
A Measurement-based Traffic Profile of the

eDonkey Filesharing Service

Kurt Tutschku

Institute of Computer Science, University of Würzburg,
Am Hubland, D-97074 Würzburg, Germany.

tutschku@informatik.uni-wuerzburg.de

Abstract. Peer-to-peer file sharing applications have evolved to one of
the major traffic sources in the Internet. In particular, the eDonkey file
sharing system and its derivatives are causing high amounts of traffic
volume in today’s networks. The eDonkey system is typically used for
exchanging very large files like audio/video CDs or even DVD images. In
this report we provide a measurement based traffic profile of the eDonkey
service. Furthermore, we discuss how this type of service increases the
”mice and elephants” phenomenon in the Internet traffic characteristics.

1 Introduction

Peer-to-peer (P2P) file sharing applications have evolved to the major traffic
sources in the Internet. In particular, the eDonkey2000 P2P file sharing system
[1] and its derivatives [2, 3] are causing high amounts of traffic volume [4]. The
eDonkey1 system is typically used for exchanging very large files like CDs or even
complete DVDs images. The service is highly robust and obtains considerable
short download times.

P2P file sharing traffic is considered to be hazardous for networks. This
view is mainly due to the high traffic volume but also caused by the transfer
of very large files. The latter feature might increase the ”mice and elephants”
phenomenon in Internet traffic [5, 6]. The phenomenon describes that the traffic
consists of mainly short transfers (referred to as ”mice”) and long transfers (re-
ferred to ”elephants”). Elephant streams are considered harmful for the network
since they clog the system whereas mice may reduce the throughput if issued
with high frequency [7].

The aim of this paper is to provide a traffic profile for the eDonkey service.
The focus of the study is on the distinction of non-download traffic and down-
load traffic. In addition, we discuss the ”mice and elephants” characteristic in
eDonkey and the origin and destination of eDonkey flows. The paper is organized
as following. Section 2 outlines the eDonkey architecture and protocol. Section 3
describes at briefly the measurement setup and focuses on the measurements.
Section 4 discusses related work on P2P behavior and traffic models. Section 5
summarizes the measurement results and provides a brief outlook.

1 In this paper we subsume eDonkey2000 and all its derivatives by the single term
eDonkey.

N
O

T
IC

E
:

T
h
is

is
th

e
a
u

th
o
r’

s
v
er

si
o
n

o
f

a
w

o
rk

a
cc

ep
te

d
fo

r
p

u
b

li
ca

ti
o
n

b
y

S
p

ri
n

g
er

.
C

h
a
n

g
es

re
su

lt
in

g
fr

o
m

th
e

p
u

b
li
sh

in
g

p
ro

ce
ss

,
in

cl
u

d
in

g

ed
it

in
g
,

co
rr

ec
ti

o
n

s,
st

ru
ct

u
ra

l
fo

rm
a
tt

in
g

a
n

d
o
th

er
q
u

a
li
ty

co
n
tr

o
l

m
ec

h
a
n

is
m

s,
m

a
y

n
o
t

b
e

re
fl

ec
te

d
in

th
is

d
o
cu

m
en

t.
C

h
a
n

g
es

m
a
y

h
a
v
e

b
ee

n

m
a
d

e
to

th
is

w
o
rk

si
n

ce
it

w
a
s

su
b

m
it

te
d

fo
r

p
u
b

li
ca

ti
o
n

in
5
th

P
a
ss

iv
e

a
n

d
A

ct
iv

e
M

ea
su

re
m

en
t

W
o
rk

sh
o
p

(P
A

M
2
0
0
4
),

2
0
0
4
.

T
h

e
fi

n
a
l

p
u

b
li
ca

-

ti
o
n

is
a
v
a
il
a
b

le
a
t

S
p

ri
n

g
er

v
ia

h
tt

p
:/

/
d

x
.d

o
i.
o
rg

/
1
0
.1

0
0
7
\/

9
7
8
-3

-5
4
0
-2

4
6
6
8
-8

2
.

client E

client F

client G

client H

client I

client J

client L

client K

client P

client O

client N

client M

Server Layer

Server A

Sever B

Server C

Server D
client E client L

eDonkey

Network

1
2a

5
4

3

2b

partly available

file

partly available

file

6

6

6

client E

client F

client G

client H

client I

client J

client L

client K

client P

client O

client N

client M

Server Layer

Server A

Sever B

Server C

Server D
client E client Lclient L

eDonkey

Network

1
2a

5
4

3

2b

partly available

file

partly available

file

6

6

6

Fig. 1. eDonkey Communication

2 The eDonkey P2P File Sharing Service

The main features of eDonkey P2P file sharing application are: a) it doesn’t rely
on a single central server, b) a file can be downloaded from several different peers
at once, and c) a file can be shared by a peer before it is completely obtained.
The eDonkey protocol appears is not officially documented. A details have been
obtained recently through reverse engineering [2, 3, 8].

Architecture and Operation: The eDonkey file sharing service belongs to the
class of hybrid P2P architectures. Its architecture comprises two applications
which form the eDonkey network: the eDonkey client2 and the eDonkey server,
cf. Figure 1. The eDonkey client is used to share and download files. The eDonkey
server operates as an index server for file locations and distributes addresses of
other servers to clients3. In the eDonkey network no files are transmitted through
the server. Every eDonkey user is eligible to setup a server.

Searching and Sharing of Files: When a client connects to the eDonkey
service, it logs on to one of the servers (using a TCP connection) and registers

all files it is willing to sharing, cf. 1 in Figure 1. Each server keeps a list of all
files shared by the clients connected to it.

When a client searches a file, cf. 2a in Figure 1, it sends the query to its
main server. The server returns a list of matching files and their locations. The

client may resubmit the query to another server, cf. 2b , if none or an insuffi-
cient number of matches have been returned. The major communication between
client and server is typically implemented by TCP connections on port ’4661’.
Additional communication between clients and servers, e.g. further queries and
their results, are transmitted via UDP on port ’4665’.

2 The terms ”client” and ”peer” are exchangeable in the context of eDonkey.
3 In addition, eDonkey clients may also distribute server addresses among each other.

Downloading of Files: When an eDonkey client decides to download a file, it
first gathers a list of all potential file providers and then asks the providing peers
for an upload slot, see 3 in Figure 1. Upon reception of a download request,
the providing client places the request in its upload queue. A download request
is served as soon as it obtains an upload slot. eDonkey clients may restrict their
total upload bandwidth to a given limit. An upload slot comes available when a
minimum fair share of the upload limit is possible. When an upload slot is avail-
able, the providing client initiates a TCP connection to the requesting client,
negotiates which chunk of the file is exchanged, and transmits the data.

The eDonkey protocols splits the file into separate pieces, denoted as chunks.
A chunk has typically a size of 10MBytes. The consuming client can reassemble
the file using the chunks or parts of chunks. A client can share a file as soon as it
a has received a complete chunk, see 4 in Figure 1. A major feature of eDonkey
is that the consuming client may operate in the multiple source download mode,
cf. 5 in Figure 1. In this mode, the downloading client issues in parallel two or
more requests to different providing clients and retrieves data in parallel from
the providers.

Since an eDonkey client may leave the eDonkey service at any time, the
requesting client has to renew its download request periodically otherwise the
requests are dropped. In order to reliably check the availability of a client, the
eDonkey protocol uses TCP connections on port ’4662’ for the communication
between the clients. A client-to-client connection is terminated by the eDonkey
application after an idle period of 40sec. It is worth to be mentioned here, that
other P2P file sharing applications like Bearshare [9] or KaZaA [10] have imple-
mented similar multiple source download schemes.

Server-to-Server Communications: The communication between eDonkey
servers is very limited, cf. 6 in Figure 1. The servers contact each other peri-
odically but with small frequency in order to announce themselves and to send
back a list of other servers. In this way the servers maintain an updated list of
working servers and affirm the search efficiency of the eDonkey service.

3 eDonkey Traffic Profile

3.1 Measurement Setup

The measurements in this paper have been carried out in Aug. 2003 over a
duration of 296h on a 100Mbps, half duplex FE link connecting the department
with the university’s campus LAN. The Internet connection of the university is a
155Mbps link to the German Research Network (DFN). The measurements were
performed on flow level using TCPdump which was configured to record all TCP
flows on the eDonkey client-to-client port ’4662’. The flows were classified in an
semi-off-line procedure into non-download streams and download flows, which
contain at least one of the eDonkey / eMule protocol opcodes ’OP_SENDINGPART’
or ’OP_COMPRESSEDPART’.

Table 1. General Data on the Investigated eDonkey Data Set

number of observed TCP connections on port ’4662’ 3431743
number of local hosts 25
number of foreign hosts 242067

total transmitted volume in all flows 2.95 · 1011bytes
total transmitted volume in download connections 2.08 · 1011bytes (70.5%)
number of download connections 77111 (2.24%)
number of inbound download connections 21344 (27.7%)
number of outbound download connections 55767 (72.3%)

Since the eDonkey protocol is semi-proprietary, it can’t be excluded that
the observed non-download flows contain also download traffic. The analysis
given below show that a misclassification is quite unlikely. For the rest of the
paper we denote a TCP connection as inbound if it was initiated by a eDonkey
client residing outside the department network. A TCP connection is said to be
outbound if it was initiated by a client inside the department’s LAN.

3.2 Traffic Profile

Table 1 provide general statistic values on the data set of the measurement. In
total almost 3.5 million flows have been investigated which were carrying 295
Gbyte of data (non-download and download). Only 2.24% of all connections were
download connections. However, they were carrying 705% of the total traffic.

eDonkey Flowsize: The average observed eDonkey flow size during the mea-
surements was 86Kbytes, cf. Table 2. A more detailed inspection shows that
the average size of download streams (2.48Mbytes) is two orders of magnitudes
larger than the average size of non-download streams (16.7Kbytes). This feature
doesn’t change much when the direction of the flows is considered, i.e. it doesn’t
differ for inbound and outbound flows. Figure 2 depicts the complementary cu-
mulative distribution function (CCDF) of the flow sizes. Part (a) and (c) of
Figure 2 shows that the download flow size decreases stronger than linear in the
log/log plot. That means that the flow sizes don’t show a strong ”heavy tailed”
feature. An approximation of the observed data with a lognormal distribution
achieves a good estimate. The reduced strength of the heavy tail feature is not
expected, but can be explained: the download flows are limited due to the seg-
mentation of files into chunks and due to the application of the multiple source
download principle.

Part (b) and (d) of Figure 2 depicts the size of non-download flows. The prob-
ability that a flow is larger than a given value decreases almost exponentially
until a limit of approx. 14Kbytes. Beyond this limit, the decrease is not regu-
lar. This is an expected behavior since non-download flows are typical signalling
flows to renew requests. The above observed features in the flow sizes indicate
that the ”mice and elephants” phenomenon has not been worsen by eDonkey .

Table 2. eDonkey Flow Statistics

average std. deviation

TCP connection interarrival time (all directions) 0.310 sec 0.379 sec
download TCP connection interarrival time (inbound) 49.9 sec 61.4 sec
download TCP connection interarrival time (outbound) 19.1 sec 23.2 sec
non-download TCP connection interarrival time (inbound) 0.830 sec 1.04 sec
non-download TCP connection interarrival time (outbound) 0.515 sec 0.745 sec
flow size (all directions) 86.0 kbytes 5.79 Mbytes
download flow size (inbound) 3.28 Mbytes 15.8 Mbytes
download flow size (outbound) 2.48 Mbytes 5.32 Mbytes
non-download flow size (inbound) 42.3 kbytes 7.17 Mbytes
non-download flow size (outbound) 15.7 kbytes 4.49 Mbytes
TCP connection holding time (all directions) 67.9 sec 265 sec
download TCP connection holding time (inbound) 1010 sec 1460 sec
download TCP connection holding time (outbound) 851 sec 1500 sec
non-download TCP connection holding time (inbound) 47.7 sec 39.2 sec
non-download TCP connection holding time (outbound) 49.7 sec 78.4 sec
plain bandwidth (all directions) 109 bps 23.7 kbps
download plain bandwidth (inbound) 2.77 kbps 5.17 kbps
download plain bandwidth (outbound) 2.41 kbps 2.55 kbps
non-download plain bandwidth (inbound) 44.9 bps 4.61 kbps
non-download plain bandwidth (outbound) 59.9 bps 30.2 kbps
busy bandwidth (all directions) 716 bps 404 kbps
download busy bandwidth (inbound) 3.20 kbps 5.54 kbps
download busy bandwidth (outbound) 2.80 kbps 2.95 kbps
non-download busy bandwidth (inbound) 322 bps 4.75 kbps
non-download busy bandwidth (outbound) 878 bps 520 kbps

TCP Holding Time: The average eDonkey connection holding time on TCP
level is 67.9 sec, cf. Table 2. As for the flow sizes, there is a significant difference
between download and non-load flows. The mean duration of download connec-
tions is 851sec. This more than one orders of magnitudes longer than the duration
of non-download streams, which is 47sec. However, the standard deviation of the
flow duration is much larger for download flows than for non-download streams.

10
0

10
2

10
4

10
6

10
8

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Flow Size [byte]

C
C

D
F

(a) Download, Outbound

10
0

10
2

10
4

10
6

10
8

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Flow Size [byte]

C
C

D
F

(b) Non-download, Outbound

10
0

10
2

10
4

10
6

10
8

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Flow Size [byte]

C
C

D
F

(c) Download, Inbound

10
0

10
2

10
4

10
6

10
8

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Flow Size [byte]

C
C

D
F

(d) Non-download, Inbound

Lognormal approx.

Lognormal approx.

strong decay

10
0

10
2

10
4

10
6

10
8

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Flow Size [byte]

C
C

D
F

(a) Download, Outbound

10
0

10
2

10
4

10
6

10
8

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Flow Size [byte]

C
C

D
F

(b) Non-download, Outbound

10
0

10
2

10
4

10
6

10
8

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Flow Size [byte]

C
C

D
F

(c) Download, Inbound

10
0

10
2

10
4

10
6

10
8

10
10

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Flow Size [byte]

C
C

D
F

(d) Non-download, Inbound

Lognormal approx.

Lognormal approx.

strong decay

Fig. 2. CCDF of the observed eDonkey Flow Size

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

Holding Time [sec]

C
C

D
F

(a) Download, Outbound

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

Holding Time [sec]

C
C

D
F

(b) Non-download, Outbound

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

Holding Time [sec]

C
C

D
F

(c) Download, Inbound

10
0

10
1

10
2

10
3

10
4

10
5

10
-6

10
-4

10
-2

10
0

Holding Time [sec]

C
C

D
F

(d) Non-download, Inbound

Fig. 3. CCDF of the observed eDonkey Flow Holding Time

This is an expected behavior since non-download connections are short and lim-
ited in their sensitivity on TCP flow control. Figure 3 depicts the CCDF of the
flow holding times on TCP level. The download connection holding time CCDFs
(part (a) and (c)) decrease moderately and reminds more to a linear decay in a
log/log plot. The CCDFs of the holding time of non-download stream (part (b)
and (d)) decrease rapidly as well as un-regularly. There is only little difference
in the non-download case for in the different directions.

Correlation of eDonkey TCP Flow Holding Time and TCP Holding
Time: The Figure 4 depicts a scatter plot describing graphically the correlation
of the TCP holding time and the size of eDonkey flows. Each dot in the scat-

TCP Connection Holding Time t [sec]

T
ra

ns
m

itt
ed

 D
at

a
V

ol
um

e
on

 A
pp

lic
at

io
n

Le
ve

l [
B

yt
es

]

identified downloads

other connections, e.g.
signaling

application
level timeout

Fig. 4. Correlation of eDonkey TCP holding time and Flow Size

0 200 400 600 800
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Interarrival Time [sec]

C
C

D
F

(a) Download, Outbound

0 5 10 15 20 25
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Interarrival Time [sec]

C
C

D
F

(b) Non-download, Outbound

0 200 400 600 800
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Interarrival Time [sec]

C
C

D
F

(c) Download, Inbound

0 5 10 15 20 25
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Interarrival Time [sec]

C
C

D
F

(d) Non-download, Inbound

exponential approx.

Fig. 5. eDonkey Flow Interarrival Time

ter plot represents an observed eDonkey flow. The brighter dots are identified
download flows, the dark dots represent non-download connections.

The scatter plot shows that almost all identified download flows are within
the same region. The overlap of both region is small and therefore the probability
of a misclassification is low. This feature enables the possibility to classify down-
load streams by their size and holding time instead of using computationally
demanding pattern recognition of protocol opcodes. Furthermore, the applica-
tion level timeout of 40sec is clearly visible.

eDonkey Flow Interarrival Time: The average flow interarrival time was
0.310sec, cf. Table 2. There is again a significant difference for download flows
and non-download streams since download flow are more rarely. The average
inter-arrival time of download flows is two orders of magnitudes higher than the
one of non-download flows. The CCDFs of the eDonkey flow interarrival time
reveals an exponential decay, cf. Figure 5. This is consistent with resent eDonkey
measurements [4]. The high frequency of non-download flows, in general, reduces
the throughput on links [7].

Average Bandwidth on Application-Level: The average bandwidth of the
eDonkey connections was also investigated. In the context of the herein pre-
sented measurements, the average bandwidth is defined as the ratio between
the amount of transmitted data on application-level and the TCP connection
holding time. This bandwidth is widely used and denoted in this paper as the
average plain bandwidth. The analysis of the eDonkey flows, however, showed
that a large number of connections have a significant idle period before the TCP
connection is terminated by a FIN or a RST packet. From network point of
view, the bandwidth is only experienced during data transmission. Therefore,
the idle time is subtracted from the flow duration. The shorter times are used

10
3

10
4

10
5

10
6

10
-6

10
-4

10
-2

10
0

Bandwidth [bps]

C
C

D
F

(a) Download, Outbound

10
2

10
3

10
4

10
5

10
6

10
7

10
-6

10
-4

10
-2

10
0

Bandwidth [bps]

C
C

D
F

(b) Non-download, Outbound

10
3

10
4

10
5

10
6

10
-6

10
-4

10
-2

10
0

Bandwidth [bps]

C
C

D
F

(c) Download, Inbound

10
2

10
3

10
4

10
5

10
6

10
7

10
-6

10
-4

10
-2

10
0

Bandwidth [bps]

C
C

D
F

(d) Non-download, Inbound

busy bandwidth

plain bandwidth

busy bandwidth

plain bandwidth

busy bandwidth

plain bandwidth

busy bandwidth

plain bandwidth

10
3

10
4

10
5

10
6

10
-6

10
-4

10
-2

10
0

Bandwidth [bps]

C
C

D
F

(a) Download, Outbound

10
2

10
3

10
4

10
5

10
6

10
7

10
-6

10
-4

10
-2

10
0

Bandwidth [bps]

C
C

D
F

(b) Non-download, Outbound

10
3

10
4

10
5

10
6

10
-6

10
-4

10
-2

10
0

Bandwidth [bps]

C
C

D
F

(c) Download, Inbound

10
2

10
3

10
4

10
5

10
6

10
7

10
-6

10
-4

10
-2

10
0

Bandwidth [bps]

C
C

D
F

(d) Non-download, Inbound

busy bandwidth

plain bandwidth

busy bandwidth

plain bandwidth

busy bandwidth

plain bandwidth

busy bandwidth

plain bandwidth

Fig. 6. eDonkey Average Bandwidth

for the calculation of the average busy bandwidth. We now compare the observed
statistical values and distributions for both bandwidth definitions.

The average plain bandwidth for all eDonkey flows is 109bps, cf. Table 2.
This value is very low and strongly influenced by idle period at the end of the
TCP flows as the average net bandwidth of 716bps shows. The average plain
bandwidth of download flows is typically two orders of magnitude higher than
the plain bandwidth of non-download streams. The CCDF of the average plain
bandwidth, lower curve in Figure 6, shows strong decay for download flows (part
(a) and (c)) and a moderate decay for non-download flows (part (b) and (d)).
The CCDF for the average busy bandwidth has a similar behavior however the
decay is delayed and even stronger (part (b) and (d)). The comparisons shows
that the influence of the idle time is less stronger for the average bandwidth
of download flows as for the bandwidth of non-download streams. All features
suggest to use the average busy bandwidth instead of the simple approach of the
average plain bandwidth.

Origin and Destination of eDonkey Traffic: Finally, the origin and the
destination of the observed eDonkey flows were investigated. The IP addresses
of the foreign hosts were mapped to the Autonomous Systems (AS) which take
care of these addresses. All traffic and connections for an AS were combined in
Top7 lists. The Top7 list for the traffic amount, cf. Table 3, is dominated by the
traffic originating or terminating in the AS of the German Telecom (DTAG).
This characteristic of eDonkey indicates that majority of the observed traffic
is locally and not world-wide distributed. Table 4 underlines this result for the
number of established connections. A large number of established connections,
however, does not necessarily mean a high traffic volume. This feature is caused
by the eDonkey protocol requirement to renew download requests.

Table 3. eDonkey TOP 7 Autonomous Systems in Traffic Volume

Owner Country AS num. total bytes bytes download bytes non-download
outbound inbound outbound inbound

DTAG .de AS3320 50258 MB 15890 MB 4798 MB 9231 MB 20331 MB
Polish Tel. .pl AS5617 22703 MB 1761 MB 574 MB 9590 MB 10777 MB
France Tel. .fr AS3215 10527 MB 2353 MB 811 MB 2910 MB 4452 MB
BTnet UK .uk AS2856 8992 MB 1299 MB 720 MB 3197 MB 3776 MB
Verizon .us AS19262 6395 MB 0.877 MB 0.001 MB 3196 MB 3197 MB
Arcor IP .de AS3209 5579 MB 1133 MB 415 MB 1656 MB 2373 MB
NTL Grp. Ltd .uk AS5089 5224 MB 1055 MB 322 MB 1557 MB 2289 MB

4 Related Work

The traffic profile for the eDonkey service presented in this paper is a first step
towards a more detailed behavior model and traffic model for the service. In
general behavior model and traffic model of P2P services can classified into
three main categories: models for multiple peer characteristics, models for the
content or the shared resources, and models for the individual peer behavior.

The models for multiple peer characteristics comprise characterizations for
the P2P overlay network topology, e.g. the Power-Law feature in degree distribu-
tion of unstructured P2P networks [11], for the P2P overlay variability [12], and
for wide-area network traffic pattern of P2P services [13]. The characterization
of the content comprises models for the popularity of files and providing peers
[14] and file size [15]. The individual peer behavior can be characterized by state
models describing the idle, down, active, searching, or responding state of the
peer [16]. A comprehensive traffic model for the Kazaa P2P file sharing service
was investigated in [17].

5 Conclusion

In this paper we have presented a traffic profile for the eDonkey P2P fileshar-
ing service. The measurement-based study revealed a strong distinction between
download flows and non-download stream. Both types of flows have to be con-
sidered differently. A single model for P2P flows, as provided in a first analysis in
[13], would lead to a significant mischaracterization of the P2P traffic. It turned

Table 4. eDonkey Top 7 Autonomous Systems in Connections

Owner Country AS num. total conn. num. conn. download num. conn. non-download
outbound inbound outbound inbound

DTAG .de AS3320 2114910 8518 12775 1048937 1044680
TDC .dk AS3292 207390 860 801 102835 102894
Arcor IP .de AS3209 178412 587 850 88619 88356
AOL Transit .us AS1668 176404 845 1342 87357 86860
France Tel. .fr AS3215 153900 1224 2415 75726 74535
TDE .es AS3352 140402 1145 1417 69056 68784
Polish Tel. .pl AS5617 131750 1076 828 64799 65047

out that the traffic caused by eDonkey doesn’t seem to worsen the ”mice and ele-
phants” phenomenon. However, a more detailed investigation is still necessary.
In a next step we will define a detailed traffic model for eDonkey flows. The
observed origins and destinations of eDonkey flows indicates that it is favorable
for network operators trying to keep the traffic within their AS.

Acknowledgement: The author wants to thank M. Brotzeller for carrying out
the measurements and P. Tran-Gia for supporting this research.

References

1. Meta Search Inc.- eDonkey2000 Home Page: (http://www.edonkey2000.com/)
2. eMule Project Team Web Site: (http://www.emule-project.net/)
3. mlDonkey Web Site: (http://mldonkey.org/)
4. Azzouna, N., Guillemin, F.: Analysis of ADSL traffic on an IP backbone link. (In:

GLOBECOM 2003, San Francisco, California, Dec. 2003.)
5. Paxson, V., Floyd, S.: The failure of the Poisson assumption. IEEE/ACM Trans.

on Networking (1995) 226–244
6. Bhattacharyya, S., Diot, C., Jetcheva, J., Taft, N.: Pop-level and access-link-level

traffic dynamics in a tier-1 pop. (In: 1nd Internet Measurement Workshop, San
Francisco, USA, Nov. 2001.)

7. Boyer, J., Guillemin, F., Robert, P., Zwart, B.: Heavy tailed M/G/1-PS queues
with impatience and admission control in packet networks. (In: Proceedings of
INFOCOM 2003, San Francisco, USA, April/March 2003.)

8. Lohoff, F.: Lowlevel documentation of the eDonkey protocol: (http://silicon-
verl.de/home/flo/software/donkey/)

9. Free Peers Inc. - Bearshare: (http://www.bearshare.com/)
10. Sharman Networks - KaZaA Media Desktop: (http://www.kazaa.com/)
11. Ripeanu, M., Foster, I.: Mapping gnutella network. (In: 1st International Workshop

on Peer-to-Peer Systems (IPTPS02), Cambridge, Massachusetts, March 2002.)
12. de Meer, H., Tuschku, K., Tran-Gia, P.: Dynamic Operation of Peer-to-Peer Over-

lay Networks. Praxis der Informationsverarbeitung und Kommunikation 26 (2003)
65–73

13. Sen, S., Wong, J.: Analyzing peer-to-peer traffic across large networks. (In: 2nd
Internet Measurement Workshop, Marseille, France, Nov. 2002.)

14. Adar, E., Huberman, B.A.: Free riding on gnutella. Research report, Xerox Palo
Alto Research Center (2000)

15. Saroiu, S., Gummadi, P., Gribble, S.: A measurement study of peer-to-peer file
sharing systems. In: Proceedings of Multimedia Computing and Networking 2002
(MMCN ’02), San Jose, CA, USA (2002)

16. Schlosser, M., Condie, T., Kamvar, S.: Simulating a p2p file-sharing network.
(In: 1st Workshop on Semantics in Peer-to-Peer and Grid Computing, Budapest,
Hungary, May 2003.)

17. Gummadi, K., Dunn, R., Saroiu, S., Gribble, S., Levy, H., Zahorjan, J.: Measure-
ment, modeling, and analysis of a peer-to-peer file-sharing workload. (In: Proceed-
ings of 19th ACM Symposium on Operating Systems Principles, Bolton Landing
(Lake George), USA, Oct. 2003.)

