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Abstract This paper proposes a versatile approach to model aggregated traffic flows
in the Internet of Things (IoT) using renewal approximation. The modeled traffic
originates from a large number of sources or devices consisting of a set of sensors
mixed with classical elastic random traffic modeled as Poisson arrival process. The
work shows the exact derivation in the simple case for periodic sensors. It shows
further results in the mixed case with periodic sensors and a background process.
The renewal approximation allows to derive the required number of sensors such
that the aggregated traffic can be approximated as Poisson process.
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1 Introduction

Internet of Things (IoT) is a growing area in mobile communication applications [1,
2]. It is expected that millions of devices will be found on the networks in the near
future, each sending independently or via gateways over the mobile network. In such
a scenario, IoT devices encompass all types of physical nodes or objects that are
connected to the Internet to receive and respond to requests, or to store data. IoT
devices can be subdivided into (1) stand-alone devices with independent Internet
connectivity, (2) device groups that communicate in an aggregated manner with
servers through Internet gateways on the Internet, or (3) devices that communicate
with one another based on direct peer-to-peer connections.

A typical situation is the aggregation of traffic streams from many independent
sensors to an Internet gateway as described in [3, 4]. This class of sensors send data
at periodically time-fixed intervals to store measurements or to request input data and
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updates. The time-fixed intervals result from mechanisms to conserve power or from
continuous measurements at specific time intervals such as in Smart Grids [5, 4]. As
in the classic Internet, this traffic overlaps with background traffic from various other
sources, which can be considered independent due to the large number of sources.

In previous work, aggregated IoT traffic was modeled for periodic traffic with a
fixed sending period of the individual sensor node intervals [3, 4, 6]. We extend this
idea with an additional component, a random and heterogeneous background traffic,
as described in [4]. To this end, a closed-form expression for the approximation of
the inter-arrival time distribution of the superposition of different arrival processes
of IoT devices is derived in this work using renewal approximation. We consider a
class of sensors that send data at consecutive, time-fixed intervals combined with
a continuous-time Markov arrival stream in form of a background Poisson random
process. We provide a detailed derivation for the approximation of the inter-arrival
time distribution based on the renewal approximation including an exact determi-
nation of the coefficient of variation, which can be well approximated by a Poisson
process such that the statistical differences are below a threshold ε .

The rest of the paper is structured as follows. After this introduction, in Section 2
related work is discussed. In Section 3, the aggregated IoT traffic is modeled for
an Internet gateway. We introduce the used notation and definitions and provide a
detailed description of the approach. Further on, two cases are described in detail in
Section 3.1 and 3.2. After showing numerical results in Section 4, we conclude the
work in Section 5.

2 Related Work

The superposition of a number of deterministic flows is a subject of various papers in
the last decades, especially during the development of Asynchronous Transfer Mode
(ATM) technology [6, 7]. The resulting process of n deterministic flows, each of rate
1/T , is a periodic non-renewal process of the same period T [8, 9]. Assuming now
that the traffic sources are independent, e.g. due to a very large number of sources,
one canmodel the superposition of deterministic point processes as a Poisson process
as limiting case [8]. There are papers [10, 11] that discuss the renewal assumption
that holds true in the Poisson case and does not hold for deterministic processes
when the number is small. In this paper we apply the renewal approximation and
check whether and when it is valid. Further work on traffic modeling can be found
in e.g. [12, 4, 3]. Directly linked to our work are the works of Metzger et al. [4]
and Hoßfeld et al. [3]. They both refer to the same modeling context as the present
work. These papers are pioneer in this area, facing the same problem, and providing
basic ideas for IoT traffic flows modeling. Our work is based on these approaches
and complements them with further definitions. Our approach is different in that we
apply the renewal approximation to derive a closed form. In [4] a comprehensive list
of IoT traffic models is given, showing how important periodic traffic characteristics
are in the IoT environment.
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3 Modeling Aggregated Traffic Flows

The modeling of aggregated traffic flows in the IoT environment relies on a funda-
mental consideration and definition of the arrival processes of the individual sources.
As described in [4], the predominant consideration of these traffic flows in the lit-
erature is the Poisson arrival process. This is in contrast to the work from ATM
times [6], which specifies the need for more detailed consideration of periodic traf-
fic. In the following, periodic traffic flows are defined and modeled in detail. We
use a description consistent with [4], from which we derive the distribution function
and its moments. The latter serves to answer the question of how many devices
aggregated traffic flows can be approximated as Poisson process.

Variables andNotation As the resulting processes of flows in IoT environments
are generally point processes, we employ a renewal approximation technique to
derive the inter-arrival distribution function of the resulting flow, assuming it follows
renewal input process properties [13]. The main steps of the renewal approximation
used in the analysis are:

1. Consider an independent outside observer looking at the process at an independent
point in time.

2. Derive the residual time distribution of the resulting process, i.e. the interval from
observation instance until the next arrival to occur.

3. With the assumption that the resulting process is a renewal process we then derive
the inter-arrival distribution function out of the forward residual time.
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Fig. 1: General model with n1 deterministic sensor sources plus Poisson source.

In the following, we consider the scenario described in Fig. 1. There is a group
of different sensors. Each device sends periodically messages with period T1. There
are n1 devices in this class. A node k starts randomly at time t1,k ∈ [0; T1] and thus,
the sending times are t1,k + z ·T1 with z ∈ N. We denote the distribution function for
this process from the sensor nodes as A1(t), respectively a1(t) as density distribution
function. The traffic pattern for this group is repeated after period T which is the
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least common multiple of the sending periods for this class. The resulting stream
originating from the group of sensors is described with Γ1 as inter-arrival time of
the resulting process. We model a background random Poisson process as Γ0 and
rate λ0. The final aggregated process of the sensors and the background process is
denoted as Γ with a total rate of λΓ = n1/T1 + λ0.

Table 1: Notation

T1 , sending period of a sensor; without loss of generality, we assume T1 ∈ N
n1 , number of devices within the group of sensors
A1 , inter-arrival time of one input process A1(t), a1(t)

RA1 (t) , distribution function of residual time
RA1 (t) = P(RA1 ≤ t)

rA1 (t) , density function of residual time
RC

A1
, complementary distribution function of residual time

RC
A1

= P(RA1 > t)
Γ , inter-arrival time of the resulting process

RΓ , residual time of the resulting process

Residual Time Distribution The residual time or the forward recurrence time
is the time between any random observation time until the next arrival. We consider
a random observer looking at the process, the interval to the next observed arrival is
denoted by the random variable RΓ. The residual time until the next message arrival
is the minimum of the residual time of participating processes:

RΓ = min(RA1, RA1, ..., RA1︸               ︷︷               ︸
n1 times

, RA0 ). (1)

This leads to the complementary cumulative distribution function (CCDF) of the
resulting process

P(RΓ > t) = 1 − RΓ(t) = P(RA1 > t) · P(RA1 > t) · ... · P(RA1 > t)︸                                                ︷︷                                                ︸
n1 times

·P(RA0 > t) .

(2)
We obtain subsequently the distribution function of the residual time of the

resulting process. In assuming the resulting process to be a renewal process, we can
use the basic result of renewal theory r(t) = 1

E[Γ] (1 − Γ(t)) to derive the inter-arrival
time distribution with Eq. (2)

Γ(t) = 1 − E[Γ] · r(t) = 1 − E[Γ] · d
dt

RΓ(t) . (3)

It is obvious that the aggregated stream of deterministic traffic processes is non-
renewal. However, with the superposition of a very large number of processes,
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like in IoT environments with huge sets of sensors, the inter-arrival time occurs
in microscopic scale compared to the periodicity of a single participating process.
We expect that the resulting process is "more renewal" with a growing number
of superimposed processes. In this paper, we investigate under which conditions
the results using renewal approximation is accurate enough for practical use in IoT
systems and try to quantify accuracy of the renewal approximation. In the following
we consider two consecutive cases and model their properties.

3.1 nD: Deterministic Case for a Group of Periodic Sensors

This case outlines the aggregation of n1 deterministic flows solely to an aggregated
stream of IoT traffic, in our case Γ1 see Fig. 1. In the IoT context this model is
employed to describe a (large) number of measurement data flows from a set of
sensors. This process was also often used to model ATM traffic flows on aggregated
cell patterns [6], where it is often denoted as nD.

2
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Fig. 2: Model Case 1 with arrival processes according to A1, fixedT1, and n1 streams.

This basic model is depicted in Fig. 2 with an arbitrary observer at t∗. Each of the
input processes, e.g. to represent traffic emitting from a sensor, is a deterministic pro-
cess with inter-arrival time A1 with distance T1 and flow rate 1

T1
. The corresponding

CDF RA1 (t) and the probability density (PDF) of the recurrence time of A1 are:

RA1 (t) = P(RA1 ≤ t) =




0 for t < 0
t/T1 for 0 ≤ t ≤ T1

1 for t > T1

, (4)

d
dt

RA1 (t) = rA1 (t) =

{
1/T1 for 0 ≤ t ≤ T1

0 otherwise
. (5)

With Γ1 denoting the random variable of the inter-arrival time of the resulting
processwith corresponding residual time RΓ1 , we obtain the residual time distribution
function (of the superposition Γ1 of n1 deterministic flows) with density as

5
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P(RΓ1 ≤ t) = RΓ1 (t) =




0 t < 0
1 − (1 − 1

T1
t)n1 0 ≤ t < T1

1 t ≥ T1

, (6)

d
dt

RΓ1 (t) = r Γ1 (t) =

{
n1
T1

(1 − 1
T1

t)n1−1 0 ≤ t < T1

0 otherwise
. (7)

Assuming the renewal property for the resulting process, we arrive at

Γ1(t) = 1 − T1
n1

r Γ1 (t) =




0 t < 0
1 − (1 − 1

T1
t)n1−1 0 ≤ t < T1

1 t ≥ T1

. (8)

As discussed above, in general, the resulting process is non-renewal. During an
interval of length T1, there are exactly n1 arrivals, which form a periodic pattern
depending on the starting constellation of the flows. Thus, microscopically, the
process is periodic, with infinite number of possible patterns. If n1 is sufficiently
large, from microscopic views, during a time interval sufficiently smaller than T1,
the inter-arrival process appears more random and a renewal process approximation
appears more sensible. In the IoT context this model is employed to describe a
(sufficiently large) number of measurement data flows from a set of sensors. We
expect that if n1 becomes large enough, the resulting process will quickly approach
Poisson. We try here to compute this limit analytically.

From Eq. (8), we can assess the accuracy of the renewal approximation in more
detail. The variance and the coefficient of variation of the resulting process are:

Var[ Γ1] =
T2

1 (n1 − 1)
n2

1 (n1 + 1)
, c Γ1 =

√
Var[ Γ1]
E[Γ1]

=
√

n1 − 1
n1 + 1

. (9)

It can be seen from this expression that the coefficient of variation of the resulting
flow just depends on the number n1 of aggregated flows, not from the inter-arrival
distance T1. Furthermore for the case of one flow, cΓ1 = 0 as expected for a determin-
istic process. For the limiting case n1 → ∞, we obtain cΓ1 → 1, which corresponds
to the Markovian property. The resulting process approaches a Poisson process.

If we set a threshold c Γ95% = 0.95 to answer the question, how many flows we
need to deliver for a process with 95% of the randomness of a Poisson stream, we
arrive at n1 = 19.51, i.e. with just n1 = 20 flows, the superposition on average can
already approximated with a Poisson process with more than 95% accuracy.

6
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3.2 nD + M: Mixed Case with Periodic Sensors and a Background
Process

The derivation of the case with an additional Poisson background traffic is analogous
to the basic case above. This case is shown in Fig. 1. There are n1 sensors periodically
sending data. The sending period is T1. The nodes start randomly within [0,T1].
There is also background traffic with rate λ0 with inter-arrival times A0 following a
negative-exponential distribution function: A0(t) = 1 − e−λ0t . The residual time R0
has the same expression as for A0.

The residual time of a sensor is RA1 ∼ U(0,T1)withCDF RA1 (t) = t/T1 for 0 ≤ t ≤
T1. The residual time for the aggregated traffic is RΓ = min(RA1, RA1, ..., RA1, RA0 ).
With R0 = A0, the CDF is given with

RΓ1 (t) =




0 t < 0
1 − (1 − 1

T1
t)n1 · e−λ0t 0 ≤ t < T1 .

1 t ≥ T1

(10)

The interarrival time distribution Γ(t) can be derived using Eq. (3) with E[Γ] =
T1

n1+λ0T1
. The CDF for Γ(t) for 0 ≤ t < T1 derives to

Γ(t) = 1 −
T1e−λ0t

(
1 − t

T1

)n1
(n1 + λ0(T1 − t))

(T1 − t)(n1 + λ0T1)
. (11)

The coefficient of variation cΓ can be derived in this case with standard mathemat-
ical tools analogous to the result of the basic case described above. The coefficient
of variation is shown and explained below in the result section.

4 Numerical Results

In order to substantiate and validate our results, we compare the results obtained
by renewal approximation with (i) an event-by-event simulation of an exact point
process and (ii) results from previousworks [4]. The simulation randomly generates a
sufficiently long point process according to the given properties, over which the same
statistical measures can be derived after many iterations as obtained analytically. For
smart city use cases, typical sensor periods are 1 h and 12 h as e.g. proposed by
3GPP, see [4] for an overview on IoT traffic models. Hence, we assume T1 = 1 h and
T2 = 12 h.

In Fig. 3, the coefficient of variation (CoV) is depicted for the deterministic case,
where the CoV is shown as function of the number of sensor nodes. It can be seen
when the coefficient of variation reaches certain values to justify the approximation
by a Poisson process, e.g. c Γ1 = 0.95 or cΓ1 = 1. Here, only the aggregated periodic
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traffic of n1 nodes is consideredwith periodT1. Since the simulation generates a point
process with a specific deterministic pattern for each run, it is possible to plot the
CoV as a distribution over all appearing instances. With this, and in addition to the
analytic result, Fig. 3 shows (1) the coefficient of variation according to the renewal
approximation, (2) the mean of the coefficient of variation from the simulation of
1000 random superpositions, (3) the quantiles of this simulation, and (4) the fitted
result as specified by paper [4] with C̄ = 1 − 1

n .
Both the empirically fitted formula from [4] and the value of the renewal ap-

proximation are close to the values of the simulation of many instances of the exact
process. Furthermore, all curves run together with a large number of sensor nodes
n1. Nevertheless, the quantiles show that the mean values conceal the extreme cases.
With a small number of devices, e.g n1 = 20, the mean increases to 1, but the 5%
and 95% quantiles are still more than 20% away from the mean value. Overall,
the renewal approximation can be used as a simple closed-form expression if one
considers a high number of nodes and also takes into account the quantiles, which
show that there are some highly variable occurrence of arrivals in individual cases.

For the numerical results of the mixed case with deterministic arrivals and a
Poisson background arrival process, we consider a scenario with β = 10 % of
background traffic. The aggregated periodic traffic leads to an arrival rate n1/T1.
Hence, the arrival rate of the background traffic is λ0 = βλΓ = β(n1/T1 + λ0) which
leads to λ0 = β

1−β
n1
T1
.

Fig. 4a shows a comparison between a single simulation run of nD + M , Poisson
process, and renewal approximation. All results are plotted for n = 3, 10, 50 nodes
and T1 = 1 h with a ratio of β = 0.1 of Poisson background traffic. It shows the
convergence of both the simulation runs to the renewal approach and the convergence
of all approaches with a large number of nodes. With a larger number of devices, the
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Fig. 3: Comparison of coefficients of variation: simulation, results from [4] and
renewal approximation for different number of sensor nodes.
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single simulation run curve loses its steps, i.e., visually the convergence to the curve
of the renewal approximation can be viewed in this figure.

On the basis of this, the coefficient of variation over the number of sensors is
shown in Fig. 4b to discuss the approximation using renewal assumption in the
mixed case nD + M . The black dashed line is the analytic solution using renewal
approximation. The numerical results are derived using numerical integration. The
solid lines are from simulation runs. We useT1 = 1 h and vary n1. We keep a constant
ratio of background traffic which is again β = 0.1.

0.0 0.2 0.4 0.6 0.8 1.0
interarrival time A
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0.4

0.6

0.8

1.0

CD
F

nD+M
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renewal A(t)

nodes n
3
10
50

nodes n
3
10
50

(a) Comparison of nD + M with different num-
ber of devices n1 in the deterministic case for
Poisson process, renewal approximation, and a
single simulation run.
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number of nodes n

0.4

0.6

0.8

1.0

1.2

CoV over runs

95% qu.

mean

5% qu.

sim. E[ci]

ana. cA

sim. E[ci]

ana. cA

(b) Coefficients of variation for the aggregated
case with background traffic from simulation
and renewal approximation on the number of
sensor nodes.

Fig. 4: Mixed case nD + M , periodic traffic of sensor nodes and background Poisson
traffic.

The simulation and analytic solution from the renewal approximation coincide;
in fact, they converge for a large number of sensor nodes. Hence, the renewal
approximation can also be used here for a large number of nodes. The results in
this case, however, again show large distances to the 5% and 95% quantiles of the
simulation runs, which is also due to the low ratio of background traffic with β = 0.1.
If β increases, the curve from the analytic solution approaches 1 more quickly, which
means the process becomes more random and converges faster to a random process
where the renewal approximation can be employed.

5 Conclusion

This paper had the objective to describe an aggregated trafficmix of IoT devices with
(1) periodic traffic patterns and (2) background traffic using renewal approximation.
It is based on the papers [3, 4]. In contrast to them, in this paper a closed-form ex-
pression of the approximation of the distribution function for the aggregated traffic
mix is derived using renewal approximation. Both the simple case with periodic-

9



10 Florian Wamser, Phuoc Tran-Gia, Stefan Geißler and Tobias Hossfeld

sending sensors and the mixed case with Poisson background traffic were calculated.
The numerical results demonstrate the consistency of this approach with simulated
instances of an exact point processes for a large number of devices. In the analytical
form, it is shown in this paper that the coefficient of variation for n ≥ 20 goes suffi-
ciently against 1 and allows to quantify the required nodes, such that the aggregated
traffic can be approximated by a Poisson process.
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