
Delay Analysis of a Chord-based Peer-to-Peer
File-Sharing System
Andreas Binzenḧofer and Phuoc Tran-Gia

Department of Distributed Systems
Institute of Computer Science

University of Würzburg, Am Hubland, 97074 Ẅurzburg, Germany
{binzenhoefer, trangia}@informatik.uni-wuerzburg.de

Abstract— In recent years emerging file sharing systems like
Gnutella, eDonkey, Overnet, and Kazaa strongly influenced the
behaviour of Internet traffic. These platforms employ different
peer-to-peer mechanisms, where the application areas are just
beginning to shift from undemanding content sharing towards
new business case services. Those new requirements brought out
new peer-to-peer overlay architectures like Chord and Kademlia
based on Distributed Hash Tables. The new algorithms satisfy the
needs of distributed applications like, e.g. telephone directories
supporting “anywhere” VoIP. In this paper we investigate the
delay of the search process in such a peer-to-peer directory
service, where the Chord algorithm is used and the peers are
connected through the internet with varying end-to-end transport
delay. To guaranty real-time services, quantiles of the search
delay are analytically computed. The study also contains the
analysis of the scalability of the system, where the impact of the
peer population on the search delay characteristic is investigated.

Index Terms— P2P, Scalability, Chord, DHT, Performance,
Delay Analysis

I. I NTRODUCTION

In the last decade most Internet applications relied on the
client-server architecture. However, a centralized single point
of failure did not prove robust and resilient enough to cope
with the growing demands of Internet users. As a consequence
thereof, distributed systems, that do not rely on a central
control entity came into existence. In a distributed peer-to-peer
(P2P) network each peer is considered equal. That is, each peer
runs the same piece of software and performs exactly the same
tasks as any other peer in the network.

In order to build large networks like national or global
telephone directories, the underlying mechanisms have to be
scalable. Therefore, scalability of P2P applications became an
independent field of research. The first P2P networks either
relied on a central server, did not scale to a large number
of nodes [12] or had the population of peers divided into
different groups of unequal responsibilities like, e.g., the so
called superpeers in Kazaa [7]. Recently, however, the most
promising approaches started using distributed hash tables
(DHTs) to organize their P2P overlay networks.

This work was partially founded by the European Commission within the
framework of the EuroNGI project.

Independent of the type of application, one of the main tasks
of a stand-alone P2P network is the retrieval of data location.
So far, the time needed to complete a search in regular file-
sharing systems was not really critical to the end-user since file
download time exceeded the preceding lookup time of the files
location by magnitudes. Real-time applications with certain
quality of service demands, like VoIP telephony, chatting,or
instant messaging on the other hand are dependent on the
time needed to find their communication partner. The arising
problem in terms of scalability is that in a large population
of peers, not every peer is able to know about the location of
every other peer. Moreover, virtual neighborhood relationship
in the overlay network usually does not correspond to physical
proximity as well.

DHT based P2P algorithms like Chord [1] only need to store
the location ofO(log2(n)) other peers wheren is the number
of peers in the overlay network. They are furthermore able to
retrieve information stored in the distributed network by using
O(log2(n)) messages to other peers. This statement, however,
is very vague, since it only tells us the order of magnitude of
the search delay and does not provide us with sufficient details
on search duration statistics. As a matter of fact the physical
link delay strongly influences the performance of searches in a
P2P overlay network. The physical network behavior, however,
is highly probabilistic. In this paper the impact of network
delay variation on search times in DHT based P2P systems is
evaluated in more detail. The main goal is to prove scalability
in very large Chord rings, to be able to guaranty certain quality
of service demands in large peer populations. The enormous
complexity of such systems makes an evaluation by simulation
on packet level rather intractable. We therefore deduce an
analytical performance model for real-time applications based
on the Chord algorithm. While the calculation of the mean of
the search duration is quite straightforward, the computation
of the quantiles of the search duration is more complex. The
quantiles, however, have an important impact on the qualityof
service experienced by the end user. Making some plausible
assumptions, we therefore calculate quantiles for the maximum
search duration.

The paper is structured as follows. Section II describes the
concept of DHTs in a Chord ring using a simple example. The
assumptions made in this paper are summarized and explained

N
O

T
IC

E
:

T
h

is
is

th
e

a
u

th
o
r’

s
v
er

si
o
n

o
f

a
w

o
rk

a
cc

ep
te

d
fo

r
p

u
b

li
ca

ti
o
n

b
y

S
p

ri
n

g
er

.C
h

a
n

g
es

re
su

lt
in

g
fr

o
m

th
e

p
u

b
li
sh

in
g

p
ro

ce
ss

,
in

cl
u

d
in

g
ed

it
in

g
,

co
rr

ec
ti

o
n

s,
st

ru
ct

u
ra

l
fo

rm
a
tt

in
g

a
n

d
o
th

er

q
u

a
li
ty

co
n
tr

o
l

m
ec

h
a
n

is
m

s,
m

a
y

n
o
t

b
e

re
fl

ec
te

d
in

th
is

d
o
cu

m
en

t.
C

h
a
n

g
es

m
a
y

h
a
v
e

b
ee

n
m

a
d

e
to

th
is

w
o
rk

si
n

ce
it

w
a
s

su
b

m
it

te
d

fo
r

p
u

b
li
ca

ti
o
n

in
A

T
N

A
C

2
0
0
4
,

2
0
0
4
.

T
h

e
fi

n
a
l

p
u

b
li
ca

ti
o
n

is

a
v
a
il
a
b

le
a
t

S
p

ri
n

g
er

.



in detail. In Section III the network model is introduced, the
distribution of the number of hops used in a search process and
the distribution of the search time are calculated accordingly.
A simple example as well as parametric studies considering
the search time variation are presented in Section IV. Section
V finally summarizes and concludes the paper.

II. D ISTRIBUTED HASH TABLES USING CHORD RING

STRUCTURES

Distributed hash tables (DHTs) represent a decentralized
mechanism for associating different kinds of objects and peers
with hash values. The most commonly used hash functions are
MD5 [14] and SHA1 [13]. A DHT is mainly used to distribute
peers and objects as uniformly as possible to the hash functions
codomain, i.e. the identifier space. The hash function maps
each peer (e.g. by using its IP address) and each object (e.g.
by using the file itself) to a value in the identifier space. As can
be seen in Figure 1, a value is assigned to each peer and object,
in such a way that peers and objects intermix in the identifier
space. Each participating peer is then responsible for all those

Peer Space ObjectSpace

IdentifierSpace

HashFunction

peerx

p
e
e
ry objz



Fig. 1. Distributing peers and documents into the identifier space using a
hash function

objects, whose hash values lie between the peers own hash
value and the hash value of the peer immediately preceding
the peer. In Figure 1 objectz, e.g. is hashed between peerx

and its preceding peery. Information about objectz is thus
stored at peerx. To cope with the boundaries of the identifier
space the identifier space is transformed into a circle in such
a way that the hash values are ascending clockwise in the
evolving ring. This ring is called the Chord ring. Information
about a document is thus stored at the first peer, whose hash
value succeeds the document’s hash value on the Chord ring.
For routing purposes a peer knows its immediate successor on
the ring. If a peer searches for a document, it will forward the
query to its successor, which in turn will forward the query to
its own successor until the search hits the peer responsiblefor
the searched document. Once the responsible peer is found, it
will transmit the answer directly to the originator, i.e. the peer
seeking the information. As a peer needsO(n) messages to
complete this kind of search, it also maintains a finger table,
i.e. a list of peers called fingers. These fingers are used as
shortcuts through the ring to speed up the search process. As

shown in [1] the finger table of a peerz consists ofO(log2(n))
distinct entries whereby thei-th entry in a peers finger table
contains the identity of the first peer that succeedsz’s own
hash-value by at least2i−1 on the Chord ring. That is, peerz
with hash valueidz has its fingers atidz + 2i−1 for i = 1 to
log2(n). Figure 2 illustrates a simple example using a Chord-

1

9

13

15 3

11 7

5

4

2

6

810

12

14

16

(a) Fingertable of peer 1

1

9

13

15 3

11 7

5

4

2

6

810

12

14

16

(b) Peer 1 is looking up peer 12

Fig. 2. An example Chord-ring with 16 peers

ring consisting of 16 peers. As stated above peer 1 has a finger
table of size log2(16) = 4. As shown in Figure 2(a) the fingers
of peer 1 point to2(= 1+21−1), 3(= 1+22−1), 5(= 1+23−1)
and9(= 1 + 24−1).

To look up a document, peerz is now able to send the query
to its finger, whose hash value most immediately precedes
the hash value of the document. If the finger is not able to



answer the search locally, it forwards the query accordingly.
Otherwise, the search is finished and the finger directly returns
the answer back to the searching peerz. Figure 2(b) shows a
query of peer 1 looking up peer 12. The search is forwarded to
peer 9, as peer 9 is peer 1’s finger most immediately preceding
peer 12. Since peer 9 is not able to answer the search locally
it recursively forwards the query to its finger at peer 11.
Again peer 11 is not able to answer the search locally and
forwards the query to peer 12, which is finally able to send
an answer back to the originator peer 1. This way queries
can be answered usingO(log2(n)) messages. This kind of
search is called recursive, since each peer participating in the
search forwards the query recursively to its closest finger.As
opposed to iterative queries, where each peer involved in the
query reports back to the originator, recursive searches only
take about 0.6 times as long according to [11]. We therefore
concentrate on recursive lookups for the remainder of this
paper.

Since an evaluation by simulation on packet level is very
time-consuming for very large populations, we prove the
scalability of search queries in oversized Chord rings analyt-
ically. In the next section we therefore deduce an analytical
performance model making the following two assumptions:

• For the sake of simplicity we assume that each finger
entry of a peer always directly hits another peer. That is,
a peerz with hash valueidz has its fingers directly at
idz + 2i−1 for i = 1 to log2(n).

• We assume a perfect hash function. That is, all peers
and documents are distributed uniformly in the identifier
space. Furthermore, each document is looked up with the
same probability independent of its location on the ring.
In other words, each peer will be responsible for the same
number of documents and therefore each peer will answer
the same number of queries.

III. D ELAY ANALYSIS

In this section the delay distribution function, i.e. the
time needed to complete a search in a Chord ring, will be
analyzed. Since the physical path delay strongly influences
the performance of searches in DHT based P2P systems, the
impact of network delay variation is taken into consideration
as well. We use the following random variables:

TN : describes the delay of a query packet, which is transferred
from one peer to a successor peer

TA: represents the time needed to transmit the answer from
the peer (having the answer) back to the originator

T : describes the total search duration
X: indicates how many times a query has to be forwarded

until it reaches the peer having the answer.X will be
denoted as the peer distance

H: number of overlay hops needed to complete a search, i.e.
the number of forwards of the query plus one hop for the
transmission of the answer

n: size of the Chord-ring

We distinguish betweenTN and TA, as the size (and
therefore the delay) of a search packet and an answer packet
may be unequal. The answer might, e.g. consist of multiple
packets containing a detailed reply to the query.

A. Computation of Peer Distance Distribution

In this section we compute the probability distribution of
the peer distanceX. It is needed later on to analyze the
distribution of the search duration. On basis of the assumptions
made in Section II each peer is looked up with the same
probability. Since a search is recursively forwarded to the
closest finger, we are able to calculate the number of hops
needed to reach the peer, that answers a specific query. We
derive the probabilitypi = P (X = i) that the searched
peer is exactlyi hops away from the searching peer. The
next section deals with the special case of peer populations
of binary exponential size.

1) Special Case of Binary Exponential Peer Populations:
To provide an overview, we start with Chord rings whose
size is a power of 2. In an overlay network of this specific
size n = 2k, k = log2(n) is an integer and each peer
has k distinct fingers. The assumptions made in Section II
provide that thei-th finger of a peerz is used for searches
for all peers whose corresponding hash values fall between
[idz + 2i−1, idz + 2i − 1] where idz is the hash value of
peer z. Again this can be illustrated using the example in
Figure 2(a). In this context the 4th finger of peer 1, which
is pointing to peer 9, is responsible for all peers between
[9, 16] = [1 + 24−1, 1 + 24 − 1].

Taking this into account, we construct Table I consisting of
four columns. The first column represents the peer distance
X. The second column states the number of hopsH needed
to complete a search. In the case ofX = 0 the searched
document lies in the same peer. A search answered locally
likewise requires 0 hops. To complete a search answered by
a peer that isX > 0 hops away, however, we needX hops
to reach that peer and one additional hop to send the answer
back to the originator. AltogetherX + 1 hops are needed to
perform this kind of search. Column 4 finally describes the
random variableT representing the time needed to complete
such searches by addingX times the delay of a forwarded
query packet plus the time needed to transmit the answer back
to the originator. The probabilitypi = P (X = i) in column 3
is governed by the following theorem:

Theorem: The probability that the searched peer is exactly
i hops away from the searching peer in a Chord ring of size2k

(and thus with log2(2
k) = k fingers) with symmetric search

space and uniformly distributed keys is

pi = P (X = i) =

(

k
i

)

2k

The proof can be found in the Appendix. The assumptions
regarding the symmetric search space and the uniformly dis-
tributed keys assure that each peer will be looked up with the
same probability.



TABLE I

PEER DISTANCE DISTRIBUTION AND SEARCH TIME

X H P (X = i) search timeT

0 0 p0 =

(

log2(n)
0

)

n
0

1 2 p1 =

(

log2(n)
1

)

n
TA + TN

2 3 p2 =

(

log2(n)
2

)

n
TA + TN + TN

...
...

...
...

i i+1 pi =

(

log2(n)
i

)

n
TA +

∑

i

x=1 TN

log2(n) log2(n) + 1 plog2(n) =

(

log2(n)
log2(n)

)

n
TA +

∑ log2(n)
x=1 TN

2) Arbitrary Number of Peers: So far we considered the
special case of a binary exponential peer population. We now
extend the model to an arbitrary number of peers and keep the
assumptions made in Section II. In a Chord ring of arbitrary
sizen we havek = dlog2(n)e distinct fingers. That is, a Chord
ring of this size maintains just as many different fingers as a
Chord ring of sizem = 2k, the next largest power of 2. Since
we are assuming serially numbered peers, thei-th finger of
a peerz still points to the same peeridz + 2i−1 for i = 1
to dlog2(n)e. In other words we can compare Chord rings of
arbitrary sizen to Chord rings of binary exponential sizem,
except thatm − n peers are missing between the last finger
and the searching peer itself.

1

9

311

7

5

4

2

68

10

12

Fig. 3. Finger-table of peer 1 in a 12 peer Chord ring

Figure 3 illustrates this issue for a Chord ring of size 12.
The figure resembles Figure 2(a) insofar as searches for peers
1 to 8 originating at peer 1 still require the same number
of hops. The only difference is that the last finger pointing
to peer 9 is now covering less peers and is thus responsible
for less searches. On account of this, we divide a Chord
ring of arbitrary size into two parts to calculate the peer
distance distributionX. The first part consisting of the first

2k−1 peers, the second part including the remaining peers.
In conjunction with the preceding theorem we conclude the
following corollary, calculating the numberfn(i) of peers in
a Chord ring of arbitrary sizen that arei hops away from the
searching peerz:

Corollary: The numberfn(i) of peers in a chord ring of
arbitrary sizen (and therefore withdlog2(n)e distinct fingers)
that arei hops away from the searching peer is:

fn(i) =















(

k
i

)

, if n = 2k

(

k−1

i

)

+ fn−2k−1(i − 1),

if 2k−1 < n < 2k

The corollary exploits the fact that there are no changes in the

structure of the first2k−1 peers compared to an independent
Chord ring of size2k−1 and recursively calculates the hops
needed for searches covered by the last finger. Note that in the
recursive calculation we have to subtract one hop needed to
reach the responsible finger. Finally to getpi in the arbitrary
case,fn(i) will be divided byn, i.e.

pi =
fn(i)

n

B. Search Delay Analysis

As a result of the last section we now know the peer distance
distribution X. From this we derive the length in hops of
the path a particular search-query takes through the network.
We also know the probabilitypi that a search takes exactly
this path. Using these basic relations we can compute the
distribution of the search delay as a function of the network
delay characteristics. First, the basic relations in our model
are illustrated followed by the direct computation of the mean
and the variation of the search duration. Section IV presents
some parameter studies to exemplify how the coefficient of
variation of the network transmission delay influences the
search duration.

TNTN

TNTN

TNTN

TNTN TNTNTNTN

TNTN

TNTN

TNTN

TATA

TATA

TATA

TATA

p1

p0

p2

pi

pk

i-times

k-times

Fig. 4. Phase diagram of the search durationT



The phase diagram of the search delay is depicted in
Figure 4. A particular pathi is chosen with probabilitypi

where phasei consists of i network transmissionsTN to
forward the query to the closest known finger and one network
transmissionTA to send the answer back to the searching peer.
By means of the phase diagram, the generating function and
the Laplace-Transform respectively can be derived to cope
with the case of discrete-time or continuous-time network
transfer delay.

The mean and the coefficient of variation of the search delay
are such:

E[T ] =

k
∑

i=1

pi · E[T |k = i]

=
k

∑

i=1

pi · (E[TA] + i · (E[TN ]))

E[T 2] =
k

∑

i=1

pi · E[T 2|k = i]

=
k

∑

i=1

pi · (V AR[TA] + i · V AR[TN ]

+ (E[TA] + i · E[TN ])2)

and

c
2
T =

E[T 2] − E[T ]2

E[T ]2

IV. N UMERICAL RESULTS

In this chapter we present numerical results to illustrate
the dependency of the search duration on the variation of the
network transfer delay and to give insight into the scalability
of the Chord-based file sharing mechanism. First we will show
the mean and the coefficient of variation of the search dura-
tion. Subsequently, the shape of the search delay distribution
function will be discussed, followed by the quantile analysis,
i.e. the guaranty thatα percent of searches will need less than
t seconds.

Regarding the results in this section, the delayTN is
assumed to be identical to the delayTA. To unify the following
parametric study the delayTN is further modeled by means
of a two-parameter negative-binomially distributed random
variable. If not stated otherwise, the coefficient of variation
cTN

of TN is set to 1 and the meanE[TN ] of TN is set to
50ms, since 50ms is the value assumed in the original Chord
Paper [1]. Furthermore, we divide the obtained results by
E[TN ] where appropriate to obtain more general conclusions.

Figure 5 shows the mean search delay as a function of the
size of the Chord ring. We can observe that the search delay
rapidly increases at smaller values of n, but stays moderate
for very large peer populations. The curve is not strictly
monotonically increasing as expected since a small decrease
can be seen when the populationn just exceeds a binary
exponential value2i. This effect can be explained as follows:

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

2

3

4

5

6

7

8

Chord size n

m
ea

n 
se

ar
ch

 d
el

ay
 / 

E
[T

N
]

Fig. 5. Impact of the Chord size on the mean search delay

Once the size of the population crosses the next power of 2,
the finger table of each peer grows by one entry. Thus, the
mean search duration slightly decreases at this point.

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
T

N

= 0.5

C
T

N

= 1

C
T

N

= 1.5

C
T

N

= 2

Chord size n

se
ar

ch
 d

el
ay

 C
oV

 c
T

Fig. 6. Search delay variation as a function of the peer population

The coefficient of variationcT of the search delayT is
depicted in Fig. 6 as a function of the peer population,
for different transmission delay coefficients of variation. The
variation of the search duration increases withcTN

. However,
it decreases as the Chord size increases, due to the increasing
number of hops needed in larger Chord populations.

This effect is also illustrated in Fig. 7, where the dependency
of cT on cTN

is analyzed. Again it can be seen thatcT is
smaller thancTN

. The size of the Chord population itself has
a comparatively small effect oncTN

.
In Figures 8 and 9 we study the dependence of the entire

distribution function of the search delay on the network latency



0 0.5 1 1.5 2 2.5 3 3.5
0.2

0.4

0.6

0.8

1

1.2

n= 1000

n= 10000

n= 100000

n= 1000000

Coefficient of variation of T
N

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n 
of

 T

Fig. 7. Dependency ofcT on cTN

0 10 20 30 40 50 60

10
−4

10
−3

10
−2

10
−1

10
0

C
T

N

= 0.5 1 1.5 2

t / E[T
N

]

P
(T

>
t)

Fig. 8. Distribution function of search delay

variationcTN
and the peer populationn, respectively. The size

of the peer population in Figure 8 is set to105 peers. As
expected, the probability that a search takes longer increases
together with the coefficient of variation of the network latency
cTN

. The curves in Figure 8 intersect as they share the same
meanE[TN ] but have different coefficients of variationcTN

.
Figure 9 proves the scalability of the search delay. By

increasing the size of the Chord ring from103 peers to
106 peers the search delay distribution does not escalate
exponentially but increases by a linear factor. The chosen
values ofn correspond approximately to current file sharing
networks like the edonkey network.

Figures 10 and 11 depict the quantile of the search delayT .
In Figure 10 different quantiles for the search delay are taken

0 5 10 15 20 25 30 35

10
−4

10
−3

10
−2

10
−1

10
0

n= 103 104 105 106

t / E[T
N

]

P
(T

>
t)

Fig. 9. Distribution function of search delay

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

mean

0.95−quantile

0.99−quantile

0.9999−quantile

Chord size n

se
ar

ch
 d

el
ay

 b
ou

nd
 / 

E
[T

N
]

Fig. 10. Search delay quantile

as a parameter. For example the curve with the 99%-quantile
indicates that 99 percent of search durations lie below that
curve. For a peer population of, e.g., n=3000 in 99 percent
of all cases the search delay is less then roughly 15 times
the average network latency. It can be seen that the curves
indicate bounds of the search delay, which can be used for
dimensioning purposes, e.g. to know the quality of service in
a search process with real-time constraints like looking ata
phone directory, taking into account the patience of the users.
Compared to the mean of the search delay the quantiles of
the search delay are on a significantly higher level. Still the
search delay scales in an analogous manner for the search
delay quantiles.

Figure 11 depicts the 99%-quantile of the search delay,
again with the coefficient of variation ofTN as a parameter.



0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

C
T

N

 = 0.5

C
T

N

 = 1

C
T

N

 = 2

Chord size n

se
ar

ch
 d

el
ay

 b
ou

nd
 / 

E
[T

N
]

Fig. 11. Influence of CoV ofTN on search delay quantile

There are five vertical lines atn=512, 256, 128, 64, and 32 to
point out the previously mentioned oscillations atn = 2i. The
larger cTN

we chose, i.e. the more variation there is in the
network delay, the larger is the 99%-quantile of the search
duration. It is therefore more difficult to guaranty Service
Level Agreements in networks with larger delay variation.
Time outs, e.g. have to be set to higher values accordingly.

V. CONCLUSION AND OUTLOOK

A file sharing system based on the Chord algorithm is
considered in this paper. It is assumed to form the basic
architecture for services like distributed directory search with
real-time requirements. We compute the entire distribution
function of the search delay as seen from a user entering a
search query to a peer in the Chord ring. Numerical results
are used to illustrate the dependence of the search durationon
the variation of the network transfer delay and to analyze the
scalability of the Chord-based file sharing mechanism. The
analysis also gives insight into the quantiles of the search
delay, which can be used for system dimensioning purposes.

Recent Chord implementations apply proximity neighbor
selection [2] to decrease the latency by choosing nodes nearby
a finger whose round trip time is smaller. They are used
as routing table entries to decrease the lookup latency. In
future work we will analyze the impact of this mechanism
on the absolute time needed to complete a search in a Chord
based P2P-overlay network. The general shape of the curves
presented in Section IV, however, is expected to remain
unchanged.

ACKNOWLEDGMENTS:

The authors would like to thank Dirk Staehle, Kurt Tutschku
and Kenji Leibnitz for the helps and discussions during the
course of this work.

APPENDIX

Theorem: The probability that the searched peer is exactlyi

hops away from the searching peer in a Chord ring of size2k

(and thus with log2(2
k) = k fingers) with symmetric search

space and uniformly distributed keys is

pi = P (X = i) =

(

k
i

)

2k

Proof: We argue by induction.

Basis:
For k = 0, in a ring with20 = 1 node, there is exactly1 =

(

0

0

)

node, that is 0 hops away from the only peerz. Therefore

p0 =
(0
0)
20

For k = 1, in a ring with 21 = 2 nodes, there is exactly
1 =

(

1

0

)

node, that is 0 hops away from peerz and exactly
1 =

(

1

1

)

node, that is 1 hop away from peerz. Therefore

p0 =
(1
0)
21 andp1 =

(1
1)
21 .

Induction hypothesis:
Assume the theorem is true fory ≤ k

Induction step:
Prove the theorem is also true fork + 1
To calculate the number of peers that arei hops away from a
peerz in a chord ring of size2k+1, we divide the chord ring
into two parts consisting of the first2k and the last2k peers
respectively. We then calculate the number of peers that arei

hops away from peerz in those two parts of the original ring
and simply add those two numbers up.

First 2k nodes: In a chord ring of size2k+1 a peerz has
k + 1 fingers. The firstk fingers are responsible for the first
2k nodes. By induction hypothesis there are exactly

(

k
i

)

peers
that are i hops away from peerz in this part of the ring.

Last 2k nodes: The(k + 1)-th finger covers the remaining2k

peers in the original chord ring. By induction hypothesis there
are exactly

(

k
m

)

peers that are m hops away from the(k+1)-th
finger in this part of the ring. Since the(k + 1)-th finger is
exactly 1 hop away from peerz, there are

(

k
i−1

)

peers in this
part of the ring that arei hops away from peerz (one hop to
reach the finger-peer andi−1 hops to reach the corresponding
peer).

Altogether there are
(

k
i

)

+
(

k
i−1

)

=
(

k+1

i

)

peers that are exactly
i hops away from peerz. Since there are2k+1 peers the
probability that another peer is exactlyi hops away from peer

z is pi =
(k+1

i )
2k+1

Conclusion: Together, the basis and the induction step imply
that the theorem holds for all possible cases, i.e., in a chord
ring of sizen = 2k the probability that the searched peer is



exactly i hops away from the searching peerz is

pi =

(

k
i

)

2k

Note that the proof of this theorem as well as the corollary in
Section III are based on serially numbered peer ids. That is,
in a chord ring of sizen the peer ids are numbered1, 2, ..., n,
such that peer numberz hasidz = z. In a real chord ring of
size n, identifier space sizeN = 2j and equally distributed
peers, however, peer numberz has

idz = 1 + (z − 1) ·

⌈

N

n

⌉

In this case the assumption that the fingers of peer number1
are directly pointing to peers number

1 + 2i−1, i = 1, ..., k (1)

is no longer obvious. Instead, according to the Chord algorithm
the fingers of peer number1 are pointing to the first peers,
whose ids are directly succeeding1 + 2j−b, b = 1, ..., j on
the Chord ring respectively. That is, the fingers are pointing
to peers numberzb where

zb = min{x : 1 + (x − 1) ·

⌈

N

n

⌉

≥ 1 + 2j−b}, b = 1, ..., j

In the special case of binary exponential peer populations
n = 2k it follows that

zb = min{x : 1 + (x − 1) ·
2j

2k
≥ 1 + 2j−b}

= min{x : x ≥ 1 + 2k−b}

Since x has to be an integer the fingers of peer1 are thus
pointing to peers number1 + 2k−b, b = 1, ..., k, which are

exactly the same peers as in equation 1 where the peer ids
were numbered serially. In the special case ofn = 2k the proof
can thus be extended to non-contiguous peer ids. Whether the
above also holds in the arbitrary case is subject of further
study.

REFERENCES

[1] Ion Stoica et al.,Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications, ACM SIGCOMM 2001, San Diego, CA, August
2001

[2] Krishna Gummadi et al.,The Impact of DHT Routing Geometry on
Resilience and Proximity, ACM SIGCOMM 2003, Karlsruhe, Germany,
August 2003

[3] David Liben-Nowell, Hari Balakrishnan, and David Karger, Analysis
of the Evolution of Peer-to-Peer Systems, ACM Conf. on Principles of
Distributed Computing (PODC), Monterey, CA, July 2002

[4] David Liben-Nowell, Hari Balakrishnan, and David Karger, Observa-
tions on the Dynamic Evolution of Peer-to-Peer Networks, 1st Workshop
on P2P Systems and Technologies, Cambridge, MA, March 2002

[5] Krishna Gummadi et al.,The Impact of DHT Routing Geometry on
Resilience and Proximity, SIGCOMM 2003, Karlruhe, Germany, August
2003

[6] Overnet/Edonkey website:http://www.edonkey2000.com/
[7] Kazaa website:http://www.kazaa.com/us/index.htm
[8] Gnutella website:http://www.gnutelliums.com/
[9] Petar Maymounkov and David Mazieres,Kademlia: A peer-to-peer

information system based on the XOR metric, In Proc. of IPTPS, 2002
[10] David Karger et al.,Consistent Hashing and Random Trees: Distributed

Caching Protocols for Relieving Hot Spots on the World Wide Web, Pro-
ceedings of the 29th Annual Symposium on the Theory of Computing,
El Paso, Texas, May 1997

[11] Frank Dabek et al.,Designing a DHT for Low Latency and High
Throughput, Proceedings of the ACM/USENIX Symposium on Net-
worked Systems Design and Implementation, March 2004

[12] H. de Meer, K. Tutschku, P. Tran-Gia,Dynamic Operation in Peer-
to-Peer Overlay Networks, Praxis der Informationsverarbeitung und
Kommunikation - Special Issues on Peer-to-Peer Systems, 2003

[13] FIPS PUB 180-1,Secure Hash Standard, Federal Information Processing
Standards Publication 180-1, April 1995

[14] R. Rivest,RFC 1321 - The MD5 Message-Digest Algorithm, April 1992


