

1

Abstract—Peer-to-Peer (P2P) networks offer reliable and

efficient services in different application scenarios. In particular,

structured P2P protocols (like Chord [1]) have to handle changes

in the overlay topology fast and with as little signaling overhead as

possible. This paper analyzes the ability of the Chord protocol to

keep the network structure up to date, even in environments with

high churn rates, i.e. nodes joining and leaving the network

frequently. High churn rates occur, e.g., in mobile environments,

where participants have to deal with the limited resources of their

mobile devices, such as short battery lifetimes or high

communication costs. In this paper, we analyze different design

parameters and their influence on the stability of Chord-based

network structures. We also present several modifications to the

basic Chord stabilization scheme, resulting in a much more stable

overlay topology.

Index Terms—Chord, Churn, Stabilization, Structured P2P

I. INTRODUCTION

Most currently applied P2P networks are based on reactive

routing. That is, if a node searches for any content, its lookup

request is flooded through the network. Each node that receives

a lookup request checks if it can answer the lookup. Otherwise

it forwards the request to one, many or all nodes in its node

cache. To prevent routing messages from being forwarded

infinitely, a TTL counter is decreased with every hop and the

request is discarded if the counter value is zero. Unstructured

P2P networks have two main disadvantages. First, flooding the

networks leads to high traffic load. Hierarchical architectures,

such as Gnutella v0.6 [2], that introduce Superpeers, can

significantly reduce the required bandwidth. The second

drawback is that it is not possible, in large networks, to flood

the request to all participants in the network. The small world

paradigm (discussed in [3] Chapter 2.2) predicts that most

lookups can be resolved in a median of five to seven hops. This

is in particular true for popular content. However, it is less

probable that unique or rare content can be found by flooding

only a part of the network.

To overcome these disadvantages, a new generation of P2P

Manuscript received June 30, 2005.

Gerald Kunzmann is working at the Institute of Communication Networks

at the Munich University of Technology (TUM), 80333 Munich, Germany

(phone: +498928923506; fax: +498928923523;

e-mail: gerald.kunzmann@tum.de).

Andreas Binzenhöfer and Robert Henjes are working at the Department of

Distributed Systems, Institute of Computer Science, University of Würzburg,

97074 Würzburg, Germany (e-mail: binzenhoefer@informatik.uni-

wuerzburg.de, henjes@informatik.uni-wuerzburg.de).

networks, the structured P2P protocols have been developed

and became one of the most active P2P research areas.

Structured P2P networks avoid flooding by building a well

defined overlay structure among the participating nodes. In this

context, each node is assigned to a unique ID, which is for

example generated by hashing the node’s IP address into a

d-dimensional ID space. Additionally, each node keeps a list of

nodes that are its neighbors in the ID space. These neighbors,

together with short-cuts that link nodes with more distant nodes,

are used to route lookups deterministically to their destination.

The destination of a lookup is the node that is responsible for

the requested content. Content or content descriptors are also

hashed into the same ID space. A protocol specific rule assigns

content IDs to nodes with certain IDs and the content or its

description is stored at this responsible node.

Chord [1], e.g., uses a 1-dimensional ID space that is

wrapped into a ring shape. Nodes are arranged with increasing

IDs on the ring. A node is responsible for all content with IDs

between its own ID and the ID of its predecessor on the ring.

Each Chord node knows about its successor and predecessor on

the ring and some short-cuts, so called fingers, to other nodes

further away. Fingers are arranged in a way that the distance to

the queried ID can at least be halved with every hop. A node’s

i
th

 finger is the first node succeeding the node ID plus 2
i
:

)2(ith IDnodesuccessorfingeri += (1)

Lookups are routed clockwise through the network using the

finger entries. The lookup is always sent to the closest finger,

which is still preceding the queried ID. If the query reaches the

node directly preceding the ID on the Chord ring, this node

forwards the request to its successor s. Node s is the direct

successor of the ID and is therefore responsible for the queried

content. Finalizing the lookup, s sends an answer with the

queried ID back to the initiator of the lookup.

One of the most important tasks of structured P2P protocols

is keeping up the overlay structure. This is even more important

than providing an efficient search, as lookups can only be

resolved if routing through the overlay is possible. If the

overlay structure is corrupt in one part of the network, any route

through that part of the topology will fail. A good P2P protocol

is characterized by a reliable and efficient search. For

structured networks this is only achievable in a highly stable

topology. Stability comprises correctness of the neighbor

entries as well as fast handling of topology changes, due to

joining and leaving nodes. Especially in networks with high

Analyzing and Modifying Chord’s Stabilization

Algorithm to Handle High Churn Rates
Gerald Kunzmann, Andreas Binzenhöfer and Robert Henjes

c ©
2
0
0
5

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
it

iv
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

M
IC

C
&

IC
O

N
2
0
0
5
,

2
0
0
5
,

1
0
.1

1
0
9
\/

ic
o
n

.2
0
0
5
.1

6
3
5
6
3
3
.

2

churn rates, a fast, reliable and self-organizing stabilization

algorithm is indispensable.

The basic Chord protocol has a simple stabilization

mechanism. Each node n periodically sends a stabilization

message to its successor s. Node s replies to this message by

sending its predecessor entry p to node n. In the normal case, p

should be equal to n. If a new node j joins between n and s, it

contacts s and informs s that it is now participating in the

network. Node n does not yet know about the existence of j.

The next time n sends a stabilization message to s, s would

return IP address and ID of its new predecessor j. Node n stores

j as its new successor and, at the same time, informs j that it is

its predecessor. This completes the stabilization algorithm, as

the neighbor entries of all participating peers are pointing to the

correct nodes again. A more detailed description of Chord can

be found in [1].

If any node leaves the network, it just has to inform both its

successor and predecessor, telling them their new predecessor

and successor respectively, so that they can update their

neighbor lists. If a node fails, due to e.g. a system crash or a

discharged battery in a mobile device, it cannot inform its direct

neighbors. So, the stabilization mechanism must handle failure

events, too. We assume, that node n, lying between nodes p and

s, fails. The next time node p runs stabilize, it receives no

answer from node n. It may try sending stabilization messages

several times, but after a certain timeout interval it must assume

that node n is no longer participating in the network. The ring

has broken apart, as node n knows about no other successor on

the ring. This is why each node maintains a list of several

successors. If the direct successor fails, it can drop that one

from the list and try to connect to the next successor.

Obviously, the list of successor entries also has to be updated

regularly.

The costs of keeping up the overlay structure can be

measured as the bandwidth required for stabilization messages,

including join and leave messages. The next chapter describes

how measuring the network stability can be accomplished.

Related work can be found in [4], where the correlation

between network stability and required bandwidth for different

structured P2P protocols is discussed. The authors analyze the

effect of tuning different design parameters, but apply a

constant churn rate, i.e. nodes crash and rejoin at exponentially

distributed intervals with a mean of one hour. In this paper, we

concentrate on the Chord protocol and exploit the influence of

the same design parameters under a wide range of churn rates

from mean session durations of two hours down to mean

session durations of 10 minutes. Especially for high churn rates,

i.e. short session durations, the basic Chord protocol is no

longer able to establish a stable overlay topology. We present

several modifications to Chord’s stabilization protocol in order

to make the resulting overlay structure more stable.

II. ANALYTICAL APPROACH

The efficiency of a stabilization algorithm can be evaluated

by comparing all local neighbor lists with a global view of the

network and counting the discrepancies. We distinguish

between nodes that have wrong direct successors and nodes that

have any wrong successor entries. Wrong direct successor and

predecessor entries are worse than other entries in the neighbor

list, as a node mainly communicates with its direct neighbors.

All other neighbor entries are primarily for resilience purposes.

The costs of keeping up the overlay structure can be

evaluated by measuring the used bandwidth required for

signaling messages. Signaling traffic can be divided into three

different cost types:

- Costs for keeping up the topology structure, including all

messages that are sent while nodes join and leave the

network, as well as all messages that are sent during

stabilization.

- Costs for keeping the routing entries up to date.

- Costs for inserting, republishing and looking up content

in the network (may be difficult to distinguish from the

costs for keeping the routing entries up to date, as finger

entries may be updated with information that is acquired

during lookups, e.g. if recursive routing is applied).

In the context of this paper we only focus on costs required

for keeping up the network structure. We analyze the efficiency

of Chord’s stabilization algorithm by measuring the number of

nodes with erroneous neighbor lists and the resulting costs. We

also vary different design parameters as well as the user

behavior, i.e. their mean online durations.

Each simulation is run with a different set of parameters. To

be able to evaluate the influence of each individual parameter

apart from all other parameters, we do only change one

parameter in each of our simulations. All other parameters are

kept constant with these values:

- Number of Participants: 10.000

- Mean Online Duration: 60 Minutes

- Number of Successors: 5

- Stabilization Period: 30s

Our measurements were realized in an event-based simulator

written in Ansi C. The simulations do assume a random,

negative exponential distributed delay between two nodes in the

overlay network. Packet loss is not considered.

The results acquired from the different simulation runs are

discussed in the next chapter.

3

Fig. 1: A nodes lifetime consists of one or more sessions.

A node’s lifetime can be described by its Mean Time

Between Joins (MTBJ), its Mean Time To Leave (MTTL) and

its Mean Search Duration (MSD) (see Fig. 1). The whole

lifetime consists of one or more sessions, in which the node is

participating in the network. Each session has an average length

of MTTL and can be divided into active parts, where searches

are performed, and passive parts. On average, nodes perform

Mean Number of Searches with a Mean Search Duration

(MSD) each in their online phases. After leaving the network or

failing, a node is offline for a certain period (MTBJ – MTTL),

and it rejoins MTBJ after its last join event. The average ring

size, i.e. the average number of nodes being online at the same

time, is:

MTBJ

MTTL
usersofnumbersizering ⋅= (2)

III. RESULTS

A. Number of Participants

Structured P2P protocols have been developed to scale better

than earlier protocols. Using a proactive routing scheme, it is

possible to route lookups on one short and determined path to

the node that is responsible for the requested content.

Infrequent items can be resolved as good as popular content.

Structured P2P approaches differ, amongst other things, in the

number of hops required to resolve queries: from O(logN)

[1,5,6] to O(sqrt(N)) [7] to O(1) [8]. In this regard, Chord

scales with O(logN). As described in Chapter 1, lookups for

content IDs are required in all processes, such as joining the

network, finding new finger entries or inserting and searching

content.

Structured P2P protocols also scale well with an increasing

number of participants in terms of signaling traffic. Most

algorithms require a constant bandwidth independent of the

network size. Stabilization messages, e.g., are always

exchanged between a node and its neighbor(s). Finger entries

can be probed by a simple ping message. As the number of

fingers and neighbors is independent of the number of peers

participating in the network, the overhead per peer is constant.

0%

1%

2%

3%

0 20 40 60 80 100 120

MTTL (min)

N
o
d
e
s
 w

it
h
 E
rr
o
rs

ringsize 1.000

ringsize 5.000

ringsize 10.000

ringsize 20.000

total successor errors

direct successor errors

Fig. 2: The shorter the sessions, the more instable the overlay structure.

If hash functions with good stochastic properties are applied,

a huge number of nodes actually smoothes the distribution of

content over all nodes. Therefore, the probability that a node

has to store a noticeable larger percentage of content or content

descriptions is reduced. This is important as a node, responsible

for more content, would otherwise have to respond to more

lookups, keep more profiles up to date and so on.

Summarizing the above, structured P2P protocols do scale

well with the number of participants in the network. Fig. 2

shows the results of our simulations. It proves that the number

of peers with errors in their list of successors (upper 4 curves)

or with wrong direct successors (lower 4 curves) is independent

of the size of the overlay ring. The different curves for the

different ring sizes almost coincide. Also, the required signaling

overhead is nearly identical for different ring sizes, but

increases with shorter MTTL values (see Fig. 3).

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120

MTTL (min)

S
ig
n
a
li
n
g
 B
a
n
d
w
id
th
 (
B
y
te
/
s
)

Stabilization

Notifies

Fig. 3: The shorter the sessions, the more notifies are sent.

Real-

Time

Mean Time To Leave

Mean Search Duration

offline

online
leave join

search

Mean Time Between Joins

Status

4

B. Mean online times (Churn Rate)

To be able to provide an efficient proactive routing, all

routing tables have to be updated regularly. Each change in the

overlay topology leads to erroneous entries in fixed routing

tables. A node that joins the network, for example, has to be

announced to all of its new neighbors in the Chord ring.

Additionally, finger tables may provide a more efficient routing

if the new node is inserted into them.

Nodes leaving the network have to send notification

messages to all of their neighbors, whereas failed peers have to

be detected by their former neighbors, which in turn have to

make sure, that all outdated references are removed.

Each node causes its new neighbors on the ring to update

their successor and predecessor lists when it joins the network,

as well when it leaves or fails a certain time later. Thus, each

node sets off two events, which change the overlay topology,

per MTBJ.

MTBJusersofnumbertime

eventsofnumber
RateChurn

2
=

⋅

=
 (3)

time

joinsofnumber
RateJoin = (4)

We define the churn rate as the average number of join and

leave events per time interval per node (3). Note that the churn

rate does only depend on the behavior of the end user and not

on the size of the overlay. If, in a sample network, nodes are

participating on average once a day, i.e. an MTBJ of one day,

the churn rate per node would be 2/24 h
-1

 (3). If there are one

million different users, the join rate would be 10
6
 d

-1
, i.e. about

41667 nodes join events per hour. If every node stays online for

an average of two hours, i.e. an MTTL of 2 h, the average ring

size would be about 83333 nodes (2).

The basic Chord protocol uses a periodic stabilization

algorithm, i.e. each node checks periodically if it is still its

successor’s direct predecessor. If a node n has joined between a

node p and its successor s, s returns the ID and IP address of its

new predecessor n. However, if two or more nodes (n1, n2, …

nn) have joined between p and s, s would return node nn instead

of node p’s new successor n1. So, more than one stabilization

period is necessary to repair all neighbor entries.

We can calculate the probability that more than one node

joins between two neighbored nodes within one stabilization

period by using series expansion.

−⋅

−=

)!(

!
1

JNN

N
P

J
 (5)

sizeringN

periodionstabilizat
MTBJ

usersofnumber
J

=

⋅=

and

with

0,0

0,2

0,4

0,6

0,8

1,0

0 50 100 150

stabilization period (min)

P
(N

,J
)

ringsize = 41.667

ringsize = 83.333

ringsize = 125.000

ringsize = 166.666

Fig. 4: The probability of two or more nodes joining between two neighbored

nodes within one stabilization period increases with larger rings and longer

stabilization periods.

If, e.g., in a network with 10 evenly distributed participants 2

nodes join, the ID of the second joining node can lie in 9 ID

ranges where no other node has joined, or in the same ID range

as the first joining node. Therefore, the probability of both

nodes joining within the same ID range is 1/10. In our sample

network with a total number of one million users, an MTBJ of

one day and an MTTL of two hours we can calculate an

average ring size of 83333 nodes using (2). If we assume a

stabilization period of one minute, J is about 694 and P is about

0.9446 (4). Fig. 4 shows the correlation between P and the

values ring size and stabilization period in the sample network

with one million users and an MTBJ of one day.

We implemented a Chord variant, where each node not only

stores several successors, but also several predecessor entries.

Node s then knows about more predecessors and can return p’s

real successor (or at least a definitely closer node). Therefore,

our stabilization algorithm can repair neighbor entries

noticeably faster than the basic Chord algorithm. Each stabilize

message contains a node’s complete list of neighbors, so the

receiving node can derive all necessary information from it.

That is why it is not so disadvantageous if several nodes join

between two neighbored nodes within one stabilization period.

Additionally, it is possible to send notification messages if a

node observes a topology change in its neighborhood. If, for

example, a new node joins the network and contacts its

successor s for the first time, s could notify all of its neighbors

about the new node. Then, almost all neighbor lists could be

updated at once, without the need to wait for the next

stabilization period. On the downside, each notification

message increases the signaling bandwidth, but the stabilization

period could be stretched in exchange, as the notification

messages already update almost all neighbor lists. In scenarios

with low churn rates, sending notification messages, together

with a large stabilization period, would increase the topology’s

stability and reduce the required signaling bandwidth.

5

One drawback of notification messages is that they are sent at

irregular points in time, which could lead to traffic peaks,

whereas Chord’s stabilization algorithm produces a constant

bandwidth. If different notifies are sent within a short time and

in a small part of the ring topology, e.g. if two or more nodes

observe the same topology change at nearly the same time, the

available bandwidth could be insufficient and packets would be

lost. We approach this problem with the following rule: if a

node observes that a new predecessor has joined the network or

its old predecessor has failed, it sends notification messages to

all nodes in its list of neighbors. If any other node observes a

join/fail, it informs the successor of the newly joined/failed on

his behalf. If several nodes observe the same join/fail event,

only one set of notification messages will be sent.

As we can see in Fig. 2, the Chord protocol scales well in

scenarios with moderate churn rates (more than 60 minutes

mean session duration), but fails to scale in environments with

high churn rates.

C. Neighbor Stabilization Period

As already mentioned in the previous subsection, the

influence of Chords stabilization algorithm, especially the

frequency of the stabilization calls, has a significant impact on

the stability of Chords ring structure. Fig. 4 shows that the

length of the stabilization period (tstab) increases the probability

that more than one join occurs within one stabilization period

between two adjacent nodes. If node failures are also taken into

account, the probability that two or more topology changes

between closely neighbored nodes happen in a short period of

time, is even higher.

Using a list of several predecessor and successor entries and

sending notification messages can reduce the time that is

necessary to repair all neighbor list entries. Still, a longer

stabilization period leads to more neighbor list errors (see Fig.

5). The uppermost curve belongs to a stabilization period of

120 seconds. The upper 4 curves show the percentage of nodes

with any error in their successor entries, whereas the lower 4

curves, which all coincide, show nodes with a direct successor

error.

Sending complete neighbor lists can repair direct neighbor

errors even for long tstab values almost as good as for short

values. In contrast, non-direct neighbor errors increase with

longer stabilization periods. Reducing the stabilization period

from 120s to 60s, for example, decreases the percentage of

nodes with erroneous neighbor lists from 2.9% to 1.7% in a

network with a mean session duration of 30 minutes. This

dependency results from the fact that a node, that sends

notification messages about a new/failed node n, does not know

all other nodes that have n in their list of neighbors. As mainly

more distant nodes are not informed about the change, it takes a

while until the stabilization algorithm is able to correct all

entries.

0%

1%

2%

3%

4%

5%

6%

7%

0 20 40 60 80 100 120

MTTL (min)

N
o
d
e
s
 w

it
h
 E
rr
o
rs

t_stab = 15 s

t_stab = 30 s

t_stab = 60 s

t_stab = 120 s

total successor errors

direct

Fig. 5: Chord’s stabilization period has a significant influence on the

correctness of neighbor entries.

Again, bandwidth limitations prevent stabilize to be called

with high frequencies. If tstab is halved, stabilization requires

double bandwidth and vice versa (not regarding notification

messages). So, an optimal value for tstab depends on the

requirements of the system, the available resources and the user

behavior (mainly MTTL).

D. Number of Neighbors

The main reason, on the one hand, to store more than one

successor is that Chord’s ring structure is lost as soon as one

node looses all its successors. The probability of such a ring

break is approximated in [9]. This probability gets smaller, the

more neighbors a peer stores.

The main reason, on the other hand, to avoid a large set of

neighbors is that the packet size of the stabilization messages

grows with the number of neighbors (all neighbor entries are

included in the stabilization packets). Furthermore, if

notification messages are used, more notification packets have

to be sent, as more neighbors must be informed about the

change in the overlay topology.

If links fail with a high, but realistic, failure probability of

pfail = 0.01, less than)(log2 n successors are sufficient to

prevent a ring break with high probability [9]. In our

simulations, five successor and five predecessor entries proved

to be sufficient under realistic circumstances (see Fig. 6).

Again, the upper 4 curves represent the percentage of nodes

with any errors in their successor lists, and the lower 4 curves

represent nodes with direct successor errors. We still

recommend using a slightly larger set of neighbors in final

implementations to prevent network break downs by all means.

6

0%

1%

2%

3%

4%

0 20 40 60 80 100 120

MTTL (min)

N
o
d
e
s
 w

it
h
 E
rr
o
rs

neighbors = 2*3

neighbors = 2*5

neighbors = 2*7

neighbors = 2*9

total successor errors

direct

Fig. 6: Using more than 2*3 neighbors does not significantly improve the

stability of the overlay topology.

E. Finger Update Period

We define the finger update period as the time wherein all

finger entries are update once. Therefore, the more fingers each

node stores, the more finger updates are done in every finger

update period. Updating fingers more frequently requires more

bandwidth, but may be reasonable in scenarios with high churn

rates as out-dated routing entries result in timeouts and

therefore in increased search durations. So updating fingers

more often would increase the efficiency of the system.

However, the finger update period does hardly affect the

stability of Chords ring structure as stabilization entries

(neighbors) are kept completely separate from routing entries

(fingers) in our current implementation. Yet, we are working on

combining finger and neighbor entries. As [9] proves, in a

network with an identifier space of m bits, each node maintains

only j = O(log2(N)) actually different finger entries. All other m

- j finger entries coincide with the nodes direct successor, and

even more fingers lie within the range of the node’s successor

list.

If the routing algorithm would consider the successor entries

for routing lookups through the network, it could keep a clearly

shorter list of fingers, dropping entries that are already stored as

one of the node’s successors. This means that only O(log2(N))

fingers have to be kept up-to-date instead of m. That leads to a

reduced bandwidth as fewer fingers are updated within one

finger update period, or to more up to date routing entries, if the

finger update period is reduced and the bandwidth is kept

constant.

IV. CONCLUSION

In this paper we showed that an application based on Chord

is feasible in huge networks. Networks with high churn rates, on

the other hand, may be an obstacle for structured P2P protocols,

as the signaling overhead grows with shorter session durations.

At some point, flooding the network, without building up a

deterministic network structure, may be more efficient in terms

of costs. We are going to evaluate this aspect in some future

work. Still, structured P2P protocols yield the advantage of

being able to always find content, even if it is rare or unique.

We have analyzed the influence of different design

parameters on the stability of the Chord structure. The number

of neighbors can be kept small without making the topology

noticeably less stable. Tuning the stabilization period to small

values is, in contrast, necessary for networks with high churn

rates. This knowledge helps application developers to set their

parameters to optimal values for their application environment.

We have also mentioned some changes to Chords stabilization

algorithm, so that it consumes less signaling overhead and,

therefore, can handle higher churn rates. At the moment, we are

working on a token based stabilization mechanism that makes

Chord even more stable without increasing the necessary

signaling bandwidth [10].

REFERENCES

[1] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan.,

"Chord: A Scalable Peer-to-Peer Lookup Service for Internet

Applications," presented at ACM SIG-COMM Conference, 2001.

[2] RFC-Gnutella 0.6,

http://rfc-gnutella.sourceforge.net/developer/testing/, 2002

[3] C. Bettstetter et al. "Self-Organization in Communication Networks:

Overview and State-of-the-Art," Wireless World Research Forum

(WWRF) Special Interest Group (SIG) 3, White Paper 2005.

[4] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek, "Comparing

the Performance of Distributed Hash Tables under Churn," presented at

3rd International Workshop on Peer-to-Peer Systems (IPTPS), San Diego,

CA, 2004.

[5] A. Rowstron and P. Druschel, "Pastry: Scalable, Distributed Ob-ject

Location and Routing for Large-Scale Peer-to-Peer Sys-tems," presented

at IFIP/ACM International Conference on Distributed Systems Platforms

(Middleware), 2001.

[6] P. Maymounkov and D. Mazieres, "Kademlia: A Peer-to-Peer

Information System based on the XOR Metric," presented at International

Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A

Scalable Content-Addressable Network," presented at ACM SIGCOMM

Conference, 2001.

[8] I. Gupta, K. Birman, P. Linga, A. Demers, and R. v. Renesse, "Kelips:

Building an Efficient and Stable P2P DHT Through Increased Memory

and Background Overhead," presented at Second International Workshop

on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, 2003.

[9] A. Binzenhöfer, D. Staehle, and R. Henjes, "On the Stability of Chord-

based P2P Systems," University of Würzburg 347, 2004.

[10] G. Kunzmann, R. Nagel, J. Eberspächer, "Increasing the reliability of

structured P2P networks," presented at 5th International Workshop on

Design of Reliable Communication Networks (DRCN), 2005

