation/

Headless Browser

Fig. 1: Structure and composition of different measuring
approaches for video streaming

running in mobile networks or large-scale if virtualized in the
cloud. This leads to different frameworks with different video
streaming monitoring techniques.

The authors of [10] provide a comprehensive overview of
approaches and standardization activities for IPTV assessment.
In particular, objective assessment metrics are listed that are
not subject of this study. YoMo [13], YoMoApp [11], YouS-
low [12], and YouQ [14] measure streaming parameters on
the application side directly without virtualization and partly
without automation [11], [13]. Monitoring solutions deployed
on the application side provide a reliable and accurate view of
application layer quality parameters. While access to the client
side or application provides insight into quality parameters,
network operators usually have no access to such measure-
ments and must limit themselves to network measurements.
YOUQMON [15] estimates the streaming parameters in the
network. [16] is an approach that can be started in the
cloud and therefore uses virtualization. Virtualization has the
advantage that multiple measurements can be easily started
but has with the disadvantage of not knowing how much
is being worked on in parallel on the whole system. All
frameworks that use headless browsers [17], [18] have the
advantage that, in addition to operating on servers without a
screen, the measurement can also often be automated.

Figure 1 breaks down the measurement approaches and
their methodology. Here, we assume that measurements are
conducted on a PC. If virtualization is desired, a Virtual
Machine or a Docker container can be run on top of it.
In addition, for the three underlying systems (PC, VM, and
Docker), it can be chosen if approaches with or without actual
playback of the video content should be used (browser/video
player vs. streaming emulation/headless browser). By using
a browser/video player, the way in which it is rendered in
the computer may also differ, for example using Xvfb [19]
or native window manager. Xvfb is a window managers that
renders browser or player video presentations in memory only,
without requiring a real display for the measurement.

[16] uses Docker as a virtualization to monitor large scale
QoE video streaming. [17], [18] uses Xvfb to evaluate video
player performance or Spotify streaming. A comparison of
different measurement approaches for Docker/VM, Xvfb/head-
less browser can be found in [21]–[23].

TABLE I: Used measurement setups

Measurement
Setup

Virtualization Windowing System Browser
(Chrome)

PW - Window Manager Standard
PX - Xvfb Standard
PH - - Headless
VW VM Window Manager Standard
VX VM Xvfb Standard
VH VM - Headless
DX Docker Xvfb Standard
DH Docker - Headless

III. METHODOLOGY

To measure the impact of measurement setups on the
behavior of video streaming services such as YouTube, a
measurement testbed was build and eight different setups have
been measured. Here, each of the measurement setups is used
to run a video while the key performance indicators (KPIs) of
the streaming are monitored on application layer. In addition,
the testbed is used to limit the available CPU to further
investigate the influence under stressed conditions.

This section gives an overview of the testbed components,
the execution of the measurements, the collected data, and the
way in which CPU limitations are achieved.

A. Testbed Components

In our testbed, eight different measurement setups can be
compared. Table I lists all setups, starting with the abbrevi-
ation, followed by their used hardware, virtualization type,
windowing system, as well es the type of the used Chrome
browser. The setups starting with P run directly on the PC
without a virtualization layer, respectively with a window man-
ager (PW), Xvfb (PX), or a headless browser (PH). Similarly,
setups starting with V use a VM. Lastly, for setups which
start with D, Docker is used. For Docker, we did not measure
a setup using a window manager as it is not common to use
this combination. In the following, all measurement setups will
be referred to using their abbreviations.

In later comparison, the measurement setup PW will be used
as a baseline, since it’s the normal setting for an end user
watching a video. Thus, every deviation from its behavior can
be interpreted as influence of the measurement setup on the
application behavior.

1) Hardware and Underlying Software: The PC used as
the basis for all measurement setups has a Intel® Core™
i5-7600 @ 3,50 GHz processor with four cores, a 512 GB
SSD hard drive, and 16 GB RAM. The operating system
Ubuntu 18.04.01 LTS is utilized. resolution of the monitor
used in setups with a window manager is 1280x1024. For
video streaming, the free browser Google Chrome (Version
68) is chosen. The browser automation tool Selenium is
utilized to control Chrome during the measurements. For this,
a Chromedriver (Version 2.41) is required.

2

2) Virtual Machine: The virtual machine Oracle VM Virtu-
alBox version 5.2.10 for Ubuntu is used. The VM is configured
to resemble the host PC as closely as possible to minimize
potential sources of differences in the results. Mainly, the same
operating system, software, and scrips are used.

3) Docker: The used Docker container is based on the
container presented in the work of Schwind et al. [17]. Here,
the Docker version 18.06.0-ce was used. Some alterations were
made to this container to match the requirements of this work.
Thus, Google Chrome is used as a browser instead of Mozilla
Firefox and the option to run the browser in headless mode
was added in addition to Xvfb.

4) Xvfb and Headless Browser: The display server Xvfb
was used to simulate a physical screen in some of the mea-
surement setups. In setups using a headless browser, the same
Google Chrome version like in the PC measurements was used
with the addition of running them using the headless option.
The size of the virtual display for Xvfb and the headless
browser were manually being set to the same size as the
physical monitor (1280x1024) to exclude possible variations
in the measurement runs.

5) CPU Limitation: To measure the performance of the
different measurement setups with less available CPU, the
CPU was limited to a constant value. For setups without vir-
tualization or a VM, the stress-ng tool1 is used, which stresses
the CPU by performing resource intensive computations. To
make sure, that the other applications have no access to the
occupied resources, the niceness of the process is set to -20,
which is the highest priority. Therefore, it is given the most
CPU time.

Because of the way resource access is handled in Docker,
even with a low niceness the stress-ng tool doesn’t have
priority over the processes running in the Docker container.
Therefore, the access the container gets to the CPU has to
be set by limiting its resources directly, by passing the flag
--cpus=<value>, to make sure that the container is only
able to access the desired amount.

B. Measurement Design and Collected Data

All measurements were run on the same machine during
two weeks in October 2018. In total, we conducted 2,000
measurements in this time. For each of the eight setups
we measured the performance under optimal conditions (no
limitation), and limited resources, having a CPU stressed to
50 %, 75 %, 90 %, and 95 %. Each of these settings was
repeated 50 times to get reliable results.

In our measurements, each setup was used to play a specific
YouTube video2. The video has a duration of 60 seconds
and is chosen because it is available in many resolutions,
reaching from 144 p up to 4,320 p (8k), and because it does
not include advertisements, which could distort the results. The
video was played with the player set to ”wide” mode, since
in the ”normal” mode it only takes up a fraction of the screen

1http://manpages.ubuntu.com/manpages/bionic/man1/stress-ng.1.html
2https://www.youtube.com/watch?v=RJnKaAtBPhA

size. During the measurements, KPIs on application layer are
monitored using an injected JavaScript file.

On the application layer, several key performance indicators
(KPIs) are collected during the video playback. This includes
the duration of the initial delay, as well as information
about the number and the length of occurred stalling. As
the JavaScript, which collects these information, can only be
injected after the web page is partially loaded, it is possible
that the starting time and the first seconds of the video cannot
be monitored (hereafter referred to as monitoring delay). Thus,
we linearly recalculate the starting time of the from the
playback time. Here, we assume that in this starting phase,
no stalling occur. In addition, the played out quality level is
monitored. Here, the starting quality as well as the time on
each quality level is considered. Connected to this, the number
of adaptations and the quality levels, between which the
switches occur, are compared. Additionally, on the hardware
layer, the CPU usage of each setup is recorded, both directly
on the host PC, as well as in Docker and the VM.

IV. EVALUATION

In this section, the presented eight different measurement
setups are compared on the base of their monitored KPIs
on application layer. First, we focus on measurement results
which were collected under optimal conditions. Afterwards,
the influence of the CPU utilization on the different setups is
evaluated.

A. Comparison under Optimal Conditions

To get information about the comparability of the results
of different measurement approaches, we evaluated their KPIs
on application layer and compared them to the normal end
user setting. This setting is, in our example, a PC displaying
the video with a standard window manager (here, setup PW).
In this evaluation, we focus on initial delay, total stalling time
(collective length of all occurred stalling), and the used quality
layer during the video streaming.

Table II summarizes the most important finding by provid-
ing the mean of the initial delays, the standard deviation of
the initial delays, mean quality, mean stalling time, and the
standard deviation of the stalling time per measurement setup
for optimal measurement conditions. The mean initial delay of
the baseline setup (PW) is 0.60 s, while the delays for the other
measurement setups varies from 0.54 s for Docker using Xvfb
(DX) up to 1.21 s for VM using window manager (VW), which
is more than twice as high than the initial delay of the baseline.
The monitoring delay is very short (less than 1.5 s) and thus,
it is negligible. Within each measurement setup, the standard
deviation of the initial delay is very low and thus, no wide
dispersion was measured within the measurement setups. To
further investigate the initial delay and the differences between
the measurement setups, we later have a more detailed look
at the distribution of the initial delays. Looking at the played
out quality, not many differences between the setups can be
investigated. Here, the following quality layers were observed
with the respective ordinal rank of the resolution in brackets:

3

TABLE II: Monitored KPIs under optimal conditions

Measurement
Setup

Mean Init.
Delay [s]

SD Init.
Delay [s]

Mean
Quality

Mean
Stalling [s]

PW 0.60 0.07 4.98 0.00
PX 0.70 0.07 4.98 0.00
PH 0.73 0.11 5.00 0.00
VW 1.21 0.15 4.95 0.00
VX 0.86 0.13 4.92 0.00
VH 0.79 0.09 4.96 0.00
DX 0.54 0.05 4.94 0.00
DH 0.58 0.07 4.98 0.00

Fig. 2: Initial delay under optimal conditions

720 p (5), 480 p (4), 360 p (3), 240 p (2), and 144 p (1). As
the mean quality for all setups is close to 5, most of the time
videos were played out in 720 p. The same can be said about
stalling. For all measurement setups under optimal conditions,
no stalling occurred.

To evaluate the differences in the initial delays in more
detail, Figure 2 shows their distribution. The x-axis presents
the different measurement setups, while the y-axis shows the
initial delays in second. For each setup, the 95 % confidence
intervals are marked as well as the means. Even the longest
initial delay, for VM using the window manger (VW), is short
enough to no influence the users QoE, according to the work
of Hoßfeld et al. [2]. Nevertheless, the initial delay of all
setups, except for setup DH, significantly differs from the initial
delay of the baseline measurement setup PW as the confidence
intervals do not overlap. As the standard deviations for all
setups are low, the difference to the initial delay of the baseline
PW can be subtracted and thus, the results can be used for
evaluation.

To summarize the comparison on optimal conditions, sig-
nificant differences between the measurement setups can only
be seen concerning the initial delay. To go more into detail,
we wanted to have a look at other factors, which possibly
influence the performance of the setups. Thus, we analyzed the
CPU utilization of each setup in Figure 3. Here, the different
measurement approaches are shown at the x-axis and ratio of

Fig. 3: CPU utilization under optimal conditions

CPU utilization on the y-axis. In all settings, the utilization
was measured at the base machine (not within the VM or
Docker Container). For each measurement setup, the 95 %
confidence intervals are shown as well as the means per setup.
For setups using no visualization, the CPU utilization is low,
ranging between 31.27 % (PH) and 35.22 % (PX). Similar
results can be seen for the Docker setups: Docker using a
headless browser (DH) has a mean of 36.08 % and Docker
using Xvfb (DX) a mean of 37.32 % CPU usage. A clear
difference can be seen for the CPU utilization for setups using
virtual machines. Here, the means were appreciably higher,
ranging between 60.56 % for VM using a headless browser
(VH) and 77.04 % for VM using a window manager (VW). For
all setups, the confidence intervals are very low.

B. Comparison under Different CPU Utilizations

In the previous evaluation, we found that, on application
layer, no significant differences are noticeable, except for
the initial delay. Nevertheless, it was shown that the CPU
utilization of the measurement setups heavily differed. In these
measurements, no setup reached CPU utilization of 100 %
as we used a well-equipped machine for our measurements.
This fact can not be assumed for all measurement settings. If,
for example, measurements are done in the field using small
nodes, the available computing power can be relatively low.
Likewise, if the used server or machine is not under full control
of the conductor of the measurement, like on external servers,
it is possible that other software runs beside the measurement,
which can also reduce the available CPU. Thus, it is important
to also have a look at the influence of the CPU utilization
on the measurement setups. For that reason, we conducted
additional measurement runs where we stress the CPU to
50 %, 75 %, 90 %, and 95 %. Here, again, we monitored the
KPIs on application layer to compare the reliability of the
measurement setups. We found that the limitation of the CPU
leads to clear deviations in the KPIs from the normal use case
for a end user presented in the previous section. Thus, in this
section, the differences are highlighted and the usability for the
measurement setups for given CPU utilization are evaluated.

4

Fig. 4: Initial Delay at different CPU stress levels

For increasing CPU utilization, the monitoring delay in-
creases drastically. Having an average monitoring delay of less
than 1.5 s for all setups without additional CPU stress, it goes
up to of 2.5 s for 50 %, 4.7 s for 75 %, 14.6 % for 90 %, and
37.5 % for 95 %. Here, for all stress levels, the measurement
setups VW, VX, and VH reach the highest delays, having more
than twice as high delays as the rest. This shows that high
CPU utilization not only influences the streaming behavior,
but also the accuracy of the monitoring tool. The system is
heavily overloaded that is not possible to run all processes
correctly. Consequently, the higher the CPU stress level, the
more inaccurate the calculated values for initial delay and
stalling. Nevertheless, we calculated these values and counted
possible stalling in the monitoring delay period to the initial
delay to estimate the influence of the setup on the streaming
behavior.

The average initial delay can be seen in Figure 4. The
x-axis shows the five CPU stress levels and the y-axis the
average length of the initial delay in seconds. The colored bars
represent the different measurement setups. On top of each
bar, the 95 % confidence intervals are shown. Here, a clear
trend is visible: With less CPU power available, the average
initial delay increases, showing significant jumps for CPU
stress level of 90 % and 95 %. For the measurement setups
using a normal PC setting (PW, PX, and PH), as well as for the
setup using Docker with a headless browser (DH), this increase
can be subtracted if the CPU utilization is monitored. Here, the
standard deviations are below 2 s and thus do not vary widely.
This can not be said for the setups using a VM (VW, VX, and
VH) and Docker using Xvfb (DX). In these setups, the results
varied widely for each setting for stress levels of 90 % and
95 %, showing standard deviations of up to 56.41 s for VW, and
thus, can not be subtracted. Thus, concerning the initial delay,
measurement setups using a VM and setup DX are not usable
on machines which have a high CPU utilization. For other
setups, the influence on the initial delay can be subtracted if
the CPU utilization is monitored during the measurement and
the monitoring delay is small.

Comparing the used quality layers, no differences to the

Fig. 5: Stalling at different CPU stress levels

baseline can be noticed up to a CPU utilization level of 75 %.
For a CPU utilization of 90 %, again the measurement setup
using a VM and window manager (VW) differ from the rest.
Here, the mean quality is 4.47, which means 480 p on average.
For a CPU utilization of 95 %, all measurement approaches
using a VM clearly behave different than the baseline use
case. For VW the mean quality was 3.73, for VX 3.81, and for
VH 3.60. For all setups, a mean quality of 480 p is measured,
compared to 720 p (5) for the normal use case. Thus, little
available CPU can highly influence the adaptation logic of
the YouTube streaming and lead to distortion of the measured
results, even without any changes of the bandwidth.

Having a look at the total stalling times, again an influence
of the CPU utilization and the selected measurement setup
is noticeable, as can be seen in Figure 5. Here, the x-axis
shows the five CPU stress levels while the y-axis indicates the
average stalling times in seconds. The colored bars represent
the eight different measurement setups. As stalling times of
more than the video duration are not acceptable, the y-axis is
cut at 60 s. On top of each bar, the 95 % confidence intervals
are shown. For a stress level of up 75 %, no stalling occurred,
except for the VM using the window manager (4.21 s on
average with a standard deviation of 16.77 s). This changes
when looking at stalling times at the stress levels 90 % and
95 %. Here, for 90 % CPU stressed, only the measurement
setups PW, PH, and DH showed no stalling. For all other setups,
stalling, ranging between 2.10 s (DX) and 33.94 s (VW), are
measured. Looking at the results with a 95 % stressed CPU,
only for measurement setup PH no stalling occurred, all other
setups show stalling. Furthermore, it must be considered that
the total stalling times could be even higher, as the monitoring
delay for high CPU utilization is very high. Stallings which
occurred in this time were counted to the initial delay. In
Addition, whenever stalling occurred, the standard variation
was relatively high, starting from 2.27 s (DH) up to 56.41 s
(VW). As the standard deviations show that even under the
same settings, it is not clear that the same results can be
measured for the same measurement setup, it is not possible
to subtract this variation.

5

V. CONCLUSION

To measure the performance of video streaming services,
several measurement setups are used by ISPs, streaming
providers, and researchers in order to understand the influence
of various system parameters. Therefore, approaches with and
without actual application content playback and with and
without virtualization are used for large-scale measurements.
The question arises if the obtained measurement results are
comparable with the application performance of a regular
video streaming user.

To investigate the comparability and capability of different
approaches, in this paper, we evaluated the influence of eight
common measurement setups on the application behavior of
video streaming. More specifically, we compared approaches
using a normal PC, using a virtual machine (VM), and using
a Docker container as basis. For each monitoring approach,
we considered different ways to play a video: playback using
a standard window manager, playback within Xvfb, as well
as playback using a headless browser. In many settings the
measurement hardware is not well equipped (e.g., for mobile
measurements) or the machine is not completely under control
of the conductor of the measurements (e.g., using a server in
the cloud). Thus, in addition, we evaluated the influence of the
CPU utilization on the streaming behavior for different setups.

For measurements running under optimal conditions (i.e.
without CPU utilization from other processes), only minor
differences were monitored in terms of the initial delay.
Concerning stalling and the used quality layers, no differences
were found for the setups. However, when having a look at
the monitored results using different CPU stress levels, clear
differences can be seen. Here, especially starting from a CPU
utilization of 90 %, all measurement setups using a virtual
machine as well as measurements using Docker combined with
Xvfb are not recommended. Only caused by the limitation of
the CPU, without changing the bandwidth or other settings,
the streaming behaves significantly different to the normal
use case, i.e. a regular user consuming a video. For high
CPU loads, the initial delay increases, stalling occur, and the
selected quality by the player is changed.

In summary, the measurement setup plays an important role
for the reliability of the results. We conclude that wherever
possible, virtual machines should be avoided. If virtualization
is mandatory, we recommend using Docker in combination
with a headless browser. In addition, for all measurements, the
utilization of the CPU should always be monitored to ensure
that the CPU is lightly utilized (e.g. <50 %) and does not
influence the results.

REFERENCES

[1] C. Alberti, D. Renzi, C. Timmerer, C. Mueller, S. Lederer, S. Battista,
and M. Mattavelli, “Automated qoe evaluation of dynamic adaptive
streaming over http,” in Quality of Multimedia Experience (QoMEX),
2013 Fifth International Workshop on. IEEE, 2013, pp. 58–63.

[2] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and
C. Lorentzen, “Initial delay vs. interruptions: Between the devil and the
deep blue sea,” in Quality of Multimedia Experience (QoMEX), 2012
Fourth International Workshop on. IEEE, 2012, pp. 1–6.

[3] M. Zink, J. Schmitt, and R. Steinmetz, “Layer-encoded video in scalable
adaptive streaming,” IEEE Transactions on Multimedia, vol. 7, no. 1, pp.
75–84, 2005.

[4] L. Yitong, S. Yun, M. Yinian, L. Jing, L. Qi, and Y. Dacheng, “A
study on quality of experience for adaptive streaming service,” in
Communications Workshops (ICC), 2013 IEEE International Conference
on. IEEE, 2013, pp. 682–686.

[5] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-Gia,
“A survey on quality of experience of http adaptive streaming,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492, 2015.

[6] F. Wamser, P. Casas, M. Seufert, C. Moldovan, P. Tran-Gia, and
T. Hossfeld, “Modeling the youtube stack: From packets to quality of
experience,” Computer Networks, vol. 109, pp. 211–224, 2016.

[7] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the quality of
experience of http video streaming,” in Integrated Network Management
(IM), 2011 IFIP/IEEE International Symposium on. IEEE, 2011, pp.
485–492.

[8] T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz,
“Quantification of youtube qoe via crowdsourcing,” in Multimedia
(ISM), 2011 IEEE International Symposium on. IEEE, 2011, pp. 494–
499.

[9] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “Sdn-
based application-aware networking on the example of youtube video
streaming,” in Software Defined Networks (EWSDN), 2013 Second
European Workshop on. IEEE, 2013, pp. 87–92.

[10] A. Takahashi, D. Hands, and V. Barriac, “Standardization activities in
the itu for a qoe assessment of iptv,” IEEE Communications Magazine,
vol. 46, no. 2, 2008.

[11] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“Yomoapp: A tool for analyzing qoe of youtube http adaptive streaming
in mobile networks,” in Networks and Communications (EuCNC), 2015
European Conference on. IEEE, 2015, pp. 239–243.

[12] H. Nam, K.-H. Kim, D. Calin, and H. Schulzrinne, “Youslow: a
performance analysis tool for adaptive bitrate video streaming,” in ACM
SIGCOMM Computer communication review, vol. 44, no. 4. ACM,
2014, pp. 111–112.

[13] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “Yomo:
a youtube application comfort monitoring tool,” New Dimensions in
the Assessment and Support of Quality of Experience for Multimedia
Applications, Tampere, Finland, vol. 6, 2010.

[14] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A machine
learning approach to classifying youtube qoe based on encrypted net-
work traffic,” Multimedia tools and applications, vol. 76, no. 21, pp.
22 267–22 301, 2017.

[15] P. Casas, M. Seufert, and R. Schatz, “Youqmon: a system for on-
line monitoring of youtube qoe in operational 3g networks,” ACM
SIGMETRICS Performance Evaluation Review, vol. 41, no. 2, pp. 44–
46, 2013.

[16] A. Schwind, M. Seufert, O. Alay, P. Casas, P. Tran-Gia, and F. Wamser,
“Concept and implementation of video qoE measurements in a mobile
broadband testbed.” in TMA, 2017, pp. 1–6.

[17] A. Schwind, F. Wamser, T. Gensler, P. Tran-Gia, M. Seufert, and
P. Casas, “Streaming characteristics of spotify sessions,” in 2018
Tenth International Conference on Quality of Multimedia Experience
(QoMEX). IEEE, 2018, pp. 1–6.

[18] D. Stohr, A. Frömmgen, A. Rizk, M. Zink, R. Steinmetz, and W. Ef-
felsberg, “Where are the sweet spots?: A systematic approach to
reproducible dash player comparisons,” in Proceedings of the 2017 ACM
on Multimedia Conference. ACM, 2017, pp. 1113–1121.

[19] “XVFB.” [Online]. Available: https://www.x.org/archive/X11R7.6/doc/
man/man1/Xvfb.1.xhtml

[20] “Xdummy.” [Online]. Available: http://xpra.org/trac/wiki/Xdummy
[21] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-

mance comparison of virtual machines and linux containers,” in 2015
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), Mar. 2015, pp. 171–172.

[22] K.-T. Seo, H.-S. Hwang, I.-Y. Moon, O.-Y. Kwon, and B.-J. Kim, “Per-
formance comparison analysis of linux container and virtual machine
for building cloud,” Advanced Science and Technology Letters, vol. 66,
no. 105-111, p. 2, 2014.

[23] A. M. Joy, “Performance comparison between linux containers and
virtual machines,” in 2015 International Conference on Advances in
Computer Engineering and Applications, Mar. 2015, pp. 342–346.

6

