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Abstract— This paper studies load balancing for multipath
Internet routing. We focus on hash-based load balancing algo-
rithms that work on the flow level to avoid packet reordering
which is detrimental for the throughput of transport layer
protocols like TCP. We propose a classification of hash-based load
balancing algorithms, review existing ones and suggest new ones.
Dynamic algorithms can actively react to load imbalances which
causes route changes for some flows and thereby again packet
reordering. Therefore, we investigate the load balancing accuracy
and flow reassignment rate of load balancing algorithms. Our
exhaustive simulation experiments show that these performance
measures depend significantly on the traffic properties and on
the algorithms themselves. As a consequence, our results should
be taken into account for the application of load balancing in
practice.

I. INTRODUCTION

Multipath routing is often applied to make data forwarding

more robust against network failures [1] and to minimize

shared backup capacities [2] when resiliency against network

failures is required. It is typically implemented by equal-cost

multipath (ECMP) routing in IP networks, e.g., by OSPF [3] or

IS-IS [4]. Some proprietary router implementations also offer

ECMP-capable RIP [5]. Another option besides native IP is

the data transport over disjoint label switched paths (LSPs)

using multi-protocol label switching (MPLS) technology. In

both cases, load balancing algorithms distribute the traffic over

multiple paths towards its destination. In case of LSPs, the

traffic is distributed only once over multiple path at the LSP

ingress router while with ECMP, every node allowing another

forking of the multipath performs load distribution.

Load distribution can be done in a simple way on the packet

level, but due to varying link and buffer delays on different

paths, this may lead to packet reordering. Since packet re-

ordering severely degrades the throughput of transport layer

protocols such as TCP [6]–[8], this is not an option for TCP/IP

networks. To avoid packet reordering, all packets of a flow

should follow the same path which requires load distribution

on the flow level. An intuitive approach maps each individual

flow to a certain interface. However, this seriously impedes the

forwarding process because the corresponding outgoing inter-

face must be looked up in a table for each packet – let aside

the required memory due to the state space explosion. Another

approach uses a hash value based on header information to

determine the outgoing interface. This makes the storage and

the costly lookup of flow information redundant. Hash-based

load balancing algorithms can be implemented much easier,

but their load balancing accuracy is difficult to control.

The authors of [9] evaluate different hash functions for load

balancing algorithms and propose the 16-bit cyclic redundancy

check (CRC) function. Several other papers [10]–[13] inves-

tigated hash-based load balancing for different applications.

Most of them showed that their accuracy is relatively exact for

long term averages or they use other performance measures

like queue length that are not suitable for our application.

Load balancing applied for the optimization of the resource

management like in [2] requires a good accuracy of the load

balancing at any time instant. To the best of our knowledge,

this has not yet been investigated in literature.

In our work, we present well known static and dynamic load

balancing algorithms from the literature. Static load balancing

algorithms cannot react to load imbalances while dynamic

algorithms allow for an adaptive reassociation between hash

values and outgoing interfaces. This entails flow reassignments

to other interfaces and possibly leads to packet reordering.

Thus, the flow reassignment rate should be kept low while

the load balancing accuracy is maximized with simple and

well implementable algorithms. We suggest a classification of

new mechanisms which eventually show better performance

than existing ones. Based on this, we conduct a structured

analysis of the general load balancing potential. We investigate

the impact of dynamic algorithms on the flow reassignment

rate and the load balancing accuracy, which allows us to give

recommendations for a good algorithm design.

The paper is structured as follows. Section II reviews related

work and Section III presents existing static and dynamic

load balancing algorithms and suggests a classification of new

mechanisms. The simulative performance evaluation of the

load balancing accuracy and the flow reassignment rate is done

in Section IV. Finally, Section V summarizes this work, draws
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conclusions, and gives an outlook on further work.

II. RELATED WORK

Load balancing is used for various application scenarios

in communication systems. In general, it distributes service

requests to equivalent service entities. First, we illustrate load

balancing for multipath Internet routing with its applications

and difficulties. Then, we distinguish it from other uses by

presenting load balancing for different application examples.

A. Load Balancing for Multipath Internet Routing

Multipath Internt routing occurs whenever packets can be

sent over alternative paths. It can be implemented by different

algorithms that exhibit algorithm-dependent difficulties.

1) Multipath Internet Routing Applications: Various tech-

nical solutions incorporate load balancing.

a) Equal-Cost Multipath Routing: Multipath routing is

useful for traffic engineering purposes. In IP networks, it

is implemented by the equal-cost multipath (ECMP) routing

option. Packets at a certain location are forwarded to their

destination over any path with a shortest distance according

to the link costs in the network. Multiple paths towards a

destination can be obtained by the choice of suitable link

costs. ECMP is a standard option of the OSPF [3] and the IS-

IS [4] routing protocols. Some proprietary router implementa-

tions also allow ECMP with RIP and other routing protocols

[5]. Usually, traffic is forwarded equally over any interface

leading to the destination over a shortest path. In contrast,

adaptive multipath routing [14] is based on relaxed ECMP

multipath forwarding structures and signals dynamically the

load distribution functions.

b) Resilient Multipath Routing: Resilient multipath rout-

ing offers alternative paths such that there is still a working

path in case of a failure. This property of multipath routing is

deliberately exploited in [1] which is different from the stan-

dard IP routing. As long as at least two forwarding alternatives

exist, the traffic is distributed in each node according to a given

load balancing function.

c) Self-Protecting Multi-Paths: The self-protecting mul-

tipath (SPM) consists of disjoint label switched paths (LSPs)

and provides at the source several alternatives to forward the

traffic to the destination. If one of the paths fails, the traffic

is transmitted over the working paths. The traffic distribution

over the disjoint path follows an optimized load balancing

function to minimize the required backup capacity.

2) Problems due to Load Balancing for Multipath Internet

Routing: New problems arise due to the use of load balancing

itself or due to the inaccuracy of load balancing.

a) Problems due to the Use of Load Balancing: When

multiple paths are used, multiple maximum transfer units

(MTUs) may occur on the paths between a pair of nodes

[5]. Furthermore, popular debugging utilities like ping and

traceroute may become unreliable. Succeeding probes may

follow different paths or the diagnosed path does not coincide

with the data path. However, the main problem is that different

queuing, transmission, and propagation latencies along differ-

ent paths may lead to packet reordering. Reordered packets

have a detrimental effect on the throughput of transport layer

protocols like TCP [6]–[8]. Therefore, all packets of a single

flow should be forwarded along the same path to avoid packet

reordering. Section IV studies the flow reassignment rate that

causes packet reordering when load balancing is used.

b) Problems due to Load Balancing Inaccuracy: The

resource management entity of a network can configure load

balancing to optimize network operation [15]. Then, overload

may occur on some links if the achieved load balancing

proportions in the network deviate significantly from the cor-

responding configured values. This is especially problematic if

the QoS of real-time traffic is protected by admission control

but an unexpected traffic distribution corrupts the planned

traffic load in the network [16]. Similarly, backup capacities

may not suffice for the SPM or the above mentioned resilient

multipath routing if the real traffic distribution in the network

deviates from the pre-configured values due to the inaccuracy

of load balancing. Section IV investigates this inaccuracy.

3) Load Balancing Concepts: There are various load bal-

ancing concepts that can be differentiated regarding their im-

plementation complexity. We give an overview of the principle

approaches.

a) Packet-Based Load Balancing: Load balancing can

be done through a packet-by-packet assignment of the traffic

to the alternative interfaces using an arbitrary scheduling

algorithm, e.g. round robin. This packet-based solution is a

standard implementation in many state-of-the-art routers but

it achieves load distribution on the packet level which causes

packet reordering and may entail low TCP throughput.

b) Load Balancing Based on Lookup Tables with Per-

Flow-State: An intuitive algorithm to avoid packet reordering

is recording an identifier (ID) of a flow together with its

outgoing interface in a lookup table. If the first packet of a flow

arrives, an interface is selected, the information is inserted into

the lookup table, which allows to forward succeeding packets

to the same interface. The memory requirements of the table is

very expensive for a large number of flows and the lookup in a

large table is time-consuming. Therefore, CISCO introduced a

limited-size cache [17] and calls it “fast switching”. Whenever

the cache is full at the arrival of a new flow, the oldest flow

entry of the lookup table is replaced. This possibly leads to

packet reordering if this flow is still active.

c) Hash-Based Load Balancing: The problem of large

lookup tables can be avoided by hash-based algorithms. A

hash function with good statistical properties maps the large

space of flow IDs to a smaller space of, e.g., integral numbers.

Another operation associates the hash value to outgoing inter-

faces. No per-flow states are kept since the outgoing interface

is derived from the flow ID by mathematical functions. There-

fore, hash-based load balancing scales well with an increasing

number of flows.

Different hash functions are analyzed in [9]. The authors

conclude that the 16-bit cyclic redundancy check (CRC)

function [18]–[20] achieves good load balancing performance
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among the examined functions for static hashing.
d) Dynamic Load Balancing: The above presented load

balancing algorithms were all static in the sense that the

mapping between flows and their interfaces is never changed.

This makes it hard or even impossible to react to load

imbalances. Dynamic load balancing, i.e. flow reassignment

to other interfaces, helps to redistribute the traffic load. The

authors of [12] developed a dynamic hash-based algorithm that

periodically reassigns flows from the most overloaded link to

the most underloaded link.
4) Our Contribution: Even though an extensive survey of

the load balancing qualities of different hash functions has

been presented in [9], there is only little literature about

dynamic load balancing for multipath Internet routing. The

load balancing accuracy in [12] was estimated based on long-

term traffic distributions which lead to the conclusion that the

load balancing accuracy is fairly good. This is an intuitive

result provided that the hash functions spread large sets of flow

IDs evenly over their codomain. Studies of the load balancing

accuracy distribution over time are still missing. However, they

are required to decide whether forwarding inaccuracies due to

load balancing must be considered in the resource management

of a network.

B. Load Balancing for Inverse Multiplexing

A single point-to-point link on the network layer may be

provided by bundling multiple parallel links on the link layer.

The packets of a traffic aggregate are distributed over these

parallel links for transmission. This approach is called in-

verse multiplexing [21] because multiplexing normally means

putting multiple small flows onto a large trunk. Typical imple-

mentations use packet- or byte-based round robin scheduling

[22], which achieves a well balanced load on the separate links.

Due to varying conditions on the single links, packet

reordering is also possible like in Section II-A. However,

the delay variations are significantly smaller in contrast to

load balancing on the IP or MPLS layer. An intelligent

packet scheduling at the source allows for efficient packet

resequenceing at the sink for point-to-point links. For example,

the strIPe protocol does this scheduling and resequencing

based on surplus round robin (SRR) on both sides of the

physical link [22]. Since multipaths in IP networks may be

significantly more complex than parallel links, this solution

cannot be adopted for the general problem in Section II-A.

Another implementation approach for inverse multiplex-

ing avoids packet reordering within flows by a hash-based

mapping between flows and physical links [13]. The scheme

monitors buffer occupancies and reacts to unbalanced load by

moving flows from overloaded to underloaded links to prevent

packet loss. In contrast, the objective of load balancing for

multipath routing is a load distribution according to preplanned

values.

C. Load Balancing for Parallel Network Processors on High-

speed Links

Today, highspeed links have such a large bandwidth that

network processors are not able to serve them. Therefore,

parallel network processors are used to operate a highspeed

link at full capacity. The traffic is distributed to different

processing units and all packets of a flow should be forwarded

to the same network processor to avoid packet reordering. Un-

derloaded network processors lead to underutilized bandwidth

and overloaded network processors lead to packet drops.

Like above, hash functions are suggested to map flows with

the same hash value to so called flow bundles assigned directly

to the processors through lookup table entries [10], [11].

Unbalanced load is detected by monitoring the queue lengths

of the network processors and flow bundles are reassigned

accordingly. If the time since the last packet arrival is longer

than a specified timeout value, the flow bundle may be

reassigned to another network processor. Setting the timeout

value larger than the packet forwarding latency through the

network processor avoids packet reordering. This idea is not

applicable to load balancing for multipaths on the IP or MPLS

layer because the path latencies can be substantially longer

than the one of a network processor.

D. Load Balancing for WWW Caches

WWW caches are used in networks to reduce the number

of outgoing WWW requests and to reduce the response time

perceived by the users. When caches are distributed over

several machines, a hash function maps the request string

efficiently to the cache which is responsible for the request.

The main focus of this kind of load balancing is not an

even load distribution but the reduction of search time and

hit rate increase. In case of a cache failure, the authors of [23]

developed an elegant algorithm called “highest random weight

(HRW)” to deviate requests from the failed cache to other

caches. Here, a random weight is calculated for each cache by

a hash function based on the request string and the cache ID.

The cache with the highest random weight is responsible for

the request. If a cache fails, the request points automatically

to the cache with the next highest weight.

III. AN OVERVIEW OF HASH-BASED LOAD BALANCING

ALGORITHMS

The problem of load balancing for multipath routing can

be described by the following notation. All flows at a certain

router r with destination d are denoted by the flow set F(r, d).
Due to multipath forwarding, there is a set of outgoing links

(interfaces) L(r, d) over which the traffic may be sent. It

can be derived from the forwarding table. The desired load

balancing for the flow set F(r, d) is described by the target

load fraction tLF (r, d, l), which indicates the percentage of

the traffic rate that should be forwarded over l ∈ L(r, d).
Thus,

∑
l∈L(r,d) tLF (r, d, l)=1 is fulfilled.

The ID id(f) of a flow f consists mostly of the five-tuple

source and destination address, source and destination port

number, as well as protocol id, or a subset thereof, which

are part of the invariant header field of each packet. Hash-

based load balancing algorithms use a hash function h(id(f))
to calculate a hash value based on the flow ID id(f). We

use the 16-bit CRC as a hash function in our experiments. A
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link selector function sr,d(h(id(f))) yields the corresponding

outgoing interface l ∈ L(r, d) from the respective set of

outgoing links for a flow f ∈ F(r, d). Thus, hash-based

algorithms differ with respect to the applied hash and link

selector functions h and sr,d.

We assume that the current traffic rate cTR(r, d, l) over

a specific link l ∈ L(r, d) of a flow set F(r, d) can be

obtained by some means, e.g. by online measurements [24].

The current load fraction is then computed by cLF (r, d, l)=
cTR(r,d,l)P

l′∈L(r,d) cTR(r,d,l′) . If it differs due to stochastic effects sub-

stantially from the target load fraction tLF (r, d, l), a change

of the link selector function sr,d is required. Static hash-based

load balancing algorithms do not allow such a change while

dynamic hash-based algorithms automatically adapt their link

selector function sr,d to achieve a balanced traffic distribution.

In this section, we explain the basic construction of static

and dynamic hash-based load balancing algorithms and pro-

pose a classification of existing and new algorithms.

A. Static and Dynamic Link Selector Functions for Hash-

Based Load Balancing

Direct link selector functions may be implemented by a sim-

ple modulo operation, i.e., mod (h(id(f)), |L(r, d)|) deter-

mines the number of the outgoing interface within the link set.

This leads to an even traffic distribution of the traffic aggregate

F(r, d) over the links in L(r, d). Target load fractions other

than even load distributions can be obtained by table-based

link selector functions. They perform an indirect mapping from

the hash value h(id(f)) to an outgoing interface l ∈ L(r, d)
via so-called intermediate bins. The bins have pointers to the

outgoing interfaces. The entire bin set is denoted by B(r, d)
and the bins are numbered 0, . . . , |B(r, d)|−1. Now, the table-

based link selector function consists of a bin selector function

(e.g. mod(h(id(f)), |B(r, d)|)) that maps a hash value to a

specific bin and the pointer of the bin that further directs the

flow f to an interface. The data structure of such a table-

based link selector function is illustrated in Figure 1. The

link-specific bin set B(r, d, l) contains all bins of B(r, d) with

pointers to l.

Fig. 1. Data structure of a table-based link selector function.

The assignment between bins and links is fixed for static

link selector functions. However, increasing the link-specific

bin set B(r, d, l) increases also the current load fraction of

l. This is achieved by redirecting pointers to l from bins

with pointers to other links. The reduction of the current load

fraction of a link l works analogously. Dynamic algorithms

perform these actions during runtime and, thus, adapt their

dynamic link selector functions to the current load condi-

tions. They check the current load difference cLD(r, d, l) =
cLF (r, d, l) − tLF (r, d, l) for any link l∈L(r, d) from time

to time, e.g. in periodic intervals of length tr = 1 s, and

reassign the pointers of the bins if needed. Links with a

positive cLD(r, d, l) are called overloaded and those with a

negative cLD(r, d, l) are called underloaded. A link l may

be overloaded with regard to some flow set F(r, d) and,

simultaneously, it may be underloaded with regard to some

other flow set.

In the following, the size of a bin b∈B(r, d) is determined

by its current traffic rate cTR(r, d, b). It is the overall rate of

the flows f ∈F(r, d) whose IDs id(f) are mapped to b via the

hash and the modulo function. The current traffic load fraction

of a bin is defined by cLF (r, d, b)= cTR(r,d,b)P
b′∈B(r,d) cTR(r,d,b′) .

B. Bin Reassignment Algorithms for Dynamic Load Balancing

We define and classify several bin reassignment algorithms

for dynamic load balancing in a modular way. We first propose

strategies to disconnect bins from link-specific bin sets. Then

we suggest methods to add the free bins to new link-specific

bin sets. The combination of these strategies yields various

bin reassignment algorithms. All algorithms operate on router-

and destination-specific structures indexed by a specific (r, d)-
tuple.

1) Bin Disconnection Strategies: Bin disconnection strate-

gies differ with regard to the number of simultaneously dis-

connected links, i.e., either only a single bin is disconnected

at once or multiple bins may be disconnected. Furthermore,

disconnection strategies may be progressive (-), i.e., they try

to bring overloaded links into underload; or they may be

conservative (+), i.e., they try to avoid to bring overloaded

links into underload.

a) Conservative Single Bin Disconnection (SBD+):

The conservative algorithm SBD+ disconnects from the link-

specific bin set B(r, d, l) of the heaviest loaded link l the

largest bin that does not turn the link l into underload. Thus,

we call SBD+ conservative. SBD+ does not disconnect any

bin if the disconnection of the smallest bin from the heaviest

loaded link l turns the link l into underload.

b) Progressive Single Bin Disconnection (SBD−): The

dynamic load balancing algorithm in [12] proposed for best

accuracy disconnects the largest bin from the link-specific bin

set B(r, d, l) of the heaviest overloaded link l. It is irrelevant,

whether the considered link l turns into underload or not.

Therefore, this strategy is progressive and we denote it by

SBD−.

We focus on simple algorithms here. Note that many other

methods can be defined for single bin disconnection.

c) Conservative Multiple Bin Disconnection (MBD+):

The conservative multiple bin disconnection strategy discon-

nects from all overloaded links so many bins until any further

removal turns them into underload. The bins within the link-

specific sets B(r, d, l) are checked in a simple greedy manner

in the order of decreasing size, whether they turn the link into
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underload. If not, the bin is removed. The free bins are stored

in a so-called bin pool BP(r, d).
d) Progressive Multiple Bin Disconnection (MBD−):

The progressive multiple bin disconnection strategy MBD−

works like MBD+ but it eventually turns each still overloaded

link l into underload by removing the smallest bin from its

link-specific bin set B(r, d, l).
2) Bin Reconnection Strategies: A single bin or multiple

bins have been disconnected from their link-specific bin sets

B(r, d, l) and must be reconnected to new ones in such a

way that the target load fraction tLF (r, d, l) of each link is

met. Usually, this objective can be met only approximately.

The resulting load balancing inaccuracy on any link l may be

measured by the current load difference cLD(r, d, l). As an

alternative, this difference may be viewed in a relative way by

the relative current load difference rCLD(r, d, l)= cLD(r,d,l)
tLF (r,d,l) .

Thus, the reconnection of the bins should be optimized with

regard to one of these measures. The exact optimization of

this problem is difficult given the time constraints in high

speed routing. Therefore, we solve it again by simple greedy

approaches. All disconnected bins are collected in the bin pool

BP(r, d) where they are sorted according to their size. We

select bins in the order of decreasing size for reconnection to

the bin sets and propose two simple strategies for this purpose.

a) Absolute Difference Bin Reconnection (ADBR): We

reconnect the bin to the link l with the lowest current load

difference cLD(r, d, l), i.e. with the largest underload.

b) Relative Difference Bin Reconnection (RDBR): In a

first step, we try to reconnect the bin to the link l with the

largest underload like above, but only if the bin b does not turn

the link into overload. This can be achieved if ∃l ∈ L(r, d) :
cLF (r, d, l) + cLF (r, d, b) ≤ tLF (r, d, l) holds. If this fails,

we reconnect the bin b in a second step to a link l that obtains

the lowest relative overload among all links in L(r, d) if the

bin b is assigned to its link set B(r, d, l). Such a link can be

formally described by argminl∈L(r,d)(
cLD(r,d,l)+cLF (r,d,b)

tLF (r,d,l) ).
Note that many other bin reconnection strategies may be

defined.

3) Composition of Bin Reassignment Algorithms: In Sec-

tion III-B.1 we have proposed several methods for the

disconnection of bins. We define the generic algorithm

BinDisconnection that may be instantiated by any of the

presented options SBD−, SBD+, MBD+, and MBD−.

After their disconnection, the bins are collected in a bin

pool BP(r, d). In Section III-B.2 we have suggested several

methods for the reconnection of these bins to new link-specific

bin sets. We define the generic algorithm BinReconnection
that may be instantiated by either ADBR or RDBR. Thus,

we get 8 substantially different bin reassignment methods by

the generic approach presented by Algorithm 1.

In the following, we use a slash-notation to refer to the

actual algorithms, e.g. SBD−/ADBR. This is the algorithm

proposed by [12], while the other 7 combinations are new

methods. Many other options may also be implemented.

Again, we underline that these are all greedy algorithms which

are only heuristics and achieve certainly not the optimum.

BP(r, d) = BinDisconnection({B(r, d, l) :
l ∈ L(r, d) ∧ cLD(r, d, l) > 0})

while BP(r, d) 6= ∅ do

bmax = argmaxb∈BP(r,d)(cLF (r, d, b))
BinReconnect({B(r, d, l) : l ∈ L(r, d)}, b)

end while

Algorithm 1: Generic bin reassignment method.

However, simplicity and fast execution of the algorithms count

more than optimality. This was one of our design goals.

IV. SIMULATION RESULTS

In this section we provide extensive simulation results that

help to understand the accuracy and the flow reassignment

behavior of dynamic load balancing algorithms under various

conditions. First, we explain our simulation methodology.

Then, we investigate the influence of flows with heterogeneous

flow rates and the offered load for static hashing. We show that

the distribution accuracy can be improved by simple dynamic

load balancing and that a larger number of bins leads to

better results. We compare several dynamic load balancing

algorithms and investigate the impact of the length of the bin

reassignment interval on the flow reassignment rate and the

load balancing accuracy.

A. Simulation Methodology

We simulate on a very small simulation topology on the flow

level. We use synthetic flow IDs instead of packet traces and

generate the flows according to a Poisson model. We motivate

these assumptions in the following.

1) Simulation Topology: We are interested in the load

balancing behavior for a flow set F(r, d) at router r and

destined for destination d. Therefore, we simulate only the

traffic distribution to a given number of interfaces at a single

node according to a given target load fraction tLF (r, d, l). In

the following, we fix the parameters r and d and abandon them

from our notation for easier readability. This is possible as we

consider only a single router and a single destination.

2) Flow Level Simulation: Many related studies perform

a fully detailed network simulation on the packet level to

measure the packet reordering probability. However, the ob-

tained results depend significantly on the network topology

and the routing, on the latency of different paths, and on

the queueing delay caused by cross traffic. Thus, there are

many other factors but load balancing that influence the packet

reordering probability. Therefore, we rather focus on the flow

reassignment rate λFR. It is affected only by the dynamic

load balancing and influences the packet reordering probability

proportionally. In addition, flow level simulations run much

faster and allow us to produce very reliable results.

3) Synthetic Flow ID Generation: In many studies real

traffic traces are used to evaluate the quality of load balancing

mechanisms and to emphasize that the results are realistic.

This is important to assess the quality of hash functions for

a certain application. In our study, we use the 16-bit CRC
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function because the authors of [13] have shown that “hashing

using a 16-bit CRC over the five-tuple gives excellent load bal-

ancing performance”. We are interested in the general potential

of static and different dynamic load balancing algorithms and

not in the quality of different hash functions. Therefore, we

use synthetically generated flow IDs to avoid any correlation

effects within a specific trace.

4) Traffic Model: The interarrival time of flows on Internet

links are exponentially distributed with rate λIAT [25]–[27].

Therefore, the Poisson model is well applicable on the flow

level. The call holding times are identically and independently

distributed with a mean value of E[B] = 90 s. Thus, the

offered load can be calculated by a=λIAT · E[B] measured

by the pseudo unit Erlang (Erl) and can be viewed as the

average number of simultaneous flows. The variation of the

rates of different flows has a significant impact on the quality

of the load balancing mechanisms [10]. In fact, there are a few

large flows (elephants) producing fifty to sixty percent of the

total traffic while the rest is due to many small flows (mice)

[28], [29]. As a consequence, our traffic model is multi-rate

to capture this effect. We use nr = 3 different flow types

ri, 0 ≤ i < nr with flow rates c(ri) ∈ {64, 256, 2048} kbit/s.

Details can be found in [30].

5) Performance Measures and Simulation Credibility: We

consider two important performance aspects for load balancing

algorithms: load balancing accuracy and the flow reassignment

rate. We measure the load balancing accuracy of the current

load fraction cLF (l) for each link l ∈ L and capture a

time-weighted histogram for cLF (l). We define the absolute

deviation of the load fractions cLF (l) from their target values

tLF (l) averaged over all links l ∈ L as as an additional

performance measure for the load balancing inaccuracy

I=
1

|L|
∑

l∈L
|cLF (l)− tLF (l)|= 1

|L|
∑

l∈L
|cLD(l)| (1)

and use its mean E[I] to capture the inaccuracy by a single

number.

We calculated confidence intervals for all performance met-

rics used in this work based on standard simulation techniques

such as replicate-delete [31]. We simulated so long that the

99% confidence intervals deviate at most 1% from the respec-

tive mean values. Thus, they are very small which proves the

statistical significance of our results. As they are hardly visible,

we do not show them in the following figures.

B. Impact of Exogenous Parameters on the Accuracy of Static

Load Balancing

In our first experiments, we study the influence of the flow

rate variability and the offered load on the load balancing ac-

curacy of static load balancing. We assume only two outgoing

links to which the traffic should be forwarded equally.

First, we assume an offered link load of 100 Erl and

consider the influence of the flow rate variability. In the case

of homogenous flows, all flows have a rate of 256 kbit/s

whereas in the case of heterogenous flows, the flows have only

64 and 2048 kbit/s but the same mean of 256 kbit/s, which
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Fig. 2. Impact of flow rate variability on the traffic distribu-
tion for static load balancing.

yields a coefficient of variation of 2.29. The results for the

current load fraction cLF (l) captured in the time-weighted

histogram can be transformed into the distribution function

from Figure 2, which makes it easy to differentiate curves from

several experiments. The x-axis shows the load fraction on the

first link in percent with a granularity of 1%. The y-axis shows

the probability that the observed load fractions are smaller than

or equal to a value x on this link l at an arbitrary time instant.

The result for the second link is symmetric as we consider two

links here. The load balancing accuracy is high if the curve

increases around the respective target load fraction tLF (l)
with a steep slope. The probability function for homogeneous

flows illustrates that the measured load fraction varies from

0.35 to 0.65 in spite of a target load fraction of 0.5. The

probability follows exactly a binomial distribution according to

P (cLF (l)= i)=
(
100
i

)
0.5100 as load balancing reduces to the

task of distributing the number of currently active flows over

paths. In case of heterogeneous flows, the flatter curve shows

that the load balancing accuracy is significantly decreased and

the average inaccuracy E[I] increases from 3.90% to 10.06%.

Thus, the flow rate variability has a clear impact on the load

balancing accuracy. This finding is in line with the results

in [10]. We conduct all following studies with heterogeneous

flows because this model is more realistic.
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Fig. 3. Impact of the offered load on the traffic distribution
for static load balancing.
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In the next experiment, we consider the number of simulta-

neous flows in the flow aggregate F . Figure 3 shows the load

balancing accuracy for an offered load of a = 10{2,3,4} Erl.

It is clearly visible that the load balancing accuracy increases

with the number of simultaneous flows. The data in the figure

are given for heterogeneous flows. For homogeneous flows

this result can be easily derived from the binomial distribution

above: the coefficient of variation of the load fraction can be

calculated by cvar=
1√
a

. An offered load of 10 Erl is definitely

too small for load balancing since we observed almost any load

fractions between 0 and 1 and, thus, is not shown here. For

103 Erl we get better observations between 0.38 and 0.62 for

static load balancing algorithms and an average inaccuracy of

3.13% instead of 10.06% as observed for a = 102 Erl. Very

high traffic aggregates at a = 104 Erl lead to almost perfect

load balancing with a very low mean inaccuracy of 0.93%. In

the following experiments, we consider an offered load of 102

Erl because it is a moderate aggregation level and, thereby,

more challenging for the load balancing accuracy.
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Fig. 4. Impact of the number of bins on the traffic distribution
for SBD−/ADBR dynamic load balancing.

C. Accuracy Increase through Dynamic Load Balancing

Now we consider possible performance gains through

dynamic load balancing algorithms and first analyze

SBD−/ADBR as it has been proposed in [12]. We use a

bin reassignment interval with a length of tr =1 s. The size

of the bin set B is crucial for the accuracy of table-based

load balancing. Figure 4 shows the distribution function of

the load fraction for static load balancing and for dynamic

load balancing with a different number of bins in the two-

link experiment from above. With only 10 bins, the average

load balancing inaccuracy is with 12.05% larger than with

static load balancing (10.06%). The small number of bins with

dynamic adaptation is counterproductive. However, there is a

significant improvement of the inaccuracy for 50 bins (6.90%),

100 bins (5.87%), and 500 bins (4.74%). Another doubling of

the number of bins does not lead to any clear performance

gain (4.54%). The algorithms become more complex if the

number of bins increases. In the following, we work with

100 bins because they lead to a sufficiently high accuracy

and impose still moderate complexity, which is important for

technical feasibility.
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Fig. 5. Complementary distribution function of the load
balancing inaccuracy for various load balancing algorithms.

D. Comparison of the Accuracy of Different Dynamic Load

Balancing Algorithms

We have seen from the two-link experiments above that

dynamic load balancing can significantly increase the load

balancing accuracy. We compare now different dynamic load

balancing algorithms and use a more sophisticated experiment

for that purpose. The traffic is distributed over four links with

target load fractions of 10%, 20%, 30%, and 40%. We first

study the inaccuracy of the single bin disconnection (SBD)

and multiple bin disconnection (MBD) algorithm families.

Then, we show the details on each of the four links for SBD
to motivate the observed performance. And finally, we contrast

the detailed results for the best MBD algorithm to the SBD
results to illustrate the potential of multiple bin disconnection.

1) Comparison of the Inaccuracy Distribution: The inac-

curacy I defined in Equation 1 captures the histograms for

the current load fractions cLF (l) as shown in Figure 6(a) on

each of the four links in a single measure and enables us to

compare several algorithms more easily. Figure 5(a) illustrates

the complementary distribution function of the inaccuracy I
for the entire SBD algorithm family. The x-axis shows the
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inaccuracy in percent with a granularity of 1% and the y-

axis shows the probability that the observed inaccuracy is

larger than the value x at any time instant. The faster the

curves decay, the better is the load balancing accuracy. The

SBD+-based algorithms (E[I] = 2.57% and 2.72%) are

significantly more accurate than the SBD−-based algorithms

(E[I] = 3.74% and 4.15%). For SBD−, the version based on

relative difference bin reassignment (RBDR) is significantly

more inaccurate than the version based on absolute difference

bin reassignment (ABDR) while there is hardly any difference

between them for SBD+.

The MBD algorithm family outperforms the SBD family

clearly as illustrated with the corresponding results for the

MBD algorithms in Figure 5(b). The lines decay much faster.

Here, the MBD− versions (E[I] = 0.73% and 0.81%) are

significantly more accurate than the MBD+-based methods

(E[I] = 1.76% and 1.77%). For MBD−, the RDBR-

based version is only little more inaccurate than the ABDR-

based approach and for MBD+ we cannot see any difference

between them.

2) Comparison of SBD-Based Load Balancing Algo-

rithms: Figures 6(a) to 6(c) show the histograms of the load

fraction on each of the four links for various SBD-based

algorithms to understand the above results for the inaccuracy

in detail. For the SBD−/ADBR method in Figure 6(a), the

deviations around the target load fraction is symmetric and

similar for all links except for the one with the smallest

target load fraction. This phenomenon is due to the flow size

variation. Generally, the range of observed load fractions is

still quite broad for SBD−/ABDR. It removes always the

largest bin from the link with the heaviest overload. This bin

may be too large to balance the load and its disconnection

causes significant underload on the considered link. In addi-

tion, this may cause oscillations if the same bin is exchanged

back and forth between the same two links. As illustrated

in Figure 6(b), the conservative algorithm SBD+/ABDR
avoids this problem, leads to more accurate load balancing and

clearly outperforms the progressive approach SBD−/ADBR.

It is interesting that links with a smaller load fraction have

a larger peak around their target load fraction, which is a

good feature. This effect is enforced by the SBD+/RDBR
approach seen in Figure 6(c) as it tries to minimize the load

deviation relative to the respective target value. However, the

data reveal that the impact of the RDBR strategy is quite

weak. The improvement of the load balancing accuracy for

links with a low target load fraction is reached at the expense

of a slightly degraded load balancing accuracy for links with

a high target load fraction. The same phenomenon can be

observed with SBD−/ADBR and SBD−/RDBR.

3) Potential of MBD-Based Load Balancing Algorithms:

Figure 6(d) illustrates the load balancing accuracy for

MBD−/ADBR. It is significantly better compared to the

SBD-based methods and to emphasize this we draw particular

attention to the differently scaled y-axis. This clearly shows

the benefit of MBD opposed to SBD.
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Fig. 6. Accuracy of load balancing over four links for various
algorithms.
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Fig. 7. Impact of the bin reassignment interval tr on the load balancing accuracy.

The accuracy is quite similar for each link. However, links

with small target load fractions rather tend to have positive

load deviations while links with large target load fractions

rather tend to have negative load deviations. The details for

the other MBD versions are omitted here.

In the following we use ADBR-based algorithms because

they are less complex and more accurate.

E. Impact of the Bin Reassignment Interval Length on the

Accuracy and the Flow Reassignment Rate

The duration of the flows and the application frequency of

dynamic reassignment steps have a significant impact on the

load balanced results. In our simulations, the flow durations

are exponentially distributed with a mean value of 90 s but

we do not further elaborate on this issue since this is not

a parameter under control. We rather investigate the load

balancing accuracy depending on the reassignment interval

length tr.

Figure 7(a) shows the impact of tr on the load balancing

accuracy for SBD+/ADBR. The complementary distribution

functions of the inaccuracy are similar for tr = 0.1 s and

tr =1 s with mean values of E[I] = 2.38% and 2.72%. The

accuracy is clearly degraded for tr = 10 s (E[I] = 4.46%)
and it is not acceptable for tr = 100 s (E[I] = 9.61%). We

get similar results for MBD−/ADBR in Figure 7(b). The

inaccuracy for tr=100 s is not acceptable (E[I]=7.15%) but

the inaccuracy for tr=10 s (E[I]=2.55%) is comparable to

the best accuracy of SBD+/ADBR. The accuracy for tr =
0.1 s and tr = 1 s are also similar, but with E[I] = 0.48%
and 0.81% it is significantly better than for the corresponding

values of SBD+/ADBR.

The flow reassignment rate λFR is the average number of

reassignments of a flow per second. If we multiply λFR with

the lifetime of a given flow we get the number of reassign-

ments this flow will perceive over its complete duration on

average. The length of the bin reassignment interval tr has a

significant impact on the rate λFR. Figure 8 compiles the flow

reassignment rates for SBD+/ADBR and MBD−/ADBR.

The flow reassignment rate increases for both algorithms by

a factor of 10 if tr decreases by a factor of 10 from 100 s to

10 s. We conclude that the same number of flows is reassigned

whenever the load is balanced for tr ∈{10, 100} s. A further

reduction of tr increases the reassignment rate significantly

less. Hence, the number of reassigned flows within one step

decreases.
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Fig. 8. Impact of the bin reassignment interval tr on the
flow reassignment rate.

SBD+/ADBR and MBD−/ADBR achieve good load

balancing results for tr = 0.1 s and tr = 1 s. However, for

tr=0.1 s the flow reassignment rate is much higher. A similar

accuracy can be obtained for MBD−/ADBR at tr = 10 s

and SBD+/ADBR at tr = 1 s with about the same flow

reassignment rate. After all, a bin reassignment interval length

of 1 s should be chosen for both algorithms. Then, the flow

reassignment rate is about 0.04 1
s

for MBD−/ADBR which

means that a flow is reassigned every 25 s and that a flow with

a duration of 90 s is reassigned 3.6 times on average. Note

that packet reordering occurs less frequently because packets

do not get necessarily out of order when flows are switched

to another paths. The flow reassignment rate may be further

reduced for MBD algorithms if the reconnection process

tries to reconnect bins to their previous links if possible.

This obviously already happens by chance but more intelligent

algorithms can enforce this. Their complexity may be feasible

for a bin reassignment interval length of tr=1 s such that this

gives room for further research.
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V. CONCLUSION

In this paper we investigated the load balancing accuracy

and the flow reassignment rate for various load balancing

algorithms in different networking scenarios. First, we gave

a broad overview on the use of load balancing algorithms

but in our study we focused on load balancing for multipath

Internet routing. We presented a taxonomy of load balancing

algorithms that contained existing and new methods.

Then, we showed by means of simulation that the load bal-

ancing accuracy for static load balancing algorithms depends

on the flow rate variability and the offered load. Dynamic load

balancing algorithms, that use indirect table-based hashing

over intermediate bins, can improve the load balancing accu-

racy, in particular, if the number of bins is large enough. We

showed that the deviation from the target load distribution may

be significantly different for various load balancing algorithms.

The distribution accuracy improves significantly if more than

a single bin may be reassigned in a single load balancing

step. Our newly proposed load balancing approaches clearly

outperform existing solutions regarding the load balancing

accuracy. We showed that a bin reassignment interval of 1 s

is good enough to achieve a good accuracy and that flows are

reassigned every 25 s to other paths which may cause packet

reordering. Future enhancements to our algorithms may reduce

this rate.

In this work, we considered only the load balancing at a

single router. In networks, traffic may be balanced at different

stages and the success of load balancing in an interior router

may be influenced by the load balancing actions performed by

its predecessors. In addition, it is not clear, how the underlying

hashing algorithms must be designed to provide good load

distribution in entire networks. Currently, we are working on

these issues.
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Y. Glickman, and C. Winkler, “Improving the Resilience in IP Net-
works,” in IEEE High Performance Switching and Routing (HPSR),
Torino, Italy, June 2003.

[2] M. Menth, A. Reifert, and J. Milbrandt, “Self-Protecting Multipaths -
A Simple and Resource-Efficient Protection Switching Mechanism for
MPLS Networks,” in 3rdIFIP-TC6 Networking Conference (Network-

ing), Athens, Greece, May 2004, pp. 526 – 537.
[3] J. Moy, “RFC2328: OSPF Version 2,” ftp://ftp.isi.edu/in-

notes/rfc2328.txt, April 1998.
[4] Information technology – Telecommunications and information ex-

change between systems – Intermediate System to Intermediate Sys-

tem intra-domain routing information exchange for use in conjunction

with the protocol for providing the connectionless-mode network ser-
vice(ISO 8473), International Organization for Standardization, ISO/IEC
10589:2002 (also republished as RFC 1142).

[5] D. Thaler and C. Hopps, “RFC2991: Multipath Issues in Unicast
and Multicast Next-Hop Selection,” http://www.ietf.org/rfc/rfc2991.txt,
November 2000.

[6] V. Paxson, “End-to-End Internet Packet Dynamics,” in ACM SIGCOMM

’97, Cannes, France, September 1997.

[7] M. Laor and L. Gendel, “Effect of packet reordering in a backbone link
on applications throughput,” IEEE Network, vol. 16, no. 5, 2002.

[8] E. Blanton and M. Allman, “On Making TCP More Robust to Packet
Reordering,” in ACM Computer Communication Review, vol. 32, no. 1,
Jan 2002, pp. 20–30.

[9] Z. Cao, Z. Wang, and E. Zegura, “Performance of Hashing-Based
Schemes for Interet Load Balancing,” in Proceedings of IEEE Infocom,
Tel-Aviv, Israel, March 2000.

[10] W. Shi, M. H. MacGregor, and P. Gburzynski, “An Adaptive Load
Balancer for Multiprocessor Routers,” in SPECTS 2004, San Jose, CA,
July 2004, pp. 671–679.

[11] G. Dittmann and A. Herkersdorf, “Network Processor Load Balancing
for High–Speed Links,” in SPECTS 2002, San Diego, CA, 2002, pp.
727–735.

[12] T. W. Chim and K. L. Yeung, “Traffic Distribution over Equal-Cost-
Multi-Paths,” in Proceedings of IEEE International Conference on

Communications (ICC), Paris, France, June 2004.
[13] J.-Y. Jo, Y. Kim, H. J. Chao, and F. Merat, “Internet Traffic Load

Balancing using Dynamic Hashing with Flow Volume,” in SPIE ITCom
2002, Boston, MA, August 2002.

[14] I. Gojmerac, T. Ziegler, F. Ricciato, and P. Reichl, “Adaptive Multipath
Routing for Dynamic Traffic Engineering,” in IEEE Globecom, San
Francisco, Nov 2003.

[15] C. Hoogendoorn, K. Schrodi, M. Huber, C. Winkler, and J. Charzinski,
“Towards Carrier-Grade Next Generation Networks,” in International

Conference on Communication Technology (ICCT), Beijing, China, April
2003.

[16] M. Menth, J. Milbrandt, and S. Kopf, “Impact of Routing and Traf-
fic Distribution on the Performance of Network Admission Control,”
in 9thIEEE Symposium on Computers and Communications (ISCC),
Alexandria, Egypt, June 2004, pp. 883 – 890.

[17] A. Zinin, Cisco IP Routing, Packet Forwarding and Intra-domain

Routing Protocols. Addison Wesley, 2002, ch. 5.5.1.
[18] Information technology – Telecommunications and information exchange

between systems – High-level data link control (HDLC) procedures,
International Organization for Standardization, ISO/IEC 13239:2002.

[19] Error-correcting procedures for DCEs using asynchronous-to-
synchronous conversion, International Telecommunication Union –
Telecom Standardization (ITU-T), Recommendation V.43 (03/02).

[20] Ross, Williams N., “A Painless Guide to CRC Error Detection Algo-
rithms,” http://www.ross.net/crc/, May 1996.

[21] P. H. Fredette, “The Past, Present, and Future of Inverse Multiplexing,”
IEEE Communications Magazine, vol. 32, pp. 42–46, April 1994.

[22] H. Adiseshu, G. Parulkar, and G. Varghese, “A Reliable and Scalable
Striping Protocol,” in Proceedings of ACM SIGCOMM Computer Com-

munication Review, vol. 26, August 1996.
[23] D. G. Thaler and C. V. Ravishankar, “Using Name-Based Mappings

to Increase Hit Rates,” IEEE/ACM Transactions on Networking, vol. 6,
no. 1, 1998.

[24] R. Martin and M. Menth, “Improving the Timeliness of Rate Measure-
ments,” in 12thGI/ITG Conference on Measuring, Modelling and Eval-
uation of Computer and Communication Systems (MMB) together with

3rdPolish-German Teletraffic Symposium (PGTS), Dresden, Germany,
Sept. 2004, pp. 145 – 154.

[25] V. Paxson and S. Floyd, “Wide-Are Traffic: The Failure of Poisson
Modelling,” IEEE/ACM Transactions on Networking, June 1995.

[26] J. W. Roberts, “Traffic Theory and the Internet,” IEEE Communications

Magazine, vol. 1, pp. 94–99, January 2001.
[27] T. Dinh, B. Sonkoly, and S. Molnár, “Fractal Analysis and Modeling of

VoIP Traffic,” in Proceedings of Networks 2004, Vienna, Austria, June
2004, pp. 123 – 130.

[28] S. Sarvotham, R. Riedi, and R. Baraniuk, “Connection-level analysis and
modeling of network traffic,” in ACM SIGCOMM Internet Measurement

Workshop, San Fransisco, CA, USA, November 2001, pp. 99–103.
[29] N. Brownlee and K. Claffy, “Unterstanding Internet traffic streams:

Dragonflies and tortoises,” IEEE Communications, vol. 40, no. 10, pp.
110–117, October 2002.

[30] M. Menth, “Efficient Admission Control and Routing in Resilient
Communication Networks,” PhD thesis, University of Würzburg, Faculty
of Computer Science, Am Hubland, July 2004.

[31] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd ed.
McGraw-Hill, 2000.

c©IEEE Conference on Broadband Communications, Networks and Systems (BROADNETS), San José, California, October 2006 – page 10/10


