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Abstract. The Chord system is a decentralized peer-to-peer mechanism designed to store
and search key/value pairs. The peers in a Chord overlay network are represented on a
circle, whereas each peer has to maintain log2(n) neighbors to guarantee a stable overlay
structure in the presence of high churn rates. A single peer, however, does not know the
current size n of the Chord ring. Choosing a constant value for the number of neighbors
does not scale to large networks and involves unnecessary overhead in small networks.
In this paper we therefore introduce an estimator for the current size of the Chord ring
based on local information like a peer’s neighbor- and fingerlists. We also show how to
calculate the corresponding confidence intervals to minimize the probability to over- or
underestimate the current size of the overlay.
Keywords: P2P, Chord, DHT, Overlay Size, Estimation

1 Introduction

In the last couple of years, peer-to-peer (P2P) networks have become widely popular
and now build the basis for a wide range of telecommunication applications. P2P overlay
networks can, e.g., be used for signaling purposes, distributed document storage, content
distribution and distributed indices, like a VoIP phone book. In comparison to the tradi-
tional client-server architecture P2P overlay networks do not have a single point of failure
and are resistant against distributed denial of service attacks. The current generation of
P2P algorithms, is based on structured overlay networks that enable fast and reliable
searches. Systems like Chord [1], CAN, and Kademlia provide scalable and robust overlay
networks using Distributed Hash Tables (DHT). The advantages that come along with
a DHT, however, are bought by the overhead needed to maintain the structure of the
overlay network. In particular the ring structure used by Chord has to be maintained
even under high churn rates [2]. That is, when a great number of peers joins or leaves the
network within a short period of time. To cope with these situations each peer maintains
pointers to r other peers in the overlay network. According to [1] the stability of a Chord
ring can be obtained with high probability as long as r = Ω(log2(n)), where n is the
current peer population of the Chord ring. In practice a peer either has to choose the
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parameter r large enough to be able to handle the maximum possible ring size or has to
adapt r on the fly. The first approach, however, does not scale to large networks, since
the maximum possible ring size is not likely to be known a priori. Moreover, choosing
the parameter r too large in small networks results in unnecessary overhead, since the
participating peers generate more maintenance traffic than actually needed [3]. All in all
choosing a large constant value for r results in high maintenance cost in the majority of
cases, or insufficient stability in larger than expected overlay networks. A peer, however,
is not able to adapt the size of its neighborlist dynamically to r = Ω(log2(n)) since a
single peer does not know the current size of the overlay network it is participating in.

In this paper we therefore introduce an estimator for the current size n of the Chord
ring based on local information like the peer’s current neighborlist. In contrast to other
approaches [4, 5], our estimator is well adapted to the properties of the Chord algorithm
and does not need additional overhead. A participating peer can use the estimator to
adjust the size of its neighborlist to the current size of the overlay network. This way,
the peer uses the optimal amount of maintenance overhead to guarantee a stable overlay
given the current size of the network. However, since there is a certain probability to over-
or underestimate the actual size of the overlay network, we also show how to calculate the
corresponding confidence intervals for our estimator. The upper and the lower limits of
these confidence intervals can also be used as estimates themselves. In a running Chord
implementation the estimated value of n can then be used to build a peer’s neighborlist.
The remainder of this paper is structured as follows. In Section 2 we summarize the
most important aspects of the Chord algorithm to provide the basis to understand our
estimator. Section 3 presents the main idea of our estimator. In Section 4 the mathematical
framework and all necessary definitions are introduced. The numerical results are then
shown in Section 5. Section 6 finally summarizes and concludes the paper.

2 Chord Basics

This section gives a brief overview of Chord with a focus on aspects relevant to this paper.
A more detailed description can be found in [1].

peer z
s1

s2

s3

Fig. 1. The successorlist for peer z.

peer z

peer y
F2

F1

Fig. 2. Peer z searches peer y using its fingers.

In general a DHT assigns each peer in the overlay an m-bit identifier using a hash
function such as SHA-1. Chord builds a ring topology (clockwise marked with numbers
from 0 to 2m), where the position of a peer on this ring is determined by a peers m-bit
identifier. If the ring structure is lost, the functionality of the Chord algorithm can no



longer be guaranteed. Therefore a peer stores information about its r immediate successors
on the ring. Figure 1 shows the successorlist for a peer z and r = 3 successors. It consists
of s1, s2, and s3, the three immediate successors of peer z. If the immediate successor s1
of peer z goes offline, peer z can still contact the next closest peer s2 of its successorlist.
As stated in [1] r = Ω(log2(n)) peers are sufficient to ensure that each peer knows the id
of its closest living successor.

However, if a peer would only maintain pointers to the peers in its successorlist as
mentioned above, searches for resources stored in the P2P network would take very long.
A peer looking up another peer or a resource would have to pass the query around the
circle using its successor pointers. To speed up searches a peer z in a Chord ring also
maintains pointers to other peers, which are used as shortcuts through the ring. Those
pointers are called fingers, whereby the i-th finger in a peers finger table contains the
identity of the first peer that succeeds z’s own id by at least 2i−1 on the Chord ring.
That is, peer z with hash value idz has its fingers pointing to the first peers that succeed
idz + 2i−1 for i = 1 to log2(m), where 2m is the size of the identifier space.

Figure 2 shows two examplary fingers F1 and F2 for peer z. Using this finger pointers,
a search for peer y does only take two overlay hops. A detailed mathematical analysis of
the search delay in Chord rings can be found in [6]. In Section 3 we show how to use the
successorlist and the fingerlist of a peer to estimate the current size of the Chord ring.

3 Analytical Model

In this section we present the analytical framework of our model based on a peer’s
successor- and fingerlists. As stated above a total of n peers share the identifier space
of length N = 2m. We furthermore assume that, by the hash function, the position S(z)
of every peer z is distributed uniformly in the identifier space. Accordingly, every identi-
fier is occupied by a peer with probability p = n/N . Let I(z) = S(z + 1) − S(z) be the
random variable describing the length of the interval between peer z and peer z + 1, i.e.
the distance between two peers as illustrated in Figure 3. We assume a collision-free hash

0 2m-1
n

I

peer z peer z + 1

Fig. 3. The random variable I describes the length of the interval between two peers.

function, i.e. each peer has a unique identifier. Further, let us assume that without loss of
generality peer z has identifier 0, i.e. S(z) = 0. Then, the probability that another peer
sits on position 1 is (n− 1)/(N − 1) as there remain n− 1 peers for N − 1 free identifiers.
The probability P (z + 1, i) that S(z + 1) = i is



P (z + 1, i) =

(
1 −

n − 1

N − 1

)
·

(
1 −

n − 1

N − 2

)
· · ·

(
1 −

n − 1

N − i + 1

)
·

(
n − 1

N − i

)
(1)

≈
(
1 −

n

2m

)i−1

·
n

2m
≈
(
1 −

n

2m

)i

·
n

2m
. (2)

The approximation is justified as n >> 1 and N >> i. Thus, we can conclude that
the Interval I(z) between a peer and its direct neighbor is approximately geometric with
parameter p: I(z) ∼ geom(p) where p = n

2m
. We validate this approximation by generating

10000 snapshots of chord rings with 1000, 10000, and 100000 peers in an identifier space
of size 2160. Peer z has identifier 0. We evaluate the distance to peer z +1 and refer to this
distance as Interval 1, which is equal to S(z +1)−S(z). Figure 4 compares the simulated
distribution with the theoretical geometric distribution. Since the curves match exactly
when plotted on a linear scale we use a log-log scale. Considering the magnitude of the
interval sizes and probabilities, the geometric distribution and the simulated distribution
are almost identical. The dithering in the simulated curve comes from the limited amount
of values that we gain from the simulations.
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Fig. 4. Interval 1 is well-approximated by the geo-
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Fig. 5. Interval 1 and Interval r follow a geometric

distribution.

Ideally, peer z does not only know its direct neighbor but the next r = dlog2(n)e
neighbors and can calculate the distances between them. From peer z’s point of view
Interval I(z + 1) depends on Interval I(z). However, we can argue again that due to the
enormous size of the identifier space the intervals between all r neighbors of Peer z are iid
and we introduce the random variable I for an arbitrary interval between two neighbored
peers.

In Figure 5 we validate this approximation by means of the cumulative distribution
function (CDF) of Interval 1 and Interval r, i.e. the interval between the last two succes-
sors. We can see that the curves for both intervals match very well with the geometric
distribution independent of the ring size. The simulated curves start with a probability of
1e−4 as we generated 10000 snapshots. Note that the distribution of 99% of the intervals
(CDF≥ 1e − 2) coincides with the geometric distribution.

The main idea of our algorithm is to estimate the parameter p of the geometric distri-
bution of I. We denote the estimated value of p as p̂. From this we can then conclude that



n̂ = p̂ ·2m. To be able to estimate p we need to obtain realizations of I, which can be gath-
ered by looking at our neighborlist. As shown in Figure 6 the intervals between a peer’s

IrI1 I2

Fig. 6. Realizations of the random variable I.

F�

geom(p)

geom(p)

theoretical finger position

Fig. 7. Memoryless property of I.

r immediate successors can be regarded as r different realizations of the random variable
I. More realizations of I can be found if we have a closer look at a peer’s fingerlist as pre-
sented in Section 2. As has been shown in [1] only O(log2(n)) of those log2(m) fingers are
actually different, i.e. are actually pointing to different peers. The explanation lies within
the fact, that especially the first fingers tend to coincide with a peer’s successorlist. The
interesting fact concerning our estimator, however, is that the actual position of the i-th

finger on the ring is different from its theoretical position idz + 2i−1. Figure 8 illustrates

idz

F3

F1

F2
idz+2m-1

idz+2m-2

idz+2m-3

Ir+1

Ir+2

Ir+rf

Fig. 8. The distance between the theoretical and ac-

tual position of a peer’s i-th finger.
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this issue in detail. The Figure shows three exemplary fingers for a peer z pointing to
idz + 2m−3, idz + 2m−2 and idz + 2m−1 respectively. As we can see the actual positions of
the finger peers F1, F2 and F3 are different to the fingers theoretical positions. This dis-
tance, however, can be interpreted as another realization of the geometrically distributed
random variable I.

As stated above we already know that the length of the interval between a finger Fi and
the previous peer on the ring is geometrically distributed. If we now chose a random point
in this interval, due to the memoryless property of the geometric distribution, the interval
between the theoretical position of the finger and the actual finger is as well geometrically
distributed with the same parameter p as illustrated in Figure 7. Again, we validate this
assumption by means of the snapshots we used above. Figure 9 compares the distances
of the theoretical and actual finger positions with the geometric distribution. Again the
curves match very well. By means of the geometric distribution of the finger intervals, we
obtain another rf ≈ log2(n) realizations of I from a peer’s fingertable, leaving us with a
total of r + rf different realizations of the random variable I.



4 Estimating the size of the Chord ring

The main goal of this section is to introduce an estimator n̂ for the size of the current
Chord ring. This estimator can then be used to dynamically adjust the estimated necessary
size r̂ = log2(n̂) of a peer’s successorlist. We estimate the parameter p of the geometric
distribution of I using the maximum-likelihood estimator (MLE) [7]

p̂ =
1

I(r + rf ) + 1

where I(r+rf ) is the sample mean. With p̂ we calculate the estimated size n̂ = p̂·2m of the
current Chord ring. Finally n̂ will be used to determine the number of successors the peer
is going to maintain. The size of the successorlist will be set to r̂ = dlog2(n̂)e . An obvious
advantage of this approach is that the size of the successorlist is not as sensitive to errors
as the estimated size of the Chord ring itself. That is due to the fact that the size of the
successorlist is logarithmically dependent on the size of the Chord ring. The disadvantage
is that so far we cannot make any statement of how good the MLE p̂ estimates the
actual size of the ring. Therefore we build confidence intervals for p̂. According to [7] the
100(1 − α) confidence interval for p is given by

p̂ ± z1−
α

2

√
p̂2(1 − p̂)

r + rf

where z1−
α

2
(for 0 < α < 1) is the upper 1− α

2
critical point for a standard normal random

variable.
However, the consequences of underestimating the real value of p are by far more

severe than the consequences of overestimating the real value of p. That is due to the fact
that a successorlist, that is too small has a negative effect on the stability of the Chord
ring. A successorlist that is too large on the other hand only results in some additional
overhead. To minimize the danger of underestimating n we use the upper limit of the
confidence interval to estimate n:

n̂+ =

(
p̂ + z1−

α

2

√
p̂2(1 − p̂)

r + rf

)
2m

This n̂+ is then used to calculate the size r̂+ of the successorlist as r̂+ = dlog2(n̂+)e. Again,
we round to the next biggest integer to minimize the probability of underestimating the
real value of r. The next section summarizes how the estimator performs in an actual
Chord implementation.

5 Numerical Results

In this section we show the results obtained by our simulations. If not stated otherwise,
each snapshot of our simulations is done by uniformly placing n peers into the identifier
space of size 2m. Then, the distances between the first r consecutive peers are calculated
and given as input to our estimator. We study different ring sizes to investigate how the
estimator scales to larger networks.



To see how accurate our estimator n̂ estimates the current ring size we generated 10000
snapshots of a specific ring size n. We then set the number of successors to the ideal value
r = dlog2(n)e and compared the estimated ring sizes to the actual ring size. Figure 10
shows the results of our simulations for a given ring size of 10000 and a successorlist of
size 14.
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Fig. 10. 10000 estimates of the ring size as compared

to the actual ringsize.
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Fig. 11. The lower and upper bound of the estimator

with a confidence level of 95%.

As can be seen in Figure 10, our estimator n̂ is well in the right order of magnitude and
roughly oscillates between 0.5n and 2n. Depending on the range of application, however,
under- or overestimating might be crucial to the performance of the application on top of
the estimator.

In Figure 11, we therefore compare the lower bound n̂
−

and the upper bound n̂+ of
our estimator to the actual ring size, again using 10000 snapshots of a ring of size 10000.
The confidence level in this example is set to 95%. The lower bound n̂

−
of the estimator

stays beneath the actual size of the ring with high probability. Whereas the upper bound
stays above the actual size of the ring with high probability.

To analyze the probability that the lower bound overestimates and the upper bound
underestimates the actual ring size we plotted the sorted snapshots in Figure 12. The
Figure shows the results obtained for the estimator and its lower and upper bounds for
three different ring sizes. Again a confidence level of 95% is used. The part of the upper
bound beneath the black line represents the number of snapshots where the upper bound
underestimates the actual ring size, the part of the lower bound above the black line the
number of snapshots where the lower bound overestimates the actual ring size respectively.
Note that the median of the estimator itself approximately intersects with the actual ring
size as indicated by the two straight black lines. This justifies our assumption that the
random variable I is approximately geometric since the median of an estimator based on
exactly geometric intervals would exactly intersect with the actual ring size.

Another important fact that can be derived from the figure is that we over- and
underestimate the actual ring size less significantly in larger networks. This is of course due
to the fact that we use more neighbors in larger networks. The primary reason, however,
lies in the fact, that a peer also has more distinct fingers and thus more uncorrelated
realizations of I in larger networks. Note that the tiny spikes in the graphs of the lower and
upper bound arise since we only sorted the estimator itself and plotted the corresponding
upper and lower bounds.
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Fig. 12. Sorted estimates gained by the estimator
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Fig. 13. The upper and lower bound of the estimator

in a network of size 105.

As can be seen in Figure 13 the lower and upper bound of the estimator can be fine
tuned by adjusting the confidence level. The confidence level in this example was varied
between 50% and 99%. The higher we set the confidence level, the more the curves of
the upper and lower bound drift away from the estimator. This means that the higher
we choose the confidence level, the less frequently we will under- and overestimate the
actual ring size. However, the drawback of a high confidence level is that the estimates of
the upper and lower bound get less precise. The trade-off between overlay stability and
maintenance overhead can thus be fine tuned by the confidence level.

The most obvious application of the estimator is the dynamic adaptation of a peers
successorlist. Since a peer ideally maintains a list of at least r = dlog2(n)e neighbors the
estimate in this case does only depend logarithmically on the estimate of n. As it is more
critical to underestimate than to overestimate the required number of successors, we will
only compare the estimator and its upper bound in the following. Since we additionally
round the estimate for the upper bound r̂+ = dlog2(n̂+)e we set the confidence level to
moderate 95% in the remainder of this section. Figures 14 and 15 show the estimated
number of required neighbors in a network of size 104 and 105. In Figure 14 the actually
required number of neighbors is 14 = dlog2(104)e. The regular estimator provides the
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Fig. 14. The upper bound does never underestimate

the actually required number of neighbors.
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correct number of neighbors in over 80% of all cases. However, in almost 20% of the snap-
shots the estimator would set the size of the successorlist to 13, one peer less than needed.
In order to minimize the danger of underestimating the required number of successors,
one should therefore use the number of neighbors estimated by the upper bound. While
the upper bound does almost never underestimate in the current example, it tends to
overestimate more frequently than the regular estimator.

In a ring of size 105 (see Figure 15) the upper bound overestimates the required
number of neighbors by 1 in over 60% of all cases. In return it never understimates the
actually required number of successors. The regular estimator on the other hand again
underestimates the actual value, even though only in very few cases. Note that in about
90% of all cases the regular estimator meets the actually required number of neighbors.
Given the fact that the upper bound only slightly overestimates the desired number
of neighbors, we suggest to prefer the upper bound to the regular estimator in critical
applications.

So far the results presented in this section were based on the ideal number of neighbors
in the given networks. To see how the estimator performs when relying on an unideal
number of neighbors, we again simulate 10000 snapshots for a ring of size 104 and evaluate
the estimator and its upper bound based on successorlists of different size. Thereby the
number of successors used as input to the estimator ranges between 1 and 20 successors.
The actually required number of neighbors in this example is again 14. Figure 16 shows
the results corresponding to the regular estimator. The bars represent the results obtained
by using 1 to 20 neighbors. The brighter the color, the more neighbors have been used
as input to the estimator. Obviously, the more neighbors the estimator can rely on, the
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Fig. 16. The bars represent the results obtained by

using 1 to 20 neighbors in a ring of size 104.
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better the obtained results become. That is, the more realizations of I we can give as an
input to the estimator, the more precisely it calculates the actually required number of
neighbors and the less often it over- and underestimates this value. Still the estimator
underestimates the actual value, even in the case of 20 neighbors.

For comparison, the results obtained by the upper bound are summarized in Figure 17.
The bars increase and decrease more intensely than the bars in the last figure. That is due
to the fact, that the more realizations of I we obtain, the smaller the confidence interval
is going to be. Thus the upper bound will converge to the estimator. Having a closer look



at the figure, we also notice that the probability that the upper bound underestimates
the required number of neighbors is negligible but not entirely zero. Obviously, this is
especially noticeable for small successorlists, since a small successorlist also means fewer
realizations of I. Note, that independent on the size of the successorlist the upper bound is
able to rely on the realizations of I gained by its fingerlist. Thus, it supplies an applicable
estimate of the required number of neighbors independent on the number of successors
used as input.

6 Conclusions

In a P2P network a peer does not exactly know the current size of the overlay network it
is participating in. In this paper we utilize the overlay structure established by the Chord
P2P algorithm to estimate the current size of the overlay network as seen by a single
peer. Thereby we do not only rely on the density of a peer’s current successorlist but also
exploit information gained by the peer’s fingerlist. Unlike the peer’s successors the finger
pointers are not correlated to each other and therefor deliver a better estimate when the
peer maintains a small successorlist. In general, the estimated sizes lie in between 0.5n
and 2n, where n is the actual ring size.

We are furthermore able to calculate confidence intervals for our estimator, whereby
the upper and lower bounds can be used as estimators themselves. The lower bound
underestimates the actual ring size with very high probability, while the upper bound
lies well above the actual overlay size. The probability that the lower and upper bound
over- or underestimate the target value respectively can be minimized by increasing the
confidence level.

Knowing the size of the overlay network is a frequently required feature in P2P net-
works. Chord, e.g., requires the estimate to maintain a list of log2(n) successors. The
estimator can be used to dynamically adapt the size of a peer’s successorlist. The up-
per bound of our estimator is especially suited for this task, since it practically never
underestimates the required number of neighbors.
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