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Abstract—The network functions virtualization (NFV)
paradigm provides advantages with respect to aspects like
flexibility, costs, and scalability of networks. However,
management and orchestration of the resulting networks also
introduce new challenges. The placement of services and
virtualized network functions (VNFs) is a multi-objective
optimization task that confronts operators with a multitude
of possible solutions that are incomparable among each other.
The goal of this work is to investigate mechanisms that enable
automated decision making between such multi dimensional
solutions. To this end, we investigate techniques from the
domain of multi attribute decision making that aggregate
the performance of placements to a single numeric score. A
comparison between resulting rankings of placements shows that
many techniques produce similar results. Hence, placements that
achieve good rankings according to many approaches might be
viable candidates in the context of automated decision making.

Index Terms—Cloud Service, NFV, Placement, Orchestration,
Multi-Objective Optimization.

I. INTRODUCTION

The Network Functions Virtualization (NFV) paradigm of-
fers numerous benefits to network operators in terms of costs,
flexibility, scalability, and vendor independence. In contrast
to the prevalent deployment of specialized middleboxes for
network functions like firewalls or load balancers, NFV lever-
ages virtualization mechanisms in order to perform the packet
processing tasks of the former via software that runs on
commercial off-the-shelf (COTS) hardware.

However, management and orchestration techniques are
required in order to achieve and maintain a high degree of flex-
ibility and assert that QoS and QoE constraints are met. In par-
ticular, the placement of virtualized network functions (VNFs)
within the network can have a significant impact on both,
user and operator satisfaction. Since goals like low latency
among VNF instances and low latency between VNFs and
end users can be competing, finding suitable VNF placements
corresponds to a multi-objective optimization task.

In addition to the increased complexity of algorithms that
can solve such problems, the solutions they return can not
always be compared with each other due to different domains
and units of the objectives. Especially in the context of
automated and dynamic service migration and instantiation,
however, algorithms need to choose one distinct solution.

The contribution of this work is threefold. First, 4 methods
for determining the relative importance of different objectives
are presented and compared with each other. In contrast to
approaches that determine such weights a priori, the methods

presented in this work take into account characteristics of the
solutions that are returned by the multi-objective optimization
algorithm. Second, 4 mechanisms for aggregating the perfor-
mance of a multi-dimensional solution into a single score
are introduced. Finally, the rankings of solutions that result
from different combinations of weighting and aggregation
techniques are characterized. On the one hand, analyzing
solutions that consistently achieve high ranks according to
many approaches might lead to more efficient methods for
identifying viable placements. On the other hand, the compar-
ison can help derive guidelines for choosing the appropriate
ranking mechanism for a particular problem. All comparisons
are performed on realistic problem instances featuring graphs
from the Internet Topology Zoo [1] and three objectives.

The remainder of this work is structured as follows. After
an overview of related work in Section II, the data set is pre-
sented alongside the resulting problem instance in Section III.
Methods for assessing the weight of each objective dimension
are introduced and compared in Section IV. These methods are
then used as input for algorithms that assign a score to each
placement. In Section V, four such algorithms are discussed
and compared with respect to the rankings of placements they
produce. Finally, Section VI concludes the work.

II. RELATED WORK

Resouce management in clouds [2], in particular, the place-
ment of cloud services in data centers has become an in-
creasingly important problem. Typically, many parameters and
metrics regarding resource utilization and performance have to
be taken into account within the cloud and the network. Thus,
different methodologies are proposed in literature to place the
virtual machines efficiently. In the context of placing virtual
network functions (VNF), [3] investigates a weighted sum
approach, while [4] uses a linear program to find an optimal
placement. Also [5], [6] propose linear programs for chains
of VNF, while [6] adds a Pareto analysis to investigate the
trade-offs between the different dimensions.

A related problem, which has been discussed recently, is
the placement of SDN controllers. It is also a multi-objective
optimization problem, which has to take into account a large
set of parameters and metrics. Weighted sums (e.g., [7]) and
linear programs (e.g., [8]) are widely used. Additionally, the
Pareto frontier is analyzed when different alternatives are
incomparable. Due to state explosion, the problem of obtaining
the Pareto frontier is frequently tackled heuristically [9], [10].
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However, no automated decisions can be taken from Pareto
frontiers, which will be tackled in this work.

Therefore, we will transform the Pareto frontiers into a
ranked list of alternatives. To compare the rankings when the
underlying order of alternatives is unknown, we will mainly
rely on correlation coefficients and techniques based on prob-
abilistic ranking models. In [11], the rank correlation between
the pairs of ranking is calculated using either Spearman’s
ρ or Kendall’s τ . [12] proposes a measure of agreement
between rankings based on removal of disputable elements.
A basic model for order statistics was developed by Thur-
stone [13], and [14] constructed an equivalent model based
on choice probabilities. Mallow [15] presented simplified and
analytically tractable models induced by paired comparison.
[16] investigates concordance between different judges (i.e.,
rankings) based on Mallow’s model to detect outlier rankings.
[17] proposes to compare the distribution of ranks by box
plots and derive a degree of discordance based on the inter-
quartile range. The goodness of fit of simple ranking models
is investigated in [18], and metric based ranking models are
discussed in [19]. A classification of probabilistic ranking
models can be found in [20].

III. DATA SET DESCRIPTION

In order to investigate the practical feasibility of the dif-
ferent weighting and ranking methods that are discussed in
this work, realistic input data is required. To this end, we use
multiple network graphs from the Internet Topology Zoo [1]
and evaluate possible service placements with respect to a
total of three objective functions. While results are consistent
among different networks, some characteristics depend on
statistics like the number of nodes and the diameter of the
graph. Hence, the Internet2 OS3E topology is chosen as an
exemplary representative. Table I provides an overview of the
graph as well as the resulting problem instance.

TABLE I: Information regarding the network topology and the
corresponding problem instance used in this work.

Property Value
Graph name Internet2 OS3E
Number of nodes 34
Number of placed
services

4

Number of distinct
placements 46, 376

Number of Pareto
optimal placements 10

Objective functions
Mean latency to end users πavg latency

Maximum latency to end users πmax latency

Imbalance between service instances πimbalance

As mentioned in the previous paragraph, three different
objective functions are taken into account when assessing the
performance of each placement. These include two latency-
related measures, namely, the mean and average latency be-
tween services and end users. Furthermore, the load imbalance
between service instances is defined as the difference between

the number of end users assigned to the instance with the
highest and lowest amount of end users, respectively. Several
statistical properties of these objective functions are presented
in Table II. Additionally, Figure 1 displays the cumulative
distribution function of objective values that are attained across
all placements.

Due to the fact that the latency measures are continuous,
they yield significantly more distinct values, resulting in
smooth CDF curves. In contrast, the imbalance is always
an integer value which is constrained by the number of
nodes in the topology. Hence, individual steps are visible in
the plot. Since the average latency between end users and
services is calculated from 34 individual latencies, outliers
are smoothed out and the resulting variance is relatively low.
The values of the maximum latency objective have a higher
variance and fewer distinct values since the maximum does
not necessarily change between similar placements that share
multiple controller locations.

TABLE II: Various statistics of the objective functions.

Objective Number of distinct values Mean Variance
πavg latency 45, 311 0.195 0.001

πmax latency 244 0.491 0.013

πimbalance 29 0.305 0.019
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Fig. 1: Empirical CDFs of objective values.

IV. WEIGHTING METHODS

In order to aggregate the performance of a placement that
is evaluated with respect to multiple objective functions into
a single value, the mechanisms that are analyzed in this work
require weights for each considered dimension. Hence, we first
discuss methods for obtaining these weights based on the set
of placements and the corresponding objective values.

In the following, the weight of the j−th objective is denoted
as wj and weights are normalized, i.e.,

∑m
j=1 wj = 1 in case

of m objective functions. Additionally, objective values are
also normalized prior to applying the weighting mechanisms.
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The observed values for n placements and m objective dimen-
sions are stored in an n ×m matrix A which is transformed
into the normalized matrix R according to Equation 1.

rij =
amax
j + amin

j − aij

amax
j + amin

j

(1)

In this equation, amin
j = mini aij and amax

j = maxi aij
refer to the minimum and maximum values of the j-th
objective, respectively.

A. Uniform Weighting

As a baseline naı̈ve approach, we use a weighting mecha-
nism that does not take into account any observed data and
assigns equal weights to every objective, i.e., wuni

j = 1
m .

B. Entropy-Based Weighting

In information theory, (the Shannon) entropy is used as a
means to quantify the amount of information that is stored
in a message [21]. The key idea behind the entropy-based
weighting method consists of assigning higher weights to
objective dimensions that carry more information, i.e., those
that have a higher number of distinct values and low individual
occurrence probabilities for each value. Based on [22], the
weights are calculated in three steps. First, observed values
are normalized for each dimension (cf., Equation 2).

pij =
rij∑n
i=1 rij

, j ∈ {1, . . . ,m} (2)

Then, the entropy is determined by means of

ej = − 1

lnn

n∑

i=1

pij ln pij , j ∈ {1, . . . ,m}. (3)

Finally, the weight is calculated as

went
j =

1− ej∑m
i=1(1− ei)

, j ∈ {1, . . . ,m}. (4)

C. Weighting Based on the Coefficient of Variation

Intuitively, objectives whose values cover a wide range of
different values tend to have a higher impact on the total result-
ing performance of a placement than objectives that attain only
few values or values that are very close to each other. Hence,
we investigate the suitability of the coefficient of variation
for quantifying the relative importance of an objective. The
coefficient of variation is defined as the ratio between the
standard deviation and the mean of observed values. Thus,
the weights are calculated according to Equation 5. σj and μj

refer to the standard deviation and mean of the j-th objective,
respectively.

wcv
j =

σj

μj∑m
i=1

σi

μi

, j ∈ {1, . . . ,m} (5)

D. Weighting Based on the Standard Deviation

Similarly to the weighting approach that is based on the
coefficient of variation, this mechanism uses the standard
deviation in order to calculate the relative weights.

wsd
j =

σj∑m
i=1 σi

, j ∈ {1, . . . ,m} (6)

E. Comparison

In order to allow for a comparison between the different
weighting mechanisms, Figure 2 presents the weights of indi-
vidual objectives according to the four weighting approaches.
The x-axis denotes the objective and is ordered according
to Table II, i.e., dimension 1 corresponds to πavg latency. The
height and color of the bars represent the weight and weighting
method, respectively.

While the weights that are returned by the different mech-
anisms differ in terms of absolute values, the relative order of
objectives is consistent. Having the lowest variance and the
narrowest interquartile range, the latency between end users
and services is assigned the lowest weights. As discussed in
Section III, the maximum-based measure has a higher variance
and thus also results in higher weights when compared to its
average-based counterpart. The highest weights are assigned
to the imbalance measure. This can be explained by the high
variance that is observed in the context of the imbalance
objective.

A comparison of the absolute weights that are assigned by
the weighting methods shows that the mechanisms that are
based on standard deviation and the coefficient of variation
return similar values. This phenomenon can be explained by
the fact that objective values are normalized prior to applying
the weighting methods. Thus, the normalization using the
mean that is applied in the context of the latter does not
have a large impact on the final weights. Finally, the entropy-
based weighting approach yields the widest range of weights,
i.e., between less than 0.1 and more than 0.6. This indicates
a higher sensitivity towards the objectives’ variance, which
seems to be the main influence factor on the resulting weight
for all weighting methods that take into account observed
objective values.

V. RANKING METHODS AND RESULTS

A. Ranking Methods

To aggregate the scores aij of the different attributes j of the
placement i to an overall ranking score ρi, four well-known
multi-attribute decision methods will be considered.

First, we consider Simple Additive Weighting (SAW) [23],
which computes the overall score by adding the normalized
attribute scores rij =

amin
j

aij
multiplied by the weights wj .

ρSAW
i =

∑

j

wj · rij

A similar ranking method is Multiplicative Exponent
Weighting (MEW) [24], which calculates the overall score as

3
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Fig. 2: Relative weights of objectives according to different
weighting mechanisms.

the product of the normalized attribute scores rij =
amin
j

aij
,

which are given the respective weight as exponent.

ρMEW
i =

∏

j

r
wj

ij

The Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) [23] normalizes the attributes rij =

aij∑
i a

2
ij

, and computes the distances to an optimal placement

with all best weighted normalized attribute values vmin
j =

mini(wjrij), and to a worst placement composed of all worst
weighted normalized attribute values vmax

j = maxi(wjrij).
Then, the separation between the optimal and the worst
placement is computed by

smin
i =

√∑

j

(wjrij − vmin
j )2

smax
i =

√∑

j

(wjrij − vmax
j )2

The resulting ranking ρi is the relative closeness to the ideal
solution:

ρTOPSIS
i =

smax
i

smin
i + smax

i

VIKOR [25] relies on the best and worst attribute values,
amin
j and amax

j . Then, for each placement, scores are calcu-
lated by two strategies:

Si =
∑

j

wj

amin
j − aij

amin
j − amax

j

, Ri = max
j

(
wj

amin
j − aij

amin
j − amax

j

)

The final ranking score for each placement is then computed
with a parameter γ, 0 ≤ γ ≤ 1, for the weight of each
strategy, and the best and worst values of Si and Ri, i.e.,

Smin = mini Si, Smax = maxi Si, R
min = mini Ri,

Rmax = maxi Ri:

ρV IKOR
i = γ

Si − Smin

Smax − Smin
+ (1− γ)

Ri −Rmin

Rmax −Rmin

We set γ = 0.5 to give equal weight to both strategies.
Together with the four weighting methods presented in

Section IV, this gives 16 different ranking methods for the
multi-objective placement problem. Due to the vast amount of
distinct placements, we will apply the 16 methods only to the
subset of Pareto-optimal placements, i.e., the set of placements
in which no attribute can outperform any other attribute

B. Comparison of Resulting Rankings

TABLE III: Gordon α.

Method 1 Method 2 α

(ρSAW , went) (ρMEW , went) 10

(ρSAW , went) (ρTOPSIS , went) 10

(ρSAW , went) (ρV IKOR, went) 10

(ρMEW , wsd) (ρTOPSIS , wsd) 10

(ρMEW , went) (ρV IKOR, went) 10

(ρMEW , wuni) (ρTOPSIS , wsd) 10

(ρTOPSIS , went) (ρV IKOR, went) 10

(ρSAW , went) (ρV IKOR, wuni) 4

(ρSAW , wuni) (ρV IKOR, wsd) 4

(ρMEW , wsd) (ρV IKOR, wuni) 4

(ρMEW , wuni) (ρV IKOR, wuni) 4

(ρTOPSIS , wsd) (ρV IKOR, wuni) 4

(ρTOPSIS , wuni) (ρV IKOR, wuni) 4

TABLE IV: Highest and lowest correlations between different
combinations of weighting and ranking methods.

Method 1 Method 2 τ ρ

(ρSAW , went) (ρMEW , went) 1.00 1.00

(ρSAW , went) (ρTOPSIS , went) 1.00 1.00

(ρSAW , went) (ρV IKOR, went) 1.00 1.00

(ρMEW , wsd) (ρTOPSIS , wsd) 1.00 1.00

(ρMEW , went) (ρTOPSIS , went) 1.00 1.00

(ρMEW , went) (ρV IKOR, went) 1.00 1.00

(ρMEW , wuni) (ρTOPSIS , wuni) 1.00 1.00

(ρTOPSIS , went) (ρV IKOR, went) 1.00 1.00

(ρSAW , wsd) (ρV IKOR, wuni) −0.11 −0.16

(ρSAW , went) (ρV IKOR, wuni) −0.11 −0.15

(ρMEW , went) (ρV IKOR, wuni) −0.11 −0.15

(ρTOPSIS , went) (ρV IKOR, wuni) −0.11 −0.15

(ρV IKOR, went) (ρV IKOR, wuni) −0.11 −0.15

Table IV lists the highest and lowest correlations between
different combinations of weighting and ranking methods in
terms of Kendalls’s τ and Spearman’s ρ rank order correlation
coefficients. It can be seen that generally high correlations
can be achieved between all ranking algorithms. In contrast,
small negative correlation can be seen only for VIKOR with
uniform weights. Thus, this might give some evidence that the
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investigated algorithms mainly agree on the inherent order of
the elements.

Another metric for measuring the agreement between rank-
ings was proposed by Gordon [12]. Gordon’s α is defined as
the number of objects, which are contributing to the agreement
between the rankings: α := N − δ. Thus, it can be computed
as the difference between the length of the ranking N and
the minimum number of objects δ, which have to be removed
to ensure a perfect agreement between the reduced rankings.
Gordon’s α confirms the high correlation coefficients, as there
are many pairs of rankings with a perfect agreement of
α = N = 10. The lowest value of α is 4, which shows
that still the ranking order is not completely inverted by any
algorithm-weighting combination.

Probabilistic ranking models give another approach to com-
paring the obtained rankings. Luce [14] constructs proba-
bilities for a ranking ρ = (i1, i2, . . . , iN ) from conditional
probabilities. Thus, after r − 1 stages, pir is defined as the
probability that the element ir is the most preferred element
from the set of remaining elements B = {ir, . . . , iN}. By
repeating the choice, this gives the probability of the rating ρ
as:

P (ρ) =
N−1∏

r=1

pir∑
j∈B pj

The highest Luce probabilities are obtained by a
ranking, which was created by the combinations
(ρTOPSIS , wsd|wcv|wuni) and (ρMEW , wsd|wuni). This
means, this ranking gives high ranks to the elements, which
are most preferred by all algorithm-weighting combinations.
Note that this ranking is also the modal ranking in the
resulting set of rankings. All four entropy based algorithms
output the same ranking, which reaches the second highest
Luce probabilities. Towards the other end, the SAW and
VIKOR algorithms and the the standard deviation (sd) and
coefficient of variation weighting (cv) output rankings with
low probabilities (with the above mentioned exceptions).

Mallow’s Φ-model is based on paired comparison of the
ranked elements. It can be formulated as

Pρ0,θ(ρ) =

(∑

ρ

θX(ρ0,ρ)

)−1

· θX(ρ0,ρ), 0 ≤ θ < ∞,

in which X(ρ0, ρ) is Kendall’s τ distance, i.e., the number of
disagreements between ρ0 and ρ. ρ0 is an a priori set location
parameter (e.g., the modal ranking or an averaged ranking),
and θ is a measure of variation, which will be fitted from the
rankings with a table given in [16]. Following the methodology
presented by Feigin and Cohen in [16], the model also allows
to detect outlier rankings. Using the averaged ranking as
location parameter and fitting θ accordingly, the highest proba-
bility is obtained by the ranking of (ρMEW , wcv). The second
highest probabilities are achieved by the modal ranking, which
already accounted for the highest Luce probabilities. Again
the entropy rankings have the third highest probability. This
means that these three rankings are closest to the averaged
ranking, which was chosen as location parameter. Using the

modal ranking as location parameter, the order of the first
and second rating would change, but the entropy rating would
still receive the third highest probability. The outlier detection,
which mainly depends on the fitting of θ, indicates that
(ρMEW , wcv) is an outlier ranking with a too high probability,
and (ρSAW , wuni) and (ρV IKOR, wuni) are outliers with a
too low probability close to 0. In particular, this means that
the disagreements for (ρSAW , wuni) and (ρV IKOR, wuni) are
exceptionally high compared to the averaged or modal ranking.
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Fig. 3: Pareto optimal placements and their ranks according
to the presented ranking mechanisms.

Following the approach described in [17], Figure 3 shows
a boxplot of the ranks of the different placements sorted by
median. It can be seen that there are small boxes for the first
five placements, which means that there is a large agreement
among the different algorithm-weighting combinations. Only
for the last five placements, there is some disagreement among
the different rankings. Still several outliers can be observed,
however, taking a detailed look at the data, most outlier ratings
stem from uniform weighting of the attributes. Thus, this
weighting method seems to be inappropriate for ranking the
placements.

To sum up, the different ranking methods showed a
high agreement, especially for the top-ranked placements.
This means, among the investigated methods, no algorithm-
weighting stands out and most of them are well suited to
combine the Pareto-optimal placements into a single score.
Nevertheless, the results suggest that the use of uniform
weights can lead to outlier rankings, which do not reproduce
the majority rankings.

VI. CONCLUSION

In this work, we applied multi-objective decision methods to
the problem of selecting the best placement for a cloud service
from a set of Pareto-optimal placements. Therefore, we inves-
tigated four methods to determine the relative importance of
different objectives (i.e., uniform, entropy-based, coefficient of
variation-based, and standard deviation-based weighting), and
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four multi-objective optimization algorithm (i.e., simple ad-
ditive weighting, multiplicative exponent weighting, TOPSIS,
and VIKOR). We showed that, for the investigated problem,
most algorithm-weighting combinations perform sufficiently
good and have a high level of agreement, especially on the
top-ranked placements. Only the usage of uniform weights
was shown to cause outlier rankings, which, nevertheless, can
provide a complementary view on the ranked placements.

In future work, we will investigate other multi-objective op-
timization algorithms and other placement problems, e.g., on
other network topologies, or with other/additional attributes.
Thereby, also the computational complexity has to be taken
into account, as some algorithms need an impractically high
runtime for the ranking of a large numbers of placements.
Eventually, the goal will be to derive guidelines for choosing
the appropriate ranking mechanism for Pareto-optimal place-
ments in the cloud service placement problem.
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