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ABSTRACT 

Cluster tools have gained a lot of importance in today’s 
semiconductor manufacturing. A cluster tool basically con-
sists of several processing chambers in a mainframe, sev-
eral load locks to insert wafer lots and a robot arm to move 
them. This means that these tools are able to work on more 
than one lot at the same time. Since the lot combination 
processed together can have an influence on the cycle 
times of these lots, scheduling is needed to ensure that the 
overall cycle times are kept low. In a previous work, we 
presented a method based on filtered beam search using 
slowdown factors as evaluation methods. Here, we will 
present another evaluation method based on recipe com-
parison that produces even better results. We will also 
show results of a beam width parameter study. 

1 INTRODUCTION 

In semiconductor manufacturing, cluster tools have be-
come more and more important because of their potential 
for cost reduction. By performing several process steps in 
one machine, the clean-room space needed is minimized as 
well as the danger of pollution. Moreover, cluster tools of-
fer speed advantages by pipelining. The basic structure of a 
cluster tool is shown in Figure 1. 

The tool consists of several processing chambers 
which are connected to a mainframe. The chambers are the 
machines that perform the actual wafer processing. There 
are different chambers for different tasks, like alignment, 
heating, etching etc. Each processing step takes time. Dur-
ing that time the chamber is blocked, because there is no 
waiting space inside the cluster tool. Load locks are the in-
terfaces to the outside of the tool. Each load lock can be 
loaded with one lot. Then the load lock adjusts the air pres-
sure and cleanliness to a level suitable for the interior of 
the cluster tool. The handler is a robot that moves the wa-
fers around. It takes a wafer out of its lot cassette or cham-

ber and puts it in the chamber that is next in the wafers rec-
ipe, i.e., list of processing steps. 
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 Figure 1: Sketch of a Typical Cluster Tool 

Since there is more than one load lock in typical cluster 
tools, more than one lot can be processed at the same time 
in the tool. Of course, the wafers of these lots compete for 
the resources like handler and chambers and therefore in-
fluence each others cycle time.  

The scheduling of the wafer movements, the so-called 
internal scheduling, is normally done by the cluster tool. 
However, the use of the chambers strongly depends on the 
sequence in which a given set of lots enters the tool. For 
example, if two lots of the same type are in the tool at the 
same time, the wafers from these lots need to be processed 
in the same chambers. Therefore, waiting times for at least 
some of the wafers can occur. However, if lots that use dif-
ferent resources are combined in the cluster tool, the over-
all processing time may be significantly reduced.  

 The choice of the lot order influences the makespan of 
that lot set, so the external scheduling tries to find a lot se-
quence that minimizes the makespan for a given lot set 
(Figure 2).  
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 Figure 2: The Scheduling Process for Our Problem 

2 RELATED WORK 

In (Dümmler 2004), M. Dümmler tried to optimize small 
lot sequences by using a genetic algorithm. While being 
successful, the general purpose genetic algorithm lacks 
performance when used on specific problems that could be 
solved faster when using knowledge about the system. 
More work was done on the internal scheduling (Bohr 
1999), as well as on the approximation of cycle times in 
the cluster tool (Niedermayer and Rose 2003) . In an ear-
lier work (Oechsner and Rose 2005), we described the fil-
tered beam search algorithm with evaluation methods 
based on slowdown factor comparison. 

3 EXTERNAL SCHEDULING WITH FILTERED 
BEAM SEARCH 

In this section, we will discuss the basic filtered beam 
search algorithm that we used, as well as the actual evalua-
tion methods we implemented. 

3.1 Schedule Trees 

To introduce the methodology of our search algorithm, we 
first have to model the scheduling process by means of a 
tree structure. Each node of the tree represents a (partial) 
schedule. The root is the sequence with no lot scheduled on 
a distinct position (i.e., (*,*,*,*), with * being a place-
holder for one slot in the sequence). Each child is a partial 
schedule with one lot scheduled on the first position of the 
sequence and for each child this lot is different (e.g., 
(1,*,*,*), (2,*,*,*), etc.). On each consecutive level, one 
more lot is put into the sequence, until full se-
quences/schedules are reached (Figure 3). These are the 
leaves of the tree. This means that on level i, one of the lots 
still to be scheduled is selected for position i of the lot se-
quence. With a finite set of different lots, the number of 
children per node decreases by one on each level, since 
fewer lots remain to be scheduled. If we have a set of lots 
that consists of a few lot types only with several lots per 
type, the initial number of children per node is of course 

smaller (the number of types/recipes), but it decreases only 
if all lots of one type are already scheduled. 

 

 
Figure 3: A Part of a Schedule Tree with 4 Different Lots 

 
3.2 The Filtered Beam Search Algorithm 
 
Filtered beam search (FBS) is a variant of the branch and 
bound algorithm (Pinedo 2001). Consider the scheduling 
process as a tree like in 3.1. For a large set of jobs, this tree 
becomes very big because of the large number of children 
of each node on higher levels. Branch and bound now aims 
to eliminate some of the children of a node by evaluating 
each node and comparing the resulting value with a prov-
able lower bound. If the value is larger, the node and all of 
its children are discarded. Thus fewer nodes have to be 
considered on the next level. However, usually many nodes 
remain that have to be evaluated. While a branch and 
bound algorithm produces optimal solutions, it is very 
time-consuming if used on NP-hard problems. Since 
scheduling falls into this category, branch and bound is not 
the best option when results (not necessarily optimal) need 
to be obtained fast. 

The aim of filtered beam search is to limit the number 
of nodes that have to be evaluated on each level of the 
search tree. With each step, a certain set of nodes is se-
lected based on an evaluation function, the rest is dis-
carded. Only the surviving nodes are expanded, keeping 
the size of the tree small. The number of these nodes is 
called the beam width of the search. When the search tree 
has been expanded fully, this means that on each level ex-
cept the first, there are at most beam width nodes. This re-
sults in the same number of lot sequences that have to be 
simulated. Thus, the algorithm is quicker than branch and 
bound, but it can not guarantee optimality anymore. How-
ever, if the selection process for the nodes is good, a near 
optimal or even optimal solution can still be obtained. On 
the other hand, if the evaluation is too complex, the speed 
advantage might be lost. 

To achieve acceptable speed while still gaining a good 
result, a filter is used. The filter is used on all nodes of a 
level. It uses a quick evaluation method to select a number 
of candidate nodes which are then evaluated thoroughly as 
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described above. The number of these nodes is called the 
filter width of the algorithm. It is clear that the beam width 
can not be larger than the filter width. Of course, if a fast 
but still thorough evaluation method can be found, the fil-
ter step can be omitted. In this work, we aim to develop 
fast methods that still produce good results. 

 
3.3 Evaluation Functions 
 
As the framework of our algorithm is given, we now need 
to find adequate evaluation functions used to prune the 
search tree as described above. These should be appropri-
ate for the problem given, so we have to analyze the mode 
of operation of a cluster tool. 

In reality, most cluster tools have one or two load 
locks. Since cluster tools with one load lock are quite sim-
ple to analyze from a schedulers point of view we concen-
trate on cluster tools with two load locks. 

To evaluate a certain node of the search tree, we have 
to decide how well it fits to the end of the partial schedule 
that was already determined. Because we have only two 
load locks, not every lot that is already scheduled is of in-
terest. Most lots that have been scheduled before have al-
ready finished processing and are therefore no longer of 
interest. We only need to look at the lots that are serviced 
in the cluster tool at the same time, because only those lots 
will have an effect on each others cycle time (Figure 4). 
 

 
Figure 4: Evaluation Criteria 

We will now describe three evaluation functions that do 
exactly the comparison of lot combinations as described  
above. The first two have already been presented in 
(Oechsner and Rose 2005), but still a quick overview is 
given in 3.3.1 for sake of completeness. 

 
3.3.1 Slowdown Factor Comparison 
 
As described in the last section, this evaluation function 
concentrates only on the last lot that was already scheduled 
and tries to find lots not yet scheduled that work well in 
combination with it. To this effect, the slowdown factor of 

all possible two-lot-combinations is computed, with the 
slowdown factor being defined as follows (See also (Nied-
ermayer and Rose 2003)). 
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where CycleTime(A|AUB) is the mean cycle time of a wa-
fer of lot A when it is serviced at the same time as lot B. 
CycleTime(A) is the mean cycle time of a wafer of lot A 
with only this lot being processed in the cluster tool. Since 
this slowdown factor is much higher if two lots do not fit 
together well, e.g., when they compete for a resource, it is 
a good indicator for evaluating lot combinations. All these 
cycle times are obtained by short simulations and the com-
puted slowdown factors are stored for easy access by the 
filtered beam search algorithm. 

We can expand this method by accounting for a spe-
cial case. We assume that at least two lots have been 
scheduled already, and call the last two lots 'i-1' and 'i' re-
spectively (according to their position in the schedule). Lot 
i is the last lot scheduled, but has a small cycle time com-
pared to the cycle time of lot i-1. This means that lot i-1 is 
still being processed when lot i has left the cluster tool. Of 
course, the lot to be scheduled next must be compatible 
with lot i-1, not lot i. 

In this case, we try to find a lot that has a low slow-
down factor if processed at the same time as lot i-1. To de-
cide which method to use, we look at the cycle times of lot 
i-1 and lot i. If CycleTime(i - 1) ≥ 4 * CycleTime(i), there 
is a high probability that lot i will be finished before lot i-1, 
and we choose the method described. If the condition 
above is not true, we use the normal method that computes 
the slowdown factors for the last lot scheduled. The factor 
of 4 is chosen based on estimation and may be tweaked. 

 
3.3.2 Recipe Comparison 
 
With this evaluation function, we concentrate on the last 
lot that is already scheduled and try to find lots that don't 
compete for too many resources with it.  

A lot set consists of subsets of lot types. A lot type is 
defined by the recipe of the wafers of this lot as well as the 
number of wafers in it (all wafers in one lot have the same 
recipe). A recipe is the exact sequence and duration of the 
processing steps a wafer must be subjected to in order to 
manufacture the final product. 

In our case, this simply means a list of chambers with 
associated process times for that chamber. However, be-
cause there is possibly more than one chamber for a certain 
process step, alternatives can be noted for each step, thus 
allowing a more flexible production. 

Since we analyze only one cluster tool, all recipes we 
use feature chambers of that cluster tool only. 
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The recipes we consider have the following basic structure: 
 

recipe := <step> [<step>]* 
step := <chamber><time> [<chamber><time>]* 
chamber := String 
time := int 

 
An example taken from a CluSim (a cluster tool simulator, 
see (Schmidt 1999)) definition file therefore looks like this: 

 
Recipe RecipeA 
 Step Step1 
  ClusterTool ETCH1 
   Chamber ChamberA 587 
   Chamber ChamberB 585 
 Step Step2 
  ClusterTool ETCH1 
   Chamber ChamberC 583 
   Chamber ChamberD 586 
 

In this example, chamber A or chamber B can be used for 
the first step, and the second step needs chamber C or 
chamber D. The integer numbers denote how long a wafer 
must be in the according chamber in order to finish the 
step. The time unit is seconds. 

Since the information which resources are used by a 
lot can be found in its recipe, we simply compare the reci-
pes of the two lots we consider. If they both use the same 
resource anywhere in their recipes, the resulting value used 
for computing the evaluation is higher, if alternatives exist, 
the penalty is lowered. The penalty formula is  

 

 
BA AltAlt
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1
⋅
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#AltA is the number of alternatives in the step of recipe A 
where the coincidence was found, and #AltB is the same for 
recipe B. The total evaluation is the sum of all penalties, 
i.e., the sum over all coincidences. 

We will illustrate this with an example. Below are two 
simple recipes in the format used by our simulator. 

 
Recipe Recipe1 
 Step Step1 
  ClusterTool ETCH1 
   Chamber ChamberA 534 
   Chamber ChamberB 487 
 Step Step2 
  ClusterTool ETCH1 
   Chamber ChamberC 395 
 
Recipe Recipe2 
 Step Step1 
  ClusterTool ETCH1 
   Chamber ChamberA 565 
 Step Step2 
  ClusterTool ETCH1 
   Chamber ChamberD 349 
 

Both recipes use chamber A. Recipe 1 could also use 
chamber B in that step, while recipe 2 has to use chamber 
A. Then the penalty that is added to the total would be  

 

 
2
1

12
1

=
⋅

. 

 
However, if there were also one alternative in recipe 2 (like 
in recipe 2b), the penalty would be 
 

 
4
1

22
1

=
⋅

. 

 
Recipe Recipe2b 
 Step Step1 
  ClusterTool ETCH1 
   Chamber ChamberA 565 
   Chamber ChamberE 756 
 Step Step2 
  ClusterTool ETCH1 
   Chamber ChamberD 349 
 

Since the computation of these values can be done when 
the recipes are known, the actual evaluation done during 
the beam search is just a lookup of the pre-computed value. 
This means that the recipe comparison is at least as fast as 
the methods using slowdown factors, which also do the ac-
tual work once before the search itself. 

The recipe comparison method, while being simple, 
has a distinct disadvantage: it does not consider processing 
times of lots in the chambers of the cluster tool. Whether a 
lot has a processing time of 100 seconds or 100,000 sec-
onds makes no difference to the evaluation function, since 
only the appearance (or, to be more exact, the number of 
appearances) of the chamber in the recipe counts. While 
that is no big drawback when processing times are roughly 
equal in all recipes, it could produce wrong results if this is 
not the case. 

 

4 SIMULATION RESULTS 

In this section, we show the results taken from simulations 
done with the CluSim cluster tool simulation software 
(Schmidt 1999). We added the filtered beam search algo-
rithm and the evaluation methods described above to the 
simulator, and then conducted simulation runs for different 
lot set sizes. 
We compare our evaluation methods for lot sets of the size 
5, 10, 15 and 20. We chose a simplified beam search algo-
rithm for each of the methods described, i.e., the filter step 
is discarded and only one evaluation is performed. We can 
do this because none of our methods is very time-
consuming. The beam width parameter is set to the lot set 
size. 
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We simulated 22 randomly generated scenarios (i.e., 
lot recipes and distributions) and deleted the best and the 
worst result. Thus, we have 20 scenarios for each parame-
ter setting. Our primary performance criterion is the dis-
tance to the optimum/best found value obtained via a ex-
haustive/random search. In case of a small number of 
permutations, exhaustive search is used. However, the 
number of possible lot combinations gets huge quickly, so 
for the larger lot sets, we had to use a random search that 
covers only a part of the solution space. The amount of se-
quences tested is 10% of the total number of sequences 
with this method, but it is capped at 15000 runs due to time 
constraints.  

However, it is also of interest whether the results are 
below or above the mean cycle time of all tested lot se-
quences. Since the simulations themselves are determinis-
tic, there is no need to simulate more than once per sce-
nario. 

4.1 Slowdown factors with two considered lots 

 
Table 1 shows that the slowdown factor comparison algo-
rithm performs well. It keeps the makespan below the 
mean value of all tested lot sequences. However, while the 
scheduler produces results close to the optimum for small 
lot sets, it's performing worse when more lots are to be 
considered (Figures 5 and 6). Still, it stays well below the 
mean value in most cases. While the algorithm performs 
very well on small lot sets, and produces good results for 
more lots, the cycle times it yields are well above 110% of 
the optimal cycle time, but still below 120%.  

 
Table 1: Results for the Simple Slowdown 
 Factor Comparison 

Lot 
set 
size 

Result of FBS in % 
of optimum (slow-
down with 2 lots) 

Result of FBS in % of me-
dium value (slowdown with 
2 lots) 

5 102.32 91.76 

10 111.23 94.71 

15 112.18 96.47 

20 116.85 99.38 

 

We have to consider that the values for the minimum and 
maximum makespans are obtained by a random search in 
the permutation space for the set sizes 10, 15 and 20, so 
they are not necessarily the best and worst cases. However, 
we can also compute the sum of all lot cycle times in single 
mode, which was always above the longest found 
makespan in our scenarios. The worst case found by our 
search methods is close to this sum in all of our tests. This 
shows us that our random search is not far off the mark and 

our results cover a large range of the possible schedules 
and their results. 

The following figures (Figures 5 and 6) show the per-
formance of the algorithm for the individual scenarios. 
They depict the cycle times of the tested lot sequences over 
the numbers of the tested scenarios. The thick horizontal 
line marks the mean cycle time of all tested lot sequences, 
with the thin vertical line representing the range of results 
we get for those sequences. The dot is the best result 
achieved by the beam search algorithm. The triangles mark 
the sum of the lot cycle times. 
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Figure 5: Lot Set Size of 5 Lots
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Figure 6: Lot Set Size of 20 Lots 

 
4.2 Slowdown factors with three considered lots 
 
A first look at Table 2 tells us that the expansion we made 
to the evaluation function with slowdown factors has an 
effect, if only a small one. In the case of a lot set size of 15, 
the improved method even is marginally worse, but still in 
the same range. However, a t-Test for corresponding pairs 



Oechsner and Rose 
 
of scenarios with confidence level 0.95 showed that there 
are no statistically significant differences. 

 
Table 2: Results for Methods Using Slowdown Factors 

Result of filtered beam 
search in % of optimum 

Result of filtered beam 
search in % of medium 

value 

Lot 
set 
size 

slowdown 
with 2 lots 

slowdown 
with 3 lots 

slowdown 
with 2 lots 

slowdown 
with 3 lots 

5 102.32 101.75 91.76 90.98 

10 111.23 110.21 94.71 93.56 

15 112.18 112.38 96.47 96.69 

20 116.85 115.29 99.38 98.01 

 

A closer look at the scenarios where we used the evalua-
tion method with three considered lots shows that these 
setups contained recipes where the cycle times varied 
greatly. Between one third and half of the scenarios for 
each lot set size had at least one recipe pair with a cycle 
time quotient larger than 4. This is of course exactly the 
situation our improvement was aiming at. Still, with larger 
lot sets, the results are often in the range of the medium 
cycle time, with a big distance from the maximum (Figures 
7 and 8). 
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Figure 7: Lot Set Size of 5 Lots 
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Figure 8: Lot Set Size of 20 Lots 

 

4.2 Recipe comparison 

Surprisingly, the recipe comparison produces good results 
although it is the simplest method implemented. Although 
the comparison does not consider process times and al-
though the process times given in the tested scenarios var-
ied greatly, this evaluation method seems to employ the 
right criteria. The cycle times achieved by the algorithm 
using recipe comparison are nearly always within 110% of 
the best value found by the exhaustive or random search. 
Table 3 gives the mean results for the different lot sets in 
percent of the best found value and of the found mean 
value. 

 
Table 3: Results for the Recipe Comparison 

Lot 
set 
size 

Result of FBS in % 
of optimum 

Result of FBS in % of me-
dium value 

5 100.24 90.4 

10 104.68 89.57 

15 106.68 92.47 

20 109.64 93.06 

 

Also, the results are 10% lower than the medium value in 
the best case, and still show an improvement of 7% in the 
worst case. It has also to be considered that the reference 
values were computed with a much higher effort than the 
filtered beam search took. Figures 9 and 10 show how well 
the algorithm performed with the different scenarios for 
small and large lot sets. 
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Figure 9: Lot Set Size of 5 Lots 
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Figure 10: Lot Set Size of 20 Lots 

 

 
Table 4: Result comparison for the different methods. 
All values are in % of optimum 
Lot 
set 
size 

slowdown 
with 2 lots 

slowdown 
with 3 lots 

Recipe com-
parison 

5 102.32 101.75 100.24 

10 111.23 110.21 104.68 

15 112.18 112.38 106.68 

20 116.85 115.29 109.64 

 

The values in Tables 4 and 5 show that the recipe 
comparison performs better than the slowdown factor 
methods. Especially for larger lot sets, the results 
achieved with the newer method are significantly bet-
ter. 

Table 5: Result Comparison for the Different Meth-
ods. All Values are in % of Mean Value 
Lot 
set 
size 

slowdown 
with 2 lots 

slowdown 
with 3 lots 

Recipe com-
parison 

5 91.76 90.98 90.4 

10 94.71 93.56 89.57 

15 96.47 96.69 92.47 

20 99.38 98.01 93.06 

 

4.3 Parameter study 

We will now take a closer look at how the beam width pa-
rameter influences the result of the algorithm. Since we 
have found that the recipe comparison method performs 
better than the slowdown factor approach, we will use this 
evaluation method from now on. 

Basically, there is a trade off between the quality of 
the result and the speed of the search. The larger the beam 
width is, the better we can expect our solution to be. How-
ever, a large beam width also means that more simulation 
runs have to be conducted at the end of the search phase. 

Since the time needed for the simulations takes by far 
the biggest part of the search algorithms running time, 
more simulations mean a significantly longer search time 
(The pure beam search itself without simulations takes 
about the same time as two simulations with a lot set size 
and also a beam width of 20.). 

Figure 11 shows the influence of the beam width on 
the quality of the result. There is a clear trend to better re-
sults with a larger beam width, as was expected. However, 
there is no further advantage to expanding the beam width 
above a certain limit, which seems to be located at the lot 
set size for 10 lots. 
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Figure 11: Results for 10 Lots 
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Surprisingly, a beam width of ten seems to be optimal for 
larger lot sets, too. Although it should be expected that 
beam widths grow with the lot set sizes, our parameter 
study shows that this is not the case. Figure 12 shows that 
the quality of the result even decreases with larger beam 
widths. 
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Figure 12: Results for 20 Lots 

 

While the difference between the values decreases for a lot 
set size of 30 (Fig. 13), a beam width between 10 and 20 
seems to be sufficient for these scenarios, too. However, 
because the performance of the algorithm generally be-
comes worse with larger lot sets, the difference between 
the parameter settings is not as significant as for example 
for a lot set size of 10. 

A possible explanation for the observed behavior is the 
nature of our evaluation functions. Because of the fact that 
we only try to optimize the schedule locally, i.e., only pairs 
of lots are considered, it is conceivable that a larger beam 
width leaves more room for error. A wider beam means 
that there are more possible lot combinations to consider in 
the next step. While some of those combinations might 
seem good at that time, they could produce a schedule with 
a longer cycle time than others. However, because the al-
gorithm is not able to look ahead, the best combination that 
is available at the moment is still chosen. 

5 CONCLUSIONS 

In this work, we studied a filtered beam search approach to 
scheduling cluster tools. The aim of the algorithm is to op-
timize the makespan for a given lot set by finding a good 
external schedule. While we already had promising evalua-
tion functions that used slowdown factors, we searched for 
a different method that still uses knowledge about the sys-
tem. 

We developed, implemented and tested a new evaluation 
method based on recipe comparison that enhances the per-
formance already shown by earlier approaches without 
needing more resources. The achieved results were signifi-
cantly better than the makespans obtained by the slowdown 
factor comparison methods. 

We also conducted a parameter study that showed that 
we do not need to expand the number of simulations above 
a certain limit to gain good solutions. 

In conclusion, we showed that the already promising 
results of a filtered beam search approach can be even 
made better by choosing better evaluation functions. How-
ever, it seems that exploiting knowledge about the inner 
workings of a cluster tool is a good way to determine lot 
schedules. 
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Figure 13: Results for 30 Lots 
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