
Evaluation of the Detection Capabilities of the
ONOS SDN Controller

Christopher Metter∗, Valentin Burger∗, Zheng Hu†, Ke Pei† and Florian Wamser∗

∗University of Würzburg, Institute of Computer Science, Würzburg, Germany
{christopher.metter|valentin.burger|florian.wamser}@informatik.uni-wuerzburg.de

†Huawei, Corporate Reliability Departement, Shenzhen, China
{hu.zheng|peike}@huawei.com

Abstract—The process of monitoring the network, especially
for larger ones, is very complex and contains many pitfalls.
For instance the balance between granularity of information
and their performance impact on the network. With the help
of SDN this challenge can become easier, as it offers new
methods, mechanisms and opportunities. One of the current most
important Open Source controllers is the ONOS SDN controller.
According to its developers it is a production ready controller
that offers high availability due to its logically centralized and
physically distributed architecture. But, as our investigations
show, it is unable to cope with hazardous network conditions
such as sporadic or recurring packet loss. It either does not detect
packet loss or only detects it after long time periods, failing all
common network availability targets.

Index Terms—SDN controller; Network monitoring; Detection;
ONOS

I. INTRODUCTION

SDN is an increasingly important technology that breaks up
the ossified structure in networking: It decouples the control
from the data plane of network devices [1]. With this shift
in networking, it is possible to centralize the control plane of
many devices into one single software, the so called controller.
This controller opens up many new possibilities, such as
a flexible and programmable management station to steer,
control, and monitor the network.

Providing a high level of availability always has been and
will be one of the top challenges of network management. For
the common user this struggle is only visible by some magic
promise of services with ”up to x nines of availability” or is
only discussed if a certain service, e.g. Google, is unreachable
or users of a certain ISP are unable to access the internet [2].
In the background, providers have to monitor their services
24/7 in order to fulfill contracts and SLAs and not to lose
money over them.

The process of monitoring the network, especially for larger
ones, is very complex and contains many pitfalls. For instance,
the balance between granularity of information and their
performance impact on the network. With the help of SDN
this challenge can become easier, as it offers new methods,
mechanisms and opportunities. One of the current most impor-
tant Open Source controllers is the ONOS SDN controller [3].
According to its developers it is a production ready controller

that offers high availability due to its logically centralized and
physically distributed architecture. But, as our investigations
show, it is unable to cope with hazardous network conditions
such as sporadic or recurring packet loss on network links. It
either does not detect packet loss or only detects it after long
time periods, failing all common network availability targets.

The contribution of this paper is twofold: At first we present
a stochastic analysis of the theoretical detection performance
of the ONOS SDN controller towards link impairing effects,
namely packet-loss and jitter in the data plane. Second, we
support our evaluation by measuring the detection performance
of the ONOS controller for the case of packet loss in the data
plane.

This paper is structured as follows. Chapter II presents
related work and the backgrounds of the probing networks
with SDN. Chapter III introduces a theoretical analysis of
the detection mechanisms of the ONOS controller. Chapter
IV establishes our testbed, the measurement scenario and
the evaluation of the detection performance of the controller.
Finally, Chapter V summarizes the content of this paper and
gives an outlook to further work on this topic.

II. FAILURE DETECTION IN SDN

The remainder of the chapter is structured as follows:
At first, a definition of existing approaches towards fai-
lure detection and failure tolerance is discussed. Secondly,
background on detection mechanisms in the OpenFlow SDN
Protocol is presented. Finally, a general overview on detection
mechanisms is given. The findings of this chapter form the
basis for the further investigations.

A. Definition of Fast Failure Detection

In order to evaluate a fast failure detection, we first define
common properties a fast failure detection mechanism should
provide. At first, it is a hard requirement to detect failures
within defined time constraints. The failures the solution
should be able to detect are node, link, network or controller
failure. In our case failure includes anything that imposes a
deviation from normal operation of the network, e.g. device
outage, lossy link, or a misbehaving controller. Additionally,
failure detection is a fundamental building block for ensuring

1

c ©
20

18
IE

E
E

.
Pe

rs
on

al
us

e
of

th
is

m
at

er
ia

l
is

pe
rm

itt
ed

.
Pe

rm
is

si
on

fr
om

IE
E

E
m

us
t

be
ob

ta
in

ed
fo

r
al

l
ot

he
r

us
es

,
in

an
y

cu
rr

en
t

or
fu

tu
re

m
ed

ia
,

in
cl

ud
in

g
re

pr
in

tin
g/

re
pu

bl
is

hi
ng

th
is

m
at

er
ia

l
fo

r
ad

ve
rt

is
in

g
or

pr
om

ot
io

na
l

pu
rp

os
es

,
cr

ea
tin

g
ne

w
co

lle
ct

iv
e

w
or

ks
,

fo
r

re
sa

le
or

re
di

st
ri

bu
tio

n
to

se
rv

er
s

or
lis

ts
,

or
re

us
e

of
an

y
co

py
ri

gh
te

d
co

m
po

ne
nt

of
th

is
w

or
k

in
ot

he
r

w
or

ks
.

T
he

de
fin

iti
ve

ve
rs

io
n

of
th

is
pa

pe
r

ha
s

be
en

pu
bl

is
he

d
in

20
18

IE
E

E
Se

ve
nt

h

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

C
om

m
un

ic
at

io
ns

an
d

E
le

ct
ro

ni
cs

(I
C

C
E

),
18

-2
0

Ju
ly

20
18

.
ht

tp
s:

//d
oi

.o
rg

/1
0.

11
09

/C
C

E
.2

01
8.

84
65

74
1.

fault tolerance in large scale distributed systems. Its main
objective is to reduce the time it takes to detect a failure.
The challenge is to meet carrier-grade requirements with a
detection time of less than 50 ms without impacting the data
traffic [4].

B. Background: Detection Mechanisms in the OpenFlow SDN
Protocol

Current state-of-the-art SDN controllers mostly rely for their
fast failure mechanisms on the limited detection capabilities
of the southbound SDN protocol OpenFlow [5, 6]. A funda-
mental part to detect link failures is the LINE protocol. This
protocol detects a direct physical link between two adjacent
components, and, therefore, is able to detect a change in this
connection. On average, the detection time ranges from 50
to 150 ms, and is, therefore, not suitable for the provider
requirements with less than 50 ms of detection time. In SDN,
after the line protocol has detected a failure, a notification is
sent to the controller. The content of this message contains
the affected switch, the affected port of that switch and the
new port status (link down, blocked or live). Therefore, in an
SDN-only network two messages are sent to the controller:
one from each side of the link. Upon receipt, the controller
reacts according to its programming. Though the line protocol
is already in use for more than ten years, it also has some
limitations. First, it is only able to detect a link failure
at one local link. Furthermore, it cannot detect packet loss
or temporary partial failures within the network. At last,
it cannot detect network failures, e.g. the routing between
two end hosts in a network is not possible, even if each
of the used links is up and running according to the line
protocol. Additionally, OpenFlow offers capabilities for flow
monitoring. Each OpenFlow-enabled switch offers counters,
which store traffic information in different granularity, e.g. per-
table, per-flow and per-port (for example: bytes/packet count
per flow). The controller queries these statistics at regular
intervals. Although offering basic statistics, these options also
have several limitations. Frequent polling has to be used
in order to monitor the dynamics of a flow. Moreover, in
general, polling of statistics induces load on components, for
example, a higher CPU load on controller or a higher signaling
traffic due to statistic packets. Therefore, these mechanisms are
insufficient for carrier-grade OpenFlow/SDN deployments.

C. Probing Mechanisms

In general two types of probing exist: active and passive
probing. Passive probing determines the state of the network
by relying on in-network traffic monitors. E.g. by compa-
ring the packet count statistics of a flow from two adjacent
switches, the packet throughput and the packet loss can be
computed. The advantage of this technique is that no additional
measurement overhead is generated in the data plane. The
disadvantage is that it is often not as accurate and fast as
the second probing mechanism: active probing. Furthermore,
these statistics have to be polled by a central mechanism, e.g.

an application of the controller. This leads to additional load
on the network and rises the problem of polling accuracy.

An active probing mechanism, in turn, inject special pro-
bing packets into the networks data plane. According to the
investigated metric (e.g. packet loss, packet delay, throughput
or congestion), the accuracy of the results and the resolution in
time is higher than it is for passive probing. A non-neglectable
disadvantage of the active probing approach is the induced
measurement overload in the data plane by the measurement
packets. In critical situations, such as a link overload, each
additional packet that has to be transmitted via a link worsens
the effect on the data plane traffic.

III. FAILURE DETECTION ANALYSIS

This chapter is dedicated to the analysis of the performance
of active probing. As our goal is to evaluate the detection
times of ONOS, we at first need to consider the theoretical
limits of the approach of time-out based probing. Afterwards,
we measure the performance of our application in our testbed
for the case of packet loss in the data plane.

A. Detection Time Analysis

Fig. 1. Probing Process of one Link

1) Stochastic Analysis of Failure Detection Time: In order
to identify the best probing rate, the current ONOS implemen-
tation is analyzed. To monitor a link ONOS sends probes with
a fixed rate λ as shown in Figure 1. After each arrival of a
probe a timer is reset to 0. The ONOS implementation detects
a link failure and sends a link failure event if the timer exceeds
a threshold θ, see Figure 1. To analyze the performance of
probing we use A as random variable (RV) for the inter-arrival
time of probes. We consider the packet loss probability p as the
probability that a probe is lost. Due to the loss of probes and
the network dynamics the process of successful probes that
arrive at the controller differs from the inter-arrival process of
probes. Therefore, we use A′ as RV for the inter-arrival time
of successful probes, with E[A′] ≥ E[A]. The probability of
a link failure event is then given by

pfail = P (A′ > θ) = 1− P (A′ ≤ θ) = 1− FA′(θ) , (1)

2

where F ′
A(t) is the cumulative distribution function of RV

A’. The mean detection time of a failure is calculated by
considering the number of successful probes X that arrive at
the controller until the first successful probe comes late with
probability pfail. Considering that a failure event is triggered
if A′ > θ, the mean detection time can then be calculated by

tdetect = E[X]min(E[A′], θ) =
1

pfail
min(E[A′], θ). (2)

Since X follows a geometric distribution with parameter
pfail, which has an expected value E[X] = 1

pfail
. If the

probes are sent with a constant rate λ, as in the ONOS
implementation, the inter-arrival time of probes A is 1

λ with
probability 1. In this case the inter-arrival time of successful
probes A′ can be calculated by considering Y as RV for the
number of probes that are sent to the controller until a probe
successfully arrives at the controller with probability (1− p).
Y follows a geometric distribution with parameter (1−p) and
has the CDF FY (k) = 1−pk and expected value E[Y] = 1

1−p .
Since the probes are sent with constant rate λ, we can calculate
A′ by A′ = Y ·A = Y · 1

λ , with E[A′] = E[Y] · 1
λ = 1

1−p · 1
λ

and FA′(t) = 1− p�t·λ�.
Hence, in this case the probability of a link failure is

pfail = 1− F(A
′)(θ) = p�θ·λ� (3)

and the mean detection time is equal to

tdetect(p, θ, λ) =
1

pfail
min(E[A′], θ)

=
1

pfail
min(

1

1− p
· 1
λ
, θ)

=
1

p�θ·λ�
min(

1

1− p
· 1
λ
, θ)

(4)

In order to identify the optimal probing rate, the current
ONOS implementation is analyzed. Based on the configuration
parameters of ONOS, a calculation of multiple metrics is
possible. In the following, two metrics will be evaluated:
the mean detection times and the detection probability. The
mean detection time describes the time interval between the
configuration change of a link, e.g. from 0% packet loss to
5% packet loss, and the point ONOS is actually recognizing it.
Link detection probability describes the probability ONOS is
able to detect packet loss on a data plane link. Variable input
parameters are the probing frequency λ, how often a probe
is sent through a link per second, and the timeout θ, which
determine the number of probing packets that are required
to be lost consecutively in order for ONOS to realize a link
failure.

Figure 2 shows the probability pfail of the ONOS detection
module to recognize a change in the links status. The x-axis
depicts the data plane packet loss probability, the y-axis the
probability an event is recognized by ONOS. Again, three
probing frequencies are shown. From left to right: 1/3 s, 1/2 s
and 1/1 s. The timeout has been set to θ = 9 s. For the
default probing frequency of 1/3 s, the results show the highest

detection probabilities. If the probing frequency is increased, a
higher number of consecutive probes have to be lost so that the
timeout is exceeded. Hence, for a fixed timeout, the probability
of ONOS to trigger a link failure event decreases with the
probing frequency. In order to detect link failure events with
high probability for high probing frequencies, the timeout has
to be reduced with the probing frequency.

0 0.2 0.4 0.6 0.8 1
packet loss probability

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
 o

f l
in

k
fa

ilu
re

 d
et

ec
tio

n

timeout
=9s

probing rate

(1s)-1

(2s)-1
(3s)-1

Fig. 2. Calculus - Detection Probability

Figure 3 shows the probability of a link failure event pfail
dependent on the packet loss probability for a fixed probing
rate 1/3 s and different timeouts 3 s, 6 s and 9 s. The probability
of detecting a link failure event increases with the probability
that a probe is lost. With increasing timeout the probability of
detecting a link failure event decreases, since a higher number
of consecutive probing packets have to be lost so that the
timeout is exceeded. If the timeout is set lower than the inter-
arrival time of probes θ = 1

λ , a link failure event is triggered
after each probe. Hence, to maximize the probability of a link
failure event given a probing rate, the timeout is set to θ = 1

λ .

0 0.2 0.4 0.6 0.8 1
packet loss probability

0

0.2

0.4

0.6

0.8

1

pr
ob

ab
ili

ty
 o

f l
in

k
fa

ilu
re

 d
et

ec
tio

n

timeout

3s

6s
9s

probing rate =(3s)-1

Fig. 3. Calculus - Detection Probability

Figure 4 shows the mean detection time calculation for a
variable probing frequency and two timeout values. On the
x-axis the data plane packet loss probability is depicted, the

3

mean detection time by ONOS in seconds is depicted on the
y-axis. The solid line always depicts a probing frequency of
1/3 s, the dashed line a frequency of 1/2 s, and the dashed
and dotted line a frequency of 1/1 s. Results in black have the
timeout set to three times the probing frequency, for results
in blue the timeout is set to one time the probing frequency.
Apparently, ONOS mechanisms do not perform very well in
this scenario. Only for data plane packet loss values greater
than 45%, the mean detection time is less or equal to a minute.
Increasing the packet loss further also decreases the detection
time. But at 100% packet loss the detection time is still at more
than 10 s. Increasing the probing rate from 1/3 s to 1/2 s also
decreases the detection time. Here, mean detection times of
less than 60 s can be found for a packet loss value of circa 35%.
For 100% packet loss the mean detection time is around 8 s.
Finally, for a probing frequency 1/1 s, the mean detection time
decreases even further. Here, packet loss values around 25%
lead to a detection time of around 60 s. The final detection time
for loss values around 100% is less than 5 seconds. Decreasing
the timeout value to the probing frequency also drastically
decreases the detection time. Here, already for values below
10% of packet loss, detection times below 60 s can be found.
Again, increasing the probing frequency leads to better results,
but this time the improvement is smaller in comparison.

0 0.2 0.4 0.6 0.8 1
packet loss probability

0

20

40

60

80

100

120

m
ea

n
de

te
ct

io
n

tim
e

[s
]

timeout =1/

timeout =3/

Fig. 4. Calculus - Mean Detection Time

B. False Positive Failure Rate

The results from Section 3.1 show that the mean detection
time of a link failure indicated by packet loss depends on the
probing rate λ and the timeout θ. As shown in Figure 5, the
jitter on the link delays the arrivals of the successful probes
at the controller. On a link with 0% packet loss the inter-
arrival time of two successful probing packets A′ can also
exceed the timeout, due to jitter on the link. Hence, in this
case a false positive link failure event is triggered even if no
packet is lost. These false positive link failure events need to
be avoided, as they would interrupt the operation of a healthy
system. Especially if the probing frequency is high, a too low
timeout θ can lead to false positive link failures due to jitter.

Fig. 5. Probing Process with False Positive caused by Jitter

In order to evaluate the rate of false positive link failures,
we implement a Monte-Carlo simulation that simulates the
probing process of one link. The simulation time is T , Probes
are sent with rate λ and are dropped with probability p. Each
probe is delayed by a normal distributed random time with
parameters (0, σ). The probing timeout is θ.

As performance metrics we consider the rate of link failure
events

ffail =
1

T

∑

i>0

Xi,where

Xi =

{
1 t′i − t′i−1 > θ

0 else

(5)

In case of p = 0 %, ffail is also the rate of false positive
link failure events.

0 20 40 60 80 100
jitter [ms]

0

5

10

15

20

25

30

35

40

45

ra
te

 o
f l

in
k

fa
ilu

re
 e

ve
nt

s
[s

-1
]

probing rate =100s-1

0% loss

timeout

1.2/

1.1/

1.4/

1.8/

2.6/

4.2/

Fig. 6. Rate of false positive Link Failure Events caused by Jiteer

Figure 6 shows the rate of failure events for 0% packet
loss, i.e., the rate of false positive link failure events caused
by jitter. The probing rate is 1/100 s−1, and the timeout is
varied relative to the average inter-arrival time of probes 1

λ .
The results show that a small timeout θ leads to high false
positive rate. This leads to a high probability of flapping of
the link status. With increasing jitter a longer timeout theta

4

is necessary to keep the rate of false positive link failures
low. Hence, for effective operation with a low rate of false
positives, the timeout θ has to be set depending on the jitter
on the link. As rule of thumb the timeout θ can be set using
a margin of 2 times the jitter:

θ := 2E[A] + 2σ = 2/λ+ 2σ (6)

Figure 7 shows the rate of false positive link failures for the
rule of thumb setting for 100 and for 10 probes per second.
The result shows that using the rule of thumb setting the less
than one false positive link failure event is triggered every
10 seconds.

0 20 40 60 80 100
jitter [ms]

0

0.02

0.04

0.06

0.08

0.1

ra
te

 o
f l

in
k

fa
ilu

re
 e

ve
nt

s
[s

-1
]

probing rate =10s-1

timeout :=2/ +2

probing rate =100s-1

Fig. 7. Rate of false positive Link Failure Events for Equation (6)

The minimum value for the timeout θ can be calculated
by evaluating the inverse cumulative distribution function of
a normal distribution N−1

1/λ,θ(p) with mean 1
λ and standard

deviation σ depending on the tolerated false positive rate f̄fail:

θmin(λ, σ, f̄fail) = N−1
1/λ,σ(1− f̄fail) (7)

IV. PERFORMANCE EVALUATION

This section provides a thorough investigation of the ONOS
failure detection performance for the case of packet loss. At
first, the testbed, the measurement scenarios, and the evaluated
performance indicators are introduced. Afterwards, the results
are presented, evaluated, and discussed.

A. Testbed Description

Figure 8 shows the testbed used for the measurements of this
section. One physical server is running Mininet to emulate a
network topology of four switches. The topology of the testbed
is a ring-topology with four switches. To each of the switches
one simulated host is connected. Two physical servers form
the ONOS controller cluster. The switches are load-balanced
between these two nodes, i.e. one controller node controls two
switches.

In order to test the detection capabilities of ONOS for the
packet delay, packet loss is configured on the data plane link
between switch 1 and 2. To be able to determine the reactions

Fig. 8. Testbed Overview

and their delay, the signaling traffic between the controllers
and their connected switches is recorded and evaluated after
each run. Analyzing these traces allows us to calculate the
mean reaction time and the detection probability of each
scenario.

B. Measurements

In this section we evaluate the detection capabilities of
ONOS for the case of packet loss based on measurements.
Finally, we compare these results with the predicted perfor-
mance presented in Section III.

0 0.2 0.4 0.6 0.8 1
packet loss probability

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pr
ob

ab
ili

ty
 o

f l
in

k
fa

ilu
re

 d
et

ec
tio

n

Fig. 9. Number of successful detections for the ONOS controller for the case
of packet loss

In Figure 9 the detection probability of the ONOS controller
for multiple packet loss values is depicted. The x-axis shows
the configured packet loss in the data plane, the y-axis the
detection probability after 10 measurement repetitions with
a measurement duration of 120 seconds, each. The blue bars
visualize the measurement results, the black line the according
model results for comparison. These measurement results only
begin after a configured packet loss value of 30% as ONOS
is unable to detect any change in the inter-connection of the
connected switches for lower values. Taking a look at Figure
4 covers these results, as the expected mean detection time for

5

packet loss below 35% is beyond our measurement duration
of 120s. Beginning with 40% packet loss ONOS slowly and
unreliably begins to detect the change in the link quality with
a detection probability of 10%. Increasing the packet loss
further to 50% and 60%, the detection probability rises to
20% and 30%. For packet loss values beyond 70% ONOS
is able to reliably detect a change in the network conditions
with a detection probability of 90%. After that the detection
probability remains at 100%.

0 0.2 0.4 0.6 0.8 1
packet loss probability

0

20

40

60

80

100

120

m
ea

n
re

ac
tio

n
tim

e
[s

]

Fig. 10. Mean Reaction Time of the ONOS controller for the case of packet
loss

Figure 10 shows the mean reaction time of the ONOS
controller in this measurement scenario. The x-axis shows the
range of measured packet loss values. The y-axis depicts the
mean reaction time in seconds, respectively. Each results is
shown as a yellow bar; additionally, 95% confidence intervals
are shown in red. For the purpose of comparison, the calculated
model values are shown as a black line. As these results have
been derived from the same measurements as the ones from
Figure 9, there are no results for the mean reaction time for
30%, depicted here as a bar filling the whole height of the
figure. With a configured packet loss value of 40%, ONOS
takes 105 s to detect a change in the data plane. For 50%
the reaction time decreases to around 60 s. A packet loss of
60% leads to reaction time of around 45 s. 33 s are required
for a detection of 70% of packet loss in the data plane.
Further increasing the packet loss value from 80% to 100%
leads to a decrease of the reaction time to 20 s, 10 s, and 8 s.
As the confidence intervals show, different variances of the
reaction time have been recorded. Throughout the results, all
confidence intervals are small, indicating a low variance of the
results.

Comparing these measurement results to the model results
in general confirms our theoretical analysis. But especially for
the detection time an offset between measurements and model
becomes evident. This can be attributed to the difference in
the two displayed metrics: detection time vs reaction time.
With the detection time tdetect we express the time the internal
detection mechanisms of ONOS require to ”realize” that a link
is exposed to hazardous conditions. The reaction time treact

actually can be expressed as a sum: treact = tdetect + tcalc,
where tcalc identifies the time ONOS requires to calculate a
the reaction to the detected event. Within our testbed we are
unable to measure tdetect directly, therefore, we only capture
treact.

V. CONCLUSION

Software-Defined Networking is gaining momentum since
its introduction at the end of the last decade. Through its
decoupling of the control and the data plane of network
devices, it is possible to configure the network in a very
flexible and central manner. These advantages lead to an
interest by service providers. But, before migrating to a new
technology, providers have to be ensured that, despite the pos-
sible advantages, their reliability and availability requirements
are met.

One of the currently most important SDN controllers is
ONOS. According to the ON.Lab, the company developing
this controller, it is very reliable and production ready. In
this paper we theoretically analyzed the capabilities of the
detection mechanisms of ONOS and verified this analysis by
exemplary measurements. According to the presented results,
the implemented mechanisms only provide an unreliable de-
tection and are therefore unable to fulfill the requirements of
service providers. For example, it can take more than one
minute to detect packet loss values of 50% in the data plane.

Reducing or disabling the threshold of failure mechanisms
is a possible approach to increase the fast-failure reaction
performance. Usually, most detection and reaction mechanisms
have implemented safety margins, so that the controller does
not already react to the slightest possible failure in the network.
For example, the standard probing application of the ONOS
controller only reacts to three consecutively lost probing
packets. The reason for this behavior is that there always is a
very small packet loss and jitter within a network. Therefore,
it is only logical to take this in mind when designing detection
algorithms, as so-called false-positive failure events can lead
to congestion on the calculated backup links, which, in turn,
would trigger a real link failure on that link. However, by
decreasing these safety thresholds or even disabling them, a
reaction to real failure can also be detected in less time.

REFERENCES

[1] M. Jarschel, T. Zinner, T. Hossfeld, P. Tran-Gia, and W. Kellerer, “Inter-
faces, attributes, and use cases: A compass for SDN,” Communications
Magazine, IEEE, vol. 52, no. 6, pp. 210–217, June 2014.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a globally-
deployed software defined wan,” ACM SIGCOMM Computer Communi-
cation Review, vol. 43, no. 4, pp. 3–14, 2013.

[3] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on Hot
topics in software defined networking. ACM, 2014, pp. 1–6.

[4] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“Openflow: Meeting carrier-grade recovery requirements,” Computer
Communications, vol. 36, no. 6, pp. 656–665, 2013.

[5] B. Heller, “Openflow switch specification, version 1.0.0,” http://www.
openflow.org/documents/openflow-spec-v1.0.0.pdf, OpenFlow Consor-
tium, Tech. Rep., 2009.

[6] O. S. Specification-Version, “1.4.0,” 2013.

6

