
A P2P-based Framework for Distributed

Network Management

Andreas Binzenhöfer1, Kurt Tutschku1, Björn auf dem Graben1,
Markus Fiedler2, and Patrik Arlos2

1 Department of Distributed Systems
Institute of Computer Science

University of Würzburg, Am Hubland, 97074 Würzburg, Germany
{binzenhoefer, tutschku, adgraben}@informatik.uni-wuerzburg.de

2 Dept. of Telecommunication Systems
School of Engineering

Blekinge Institute of Technology
371 79 Karlskrona, Sweden

{markus.fiedler, patrik.arlos}@bth.se

Abstract. In this paper we present a novel framework supporting dis-
tributed network management using a self-organizing peer-to-peer over-
lay network. The overlay consists of several Distributed Network Agents

which can perform distributed tests and distributed monitoring for fault
and performance management. In that way, the concept is able to over-
come disadvantages that come along with a central management unit,
like lack of scalability and reliability.
So far, little attention has been payed to the quality of service experi-
enced by the end user. Our self-organizing management overlay provides
a reliable and scalable basis for distributed tests that incorporate the end
user. The use of a distributed, self-organizing software will also reduce
capital and operational expenditures of the operator since fewer entities
have to be installed and operated.

1 Introduction

A peer-to-peer (P2P) system is a highly distributed application architecture.
The underlying technology has so far only received a doubtful reputation due
to its use in file sharing applications. P2P algorithms, however, might be highly
helpful in implementing novel distributed, self-structuring network management
concepts. In this work we suggest the application of a current generation, struc-
tured P2P overlay network for fault and performance management with the aim
of enhancing conventional management functions.

In general the goal of Network Management is “to ensure that the users of a
network receive the information technology services with the quality that they
expect” [1]. However, monitoring and provisioning of that quality in an end-
to-end manner as perceived by a user [2] is rarely achieved. The monitoring is
usually carried out by rather centralized entities (Network Management Systems)

N
O

T
IC

E
:

T
h

is
is

th
e

a
u

th
o
r’

s
v
er

si
o
n

o
f

a
w

o
rk

a
cc

ep
te

d
fo

r
p

u
b

li
ca

ti
o
n

b
y

S
p

ri
n

g
er

.
C

h
a
n

g
es

re
su

lt
in

g
fr

o
m

th
e

p
u

b
li
sh

in
g

p
ro

ce
ss

,
in

cl
u

d
in

g
ed

it
in

g
,

co
rr

ec
ti

o
n

s,
st

ru
ct

u
ra

l
fo

rm
a
tt

in
g

a
n

d
o
th

er

q
u

a
li
ty

co
n
tr

o
l

m
ec

h
a
n

is
m

s,
m

a
y

n
o
t

b
e

re
fl

ec
te

d
in

th
is

d
o
cu

m
en

t.
C

h
a
n

g
es

m
a
y

h
a
v
e

b
ee

n
m

a
d

e
to

th
is

w
o
rk

si
n

ce
it

w
a
s

su
b

m
it

te
d

fo
r

p
u

b
li
ca

ti
o
n

in
N

ew
T

re
n

d
s

in
N

et
w

o
rk

A
rc

h
it

ec
tu

re
s

a
n

d

S
er

v
ic

es
,

L
N

C
S

3
8
8
3
,

2
0
0
6
.

T
h

e
fi

n
a
l

p
u

b
li
ca

ti
o
n

is
a
v
a
il
a
b

le
a
t

S
p

ri
n

g
er

.



2 Andreas Binzenhöfer et al.

and only in those parts of the network a provider is responsible for. Coordination
of the monitoring among different administrative domains is rarely achieved,
which also affects possibilities to locate faults and to evaluate end-to-end QoS.

A central fault testing and QoS monitoring architecture typically results in
additional, complex entities at the provider. The operator has to ensure the reli-
ability of the entities and assess their scalability. The systems have to scale with
O(N2) due to the N(N − 1) potential relationships among N end systems. In
addition, relaying monitoring data consumes bandwidth, delays its availability,
and might get lost in case of a network failure. A decentralized QoS monitoring,
as for example, located on the user’s end system, might avoid these disadvan-
tages. The use of a distributed, self-organizing software will reduce capital and
operational expenditures (CAPEX and OPEX) of the operator since fewer en-
tities have to be installed and operated. Scalability can be achieved by re-using
resident resources in conjunction with local decisions and transmission of less
data.

We propose a new, distributed, self-organizing, generic testing and QoS mon-
itoring architecture for IP networks. The architecture will complement today’s
solutions for central configuration and fault management such as HP OpenView
[3] and IBM Tivoli [4]. The architecture is based on equal agents, denoted as
Distributed Network Agents (DNA), which form a management overlay for the
service. In this context the word agent is not to be understood as an agent as
used by the Artificial Intelligence community, but rather as a piece of software
running on different peers, like, e.g., an SNMP-Agent. The self-organization of
the overlay is achieved by Kademlia [5], a P2P-based Distributed Hash Table
(DHT).

The suggested architecture facilitates the autonomic communication concept
[6] by locally determining the perceived QoS of the user from distributed mea-
surements and by exploiting the self-organization capabilities of the DHT for
structuring the overlay. It will be able to communicate with standard-NMS via
well-established interfaces. Thus, it can be seen as a QoS-enabling complement
of existing Network Management solutions.

The remainder of the paper is structured as follows: Section 2 introduces the
architecture of a DNA and shows how the framework can be used for local and
distributed tests. In Section 3 we give an overview of the current P2P generation
and motivate why we chose Kademlia as the basis of the DNA overlay. Some
details about the implementation of our prototype will be given in Section 4.
The functionality of the DNA is validated by simulation in Section 5. Section 6
finally concludes the paper and summarizes our future work.

2 The DNA Framework

The DNA framework represents an independent distributed application intended
to support the central network monitoring station. In general a central monitor-
ing entity has three major disadvantages:



A P2P-based Framework for Distributed Network Management 3

– It is a single point of failure. Once the single central monitoring unit fails,
the network will lose its control entity and will be without surveillance. The
same problem could, e.g., be caused by a distributed denial of service attack.
That is, the functionality of the entire network management depends on the
functionality of a single central unit.

– It does not scale. On the one hand the number of hosts that can be monitored
at a given time is limited by the bandwidth and the processing power of
the central monitoring unit. On the other hand there is a growing number
of services that has to be monitored on each host due to the diversity of
services that emerge during the evolution of the Internet.

– It has a limited view of the network. While a central network manager is
able to monitor, e.g., client A and Server B, it has hardly any means of
knowing the current status of the connection between the two monitored
devices themselves.

The DNA application is able to support the central unit in two ways. At first, the
DNAs constantly monitor the network in a distributed way and send a message
back to the central server in case the condition for some trigger event is met,
similar to SNMP traps. Secondly the central server can query the current state
of the DNA on demand. In case the central server fails, the DNAs will still be
functional and can store the gathered information until the central server goes
back online again. First ideas have been discussed briefly at [7]. The DNA frame-
work can be used as a plug and play platform for overlay network monitoring
approaches like [8] and [9].

2.1 The Basic Concept

The Distributed Network Agent (DNA) is based on a modular concept shown
in Figure 1. The main component of the DNA, the so-called Mediator, runs as a
daemon in the background and is responsible for the communication between the
user and the individual test modules. A test module consist of several tests that
are similar in respect of their functionality. They represent the functionality of
the DNA and can be added or removed without any influence on the operability
of the DNA architecture. The user is able to connect to the Mediator using the
graphical user interface (GUI) or the command line. He can manually start tests
or read the results of tests that have already been performed. Figure 1 sum-
marizes the design of the DNA framework. The Mediator either receives a test
request from the user or autonomically schedules a test itself. It then performs
the corresponding test using the provided Interfaces and finally sends the results
to the GUI upon request. Any test module that implements all features required
by the Interface component can be added to the DNA framework. A description
of the features required by the Interface component and their purpose is given
in the following:

– Default Tests: Each test module has to provide a list including all tests
that will be run when the module is called by the Mediator without any



4 Andreas Binzenhöfer et al.

DNADNA

MediatorMediator

GUIGUIInterfacesInterfaces

Module 2Module 2Module 1Module 1 …

Fig. 1. The modular framework of the DNA

parameters. This list of default tests will be executed when the user did
not specify any details. Advanced users, however, are able to choose another
subset of tests from the module that is adapted to their specific needs. The
default test sequence offers the possibility to implement a test module that,
e.g., includes tests dealing with different kinds of IP configuration. In this
example the default test sequence could cover all properties of a static IP,
while support for DHCP might be optional.

– Test Dependencies: If not specified otherwise all selected tests of a test mod-
ule are performed in parallel. However, the DNA offers the possibility to use
test dependencies. That is, a test module can provide a list containing the
dependencies of its individual tests. The Mediator does not start a test un-
til all its dependencies were performed successfully. The following two tests
provide a simple example for test dependencies: A test that checks the state
of a network interface card (NIC) and a second test that pings a predefined
host using the same NIC. Obviously the second test is dependent on the first
one, since it can only succeed if the NIC is up and running. The Mediator
would therefore only execute the second test if the first test already finished
successfully.

Since a great fraction of network problems is actually caused by local errors
like misconfiguration and software failures, we outline a test module containing
local tests in the following section. Before a DNA takes part in the DNA overlay,
it can run the local test module to eliminate any possibility of local errors.

2.2 Local Tests

In this section we briefly describe a test module containing local tests, which is
an inherent part of our prototype discussed in Section 4. First, we summarize
the set of default tests and give a brief description of the remaining tests in the
module afterwards. All local tests are bound to a specific network interface card,
which can be selected by the user.



A P2P-based Framework for Distributed Network Management 5

Default Test Sequence The default test sequence contains eight tests, which
can be divided into “Hardware and TCP/IP” and “Local configuration and
network connectivity”. The five tests in the latter category all depend on the
three tests dealing with hardware and TCP/IP.

Hardware and TCP/IP

– NICStatus: This test returns information about the network interface card
and its current state, including a driver check and the like. It is mainly used
to eliminate the possibility of hardware failures or problems with the driver.

– NetConnectionStatus: This test is used to check the current connection status
of the NIC. Causes for an error include a cable that is not plugged in, or a
network interface card still running an authentication process.

– PingLocalHost: The functionality of the TCP/IP stack is validated by send-
ing a ping request to the loopback address (127.0.0.1).

In case all three tests finish successfully, the Mediator will call the remaining
five tests of the default test sequence.

Local configuration and network connectivity

– IPConfiguration: This test verifies that a valid IP address is assigned to the
NIC. It also checks if the associated gateway is on the same subnet as the
IP address.

– DNSConfiguration: The test verifies that at least one DNS server is assigned
and can be reached by a ping request. Furthermore, the functionality of the
DNS server is tested performing a predefined DNS lookup and optionally a
reverse lookup. If the ping message failed whereas the lookup was successful,
no warning message is reported.

– DHCPLease: In case of using DHCP on a machine running Windows, the IP
address is checked to ensure that the network interface card is not set up to
use a so called Automatic Private IP Address (APIPA). This might occur, if
the server has no more capacities to provide a new IP address or if the user
participates in an encrypted wireless LAN (e.g. WEP) using an invalid key.

– PingOwnIP: To exclude a communication problem between the operating
system and the NIC, the IP address assigned to the adapter is pinged.

– PingWellKnownHosts: This tests sends a ping request to a list of predefined
well known hosts. If a specified number of hosts in this list does not respond
in time, the test returns an error.

Additional Local Tests The following three tests belong to our local test
module but are not part of the default test sequence, since they are specific
to the Windows OS. Advanced users can include the tests in case the DNA is
running on a Windows based platform.

– EventViewer: The test searches in the ”Event Viewer Log” for error events
caused by TCP/IP or DHCP. If the Windows event viewer has recorded
problems with respect to TCP/IP or DHCP those errors will be forwarded
to the GUI of the DNA.



6 Andreas Binzenhöfer et al.

– HostsAndLmHosts: Before Windows uses DNS or WINS it tries to resolve
a domain name using the HOSTS or LMHOSTS file. If one of these files
contains a wrong entry the resolution of the corresponding name fails. The
test searches for syntax errors in both files and sends ping requests to valid
entries.

– RoutingTable: The Windows routing table is divided into a dynamic and a
persistent part. This test pings the gateways of both tables and reports an
error message, if one of them is not reachable.

2.3 Distributed Tests

In this section we describe how to use the DNA framework to implement distrib-
uted test modules. A distributed test is a test that is performed in conjunction
with at least one other DNA. To be able to communicate with each other the
DNAs build an overlay network on top of the monitored network. To perform a
distributed test a DNA can then either connect to a randomly chosen DNA or
to a specific DNA chosen by the user. Section 3 describes the P2P based DNA
overlay in detail.

The following two distributed tests point out the possibilities of the distrib-
uted DNA framework that arise by extending a simple local test to a distributed
test:

– PingWellKnownHosts: If a single DNA or a central network manager does
not receive a ping reply from a well known host, either the host or any link on
the path to this host could be down. Using the DNA framework, however, a
DNA can ask another DNA to ping the same host and evaluate the returned
result. In case another DNA is able to ping this host, the possibility that this
host is down can be ruled out and the cause of the error can be narrowed
down to a network problem between the DNA and the well known host. If
the DNA has knowledge about the network topology, which could, e.g., be
gained using network tomography, the distributed ping test can also be used
to pinpoint the broken link or to locate a bottleneck by comparing the delay
of the ping messages.

– DNSProxy: In general a DNA can use another DNA as a temporary proxy
or relay host. In case a DNA loses the connection to its DNS server and can
thus no longer resolve domain names, it can use another DNA as a DNS
proxy. That is, the DNA forwards the DNS query to another DNA that in
turn tries to resolve the domain name using its own DNS server. This way
the DNA is able to bridge the time its DNS server does not respond to DNS
queries. In a similar way two DNAs with a broken direct connection could
use a third DNA that still has a connection to both DNAs, as a temporary
relay host.

As stated above the DNAs build an overlay network to be able to communicate
with each other. They are able to communicate with a random DNA in the
overlay or to search for a specific DNA. The following two tests provide exam-
ples of how to build distributed applications based on this aspects of the DNA
framework:



A P2P-based Framework for Distributed Network Management 7

– PortScan: If a DNA peer is running a webserver or offers some other service
that requires an open port it usually is probed by a central network manager
to ensure a continuous service. On the one hand this method does not scale
with the number of services the central network manager has to monitor,
on the other hand the peer running the service has no influence on the time
of the next check. Using the DNA framework, however, the peer is able to
ask a random DNA to see if it can reach the offered services. This is also a
scalable way to monitor a large number of services. The DNAs monitor the
services running on their peers in a distributed way and only send a message
back to the central network manager in case of an error.

– Throughput: Usually it is not easy for a user to verify a service level agree-
ment or to measure the bandwidth to another point in the network. The
possibility to search for a specific DNA enables a peer taking part in the
DNA overlay network to search for a specific communication partner and
ask for a throughput test. A very simple way to do so is to constantly send
traffic to the other DNA for a certain period of time and simply measure the
average throughput. However, there are more sophisticated ways, which we
intend to integrate in future work.

The above tests are just some examples of how to use the DNA framework. A
future possibility consists in passive monitoring of data streams between the
peers at both peers and exchanging the measurement results in order to deter-
mine potential bottlenecks as described in [10]. In Section 6 we summarize our
ideas for a new, distributed passive QoS monitoring concept. The next section
discusses general security issues and a way of how to deploy new test modules
to the DNA overlay network.

2.4 Deployment of New Tests

Considering a running DNA overlay network, one can not assume that all DNAs
are always having the same test modules. An obvious way to deploy new test
modules is to send the modules on demand. That is, if A asks B to perform
a distributed test but B does not have this specific test, A simply sends the
test module to B. However, this implies that B implicitly trusts A. This is a
security risk that is obviously not negligible. In fact a framework that allows
other machines to run arbitrary code would be the perfect tool for distributed
denial of service attacks.

One way to solve this problem is to only download new test modules from
a central trust server. That is, all DNAs trust a central entity and only run
code that is signed by this central authority. While this solution is sufficient for
small networks it does not scale to larger networks. A scalable implementation
of the DNA framework therefore needs a distributed trust model. Since there
is an independent research area dealing with security and this paper is mainly
intended to be a proof-of-concept for a P2P based framework for network mon-
itoring, we will refrain from addressing security issues. There exist, however,
different approaches to build distributed trust models for P2P systems. In [11],



8 Andreas Binzenhöfer et al.

e.g., Josephson proposes a scalable method for P2P authentication with a dis-
tributed single sign-on service, that could be used as the trust model for our
DNA.

3 The P2P-based DNA Overlay

To be able to search for other peers, the individual DNAs build an overlay
network. The main purpose of this overlay is to keep the DNAs connected in one
logical network and to enable a single DNA to find another DNA in reasonable
time. The current generation of structured P2P networks is able to locate other
peers using only O(log(n)) messages while keeping connections to only O(log(n))
other peers in an overlay network of size n [12]. We chose the Kademlia algorithm
[5] as the basis of the DNA overlay. Kademlia offers a set of features that are
certainly not unique to it, but that are so far not offered by another single
algorithm all at once. In detail those features are:

1. Symmetry: Due to the symmetry of the XOR metric d(x, y) = d(y, x), the
DNA overlay network is symmetric as well.

2. Unidirectionality: For any identifier x and an arbitrary distance s > 0 there
is exactly one point y such that d(x, y) = s. Thus, independent of the orig-
inating peer, lookups for the same peer will all converge along the same
path.

3. Parallel queries: One of the most advantageous features is the possibility to
send out parallel queries for the same key to different peers. This way, time-
outs on one path do not necessarily delay the search process, guaranteeing
faster and more reliable searches under high churn3 rates.

4. Arbitrary Neighbors: In [5] neighbors in the overlay were chosen by the time
of last contact to obtain more reliable connections. Neighbors, however, can
be chosen by any criterion like trustability or reliability. The best known
approach is to chose peers according to their ping times to guarantee low
latency paths when searching.

5. Low periodic traffic: In contrast to most other algorithms Kademlia uses
almost no periodic overhead traffic but exploits the search traffic to sta-
bilize the overlay network connections. Configuration information spreads
automatically as a side-effect of key lookups.

6. Security: As a result of its decentralized nature Kademlia is resistant against
denial of service attacks. The security against attackers can even be improved
by banning misbehaving peers from the peers buckets.

The DNA overlay enables fast searches for random and specific communi-
cation partners. In Section 5 we discuss results obtained from our simulator in
detail.

3 The rate at which peers join and leave the overlay network



A P2P-based Framework for Distributed Network Management 9

4 The DNA Prototype

As a proof of concept and practicability of our work, we implemented a prototype
of the DNA. While the general concept is platform independent, the implemen-
tation was done in .NET, as the WMI Interface offers the opportunity to access
all kind of information about the local system state as well as the state of the
network in very few lines of code. The DNA prototype was implemented within
the scope of an industrial cooperation with Datev, one of the largest informa-
tion service providers and software firms in Germany as well as Europe. This
provided us with the opportunity to prove the functionality of the concept by
successfully running the DNA in a realistic testbed with over 50 machines. One
of the main advantages besides those mentioned in the previous sections turned
out to be the plug and play character of the DNA framework. Due to the Kadem-
lia based overlay network, the DNA framework is self-configuring. To include a
new DNA into the existing overlay, the user just has to start the client and it
will automatically find its position in the overlay network. On the other hand,
if a client fails, the overlay network proved to be self-healing by automatically
updating the neighbor-pointers needed to keep the overlay network stable. The
next section contains a simulative evaluation of the stability of the proposed
solution.

5 Simulation Results

In this section we prove the functionality and the scalability of our DNA proto-
type by simulation. The simulator is written in .NET, based on the code used for
the prototype. The network transmission time for one hop was chosen according
to an exponential distribution with a mean of 50 ms. If not stated otherwise, we
let a number of nodes join the overlay network and begin a churn phase once
the overlay has initially stabilized. To generate churn we model the online time
of a peer by means of an exponentially distributed random variable. The longer
a peer stays online on average, the less churn there is in the overlay network.
To provide credible simulation results, we produced several simulation runs and
calculated the mean as well as the corresponding confidence intervals.

To show the scalability of the DNA we regard the time needed to complete a
search for other peers in dependence of the overlay size. First, we regard a system
without any churn, i.e. we let n DNAs join the system, wait until the overlay
network stabilizes and then let a number of random DNAs search for other peers.
The concave curves in Figure 2 show that the search in our prototype does indeed
scale. In a network of 1000 peers a search for another DNA takes less than 200
ms. To see the influence of churn on the search time, we repeated the same
simulations and set the average online time of a peer to 60 minutes. To keep
the size of the overlay constant on average, we chose a corresponding Poisson
arrival process to let new DNAs join the network. The results are also shown
in Figure 2. Due to timeouts caused by the churn in the system, searches take
longer than in the scenario without churn. However, as seen from the concave



10 Andreas Binzenhöfer et al.

0 200 400 600 800 1000 1200
100

150

200

250

300

350

Overlay size

A
ve

ra
ge

 s
ea

rc
h 

tim
e 

[m
s]

No Churn

60 minutes
online time

Fig. 2. Duration of a search as a function of the overlay size

curves, the search algorithm scales when the system becomes larger and enables
fast searches for other peers.

20 40 60 80 100 120 140
4.5

4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

Average online time [min]

N
um

be
r 

of
 k

no
w

n 
ne

ig
hb

or
s 

(m
ax

 5
)

100 peers

500 peers

Fig. 3. Average number of known direct neighbors

In previous studies [13, 14] we showed that the size of the network itself is
not the crucial factor in terms of scalability and overlay stability. In fact the
robustness of the overlay is mainly influenced by the current churn rate. A good
way to prove the stability of the overlay network is therefore to look at the
correctness of the neighbors of a peer under churn. In general the functionality
of a structured P2P-overlay can be guaranteed, as long as the information about
a peers neighborhood is not lost. In case the information about more distant
peers is lost, the performance of the overlay might get slightly worse, but the



A P2P-based Framework for Distributed Network Management 11

underlying algorithms will still be functional. We study the correctness of the
direct neighbors to evaluate the stability of the DNA overlay. We generate a
churn phase and create a snapshot within this phase. The real neighbors of a
peer (as obtained form the global view offered by the simulation) are compared
to the neighbors currently seen by the peer. In Figure 3 we show how many of
its five direct neighbors a peer actually knows in dependence of the churn rate in
the system. On average a peer knows more than 4.5 of its 5 direct neighbors even
if the average peer stays online for only 30 minutes. Note that the correctness
of a peer’s neighbors does not depend on the size of the network at all. The
curve progression is almost identical for 500 and 100 peers. That is, the degree
of stability of the overlay network does not depend on the size but on the current
churn rate of the system.

The above results show that the DNA overlay offers scalable search times
and is robust against churn. The remaining question is how much bandwidth
the DNAs need to maintain the overlay network. Figure 4 plots the average
maintenance traffic of a single peer against the total number of peers in the
overlay network. Again the lower curve represents a system without any churn.
The larger the overlay network gets, the more neighbors are maintained and
the more traffic is needed to keep these neighbors up-to-date. As can be seen in
the figure the consumed bandwidth scales very well to the size of the system.
The upper curve summarizes the same results for an average online time of
60 minutes. It has a similar progression, but illustrates that a peer uses more
maintenance traffic during a churn phase.

0 200 400 600 800 1000 1200
5

10

15

20

25

30

35

Overlay size

M
ai

nt
en

an
ce

 tr
af

fic
 [B

/s
]

No Churn

60 minutes
online time

Fig. 4. Average maintenance traffic in dependence of the system size

To study the influence of churn on the bandwidth needed for maintenance
in more detail, we did a parameter study for the churn rate in Figure 5. The
average online time of a peer varies between 30 and 120 minutes. The shorter a
peer stays online on average, i.e. the more churn there is in the system, the more



12 Andreas Binzenhöfer et al.

maintenance traffic is produced by the DNA client. That is, the DNA adapts

20 40 60 80 100 120 140
15

20

25

30

35

40

Average online time [min]

M
ai

nt
en

an
ce

 tr
af

fic
 [B

/s
]

100 peers

500 peers

Fig. 5. Average maintenance traffic in dependence of the churn rate

automatically to the current churn rate. As stated above, the DNA needs more
maintenance traffic in a larger network, as there are more neighbors that have
to be kept up-to-date.

6 Conclusions and Future Work

In this paper we presented a novel technique for distributed fault and perfor-
mance management. The proposed DNA framework is based on a self-organizing
P2P overlay network (Kademlia) and offers plug and play functionality when in-
tegrating new DNA clients. The system is able to perform local tests on the
client and distributed network tests in conjunction with other DNA clients. As
a proof-of-concept, we built a running prototype and in addition proved its scal-
ability by simulation. We investigated the robustness and reliability of the DNA
in terms of churn behavior, i.e. the fluctuation of the size of the overlay network.
A local test module, as well as examples for distributed tests were described in
detail. The proposed distributed end-to-end architecture facilitates the provi-
sioning and monitoring of new services offered by service providers.

Future work will be devoted to the integration of a new passive end-to-
end QoS monitoring concept featuring performance management from the user
point of view. The results of such test will be available to standard-network
management systems via well-established interfaces, like SNMP traps or MIB
variables. Thus, it can be seen as a QoS-enabling complement of existing network
performance management solutions.



A P2P-based Framework for Distributed Network Management 13

Acknowledgments

The authors would like to thank Phuoc Tran-Gia and Stefan Chevul for the
helps and discussions during the course of this work. Additional thanks go to
the EuroNGI FP6 Network of Excellence for supporting this work.

References

1. Subramanian, M.: Network Management – Principles and Practice. Addison-
Wesley (2000)

2. M. Fiedler (ed.): EuroNGI Deliverable D.JRA.6.1.1 – State-of-the-art with re-
gards to user-perceived Quality of Service and quality feedback (2004) URL:
http://www.eurongi.org/, http://www.ats.tek.bth.se/eurongi/dwpjra611.pdf.

3. (HP OpenView Management Software)
URL: http://www.openview.hp.com/.

4. (IBM Tivoli Software)
URL: http://www.ibm.com/tivoli/.

5. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system
based on the xor metric. In: IPTPS 2002, MIT Faculty Club, Cambridge, MA,
USA (2002)

6. (Autonomic Communication (IST FP6 Project))
URL: http://www.autonomic-communication.org/.

7. Binzenhöfer, A., Tutschku, K., auf dem Graben, B.: DNA – A P2P-based Frame-
work for Distributed Network Management. In: Peer-to-Peer-Systeme und -
Anwendungen, GI/ITG Work-In-Progress Workshop in Cooperation with KiVS
2005, Kaiserslautern (2005)

8. Wawrzoniak, M., Peterson, L., Roscoe, T.: Sophia: an information plane for net-
worked systems. In: SIGCOMM Comput. Commun. Rev. Volume 34., ACM Press
(2004) 15–20

9. Chen, Y., Bindel, D., Song, H., Katz, R.H.: An algebraic approach to practical
and scalable overlay network monitoring. In: SIGCOMM Comput. Commun. Rev.
Volume 34., ACM Press (2004) 55–66

10. Fiedler, M., Tutschku, K., Carlsson, P., Nilsson, A.: Identification of performance
degradation in IP networks using throughput statistics. In Charzinski, J., Lehn-
ert, R., Tran Gia, P., eds.: Providing Quality of Service in Heterogeneous Environ-
ments. Proceedings of the 18th International Teletraffic Congress (ITC-18), Berlin,
Germany (2003) 399–407

11. Josephson, W.K., Sirer, E.G., Schneider, F.B.: Peer-to-peer authentication with a
distributed single sign-on service. In: The 3rd International Workshop on Peer-to-
Peer Systems IPTPS’04, San Diego, USA (2004)

12. Xu, J., Kumar, A., Yu, X.: On the fundamental tradeoffs between routing table
size and network diameter in peer-to-peer networks. In: IEEE Journal on Selected
Areas in Communications. Volume 22. (2004)

13. Binzenhöfer, A., Tran-Gia, P.: Delay Analysis of a Chord-based Peer-to-Peer File-
Sharing System. In: ATNAC 2004, Sydney, Australia (2004)

14. Binzenhöfer, A., Staehle, D., Henjes, R.: On the Stability of Chord-based P2P
Systems. University of Würzburg, Technical Report No. 347 (2004)


