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Abstract— The distribution of a stationary point process can
be sampled by an ordinary histogram. If the distribution of
the process varies over time, a static histogram still yields
results that are averaged over time since the beginning of the
data collection. In this paper, we propose the time-exponentially
weighted moving histogram (TEWMH) to derive an estimate
for the time-dependent distribution of an instationary point
process. The importance of the samples decays exponentially over
time such that young samples contribute more to the empirical
distribution than old ones. The strength of the decay can be
controlled by a simple parameter which determines the memory
of the histogram. We present a simple implementation of the
TEWMH such that this mechanism can be well applied in
practice. The empirical distribution serves for the derivation of
other time-dependent statistical measures such as time-dependent
percentiles of the observed random variable. These provide
useful feedback in self-controlled adaptive systems. We illustrate
the application of the TEWMH for experience-based admission
control (EBAC) and show its benefits.

Keywords: Measurement Techniques, Quality and Perfor-
mance in Autonomic Systems

I. I NTRODUCTION

Histograms collect data of an observed random variableX
to obtain an estimate of the distribution ofX. They allow the
derivation of statistical measures like the mean, the standard
deviation, or various percentiles. These measurement datamay
be used for the calibration of adaptive systems. Technical
systems may be even self-adaptive if they adapt autonomously
to new conditions, i.e., they observe their environment and
adapt to changes. The observation of changes is problematic
with conventional histograms if they collect data since the
start of the system: the more data are already collected, the
more data with a different characteristic are needed to effect
a significant change in the distribution. Thus, it is desirable to
give more importance to young samples and less to old ones
in order to propagate the properties of the latest samples faster
into the distribution obtained by the histogram.

In this paper, we propose the time-exponentially weighted
moving histogram (TEWMH). The importance of the collected
samples decays exponentially over time and the strength of
the devaluation of old samples is controlled by a simple
memory parameter. Its implementation is simple such that it

This work was funded by Siemens AG, Munich. The authors alone are
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can be well used in technical systems. We further illustratethe
application of the TEWMH for experience-based admission
control (EBAC) which is an example for a self-adaptive
system. Admission control admits or rejects flows for high
quality transport over a link or through a network. The decision
is based on the bandwidth requested by the flows and on
the bandwidth of the overall admitted flows. If the flows use
only half of their requested and reserved rate, AC can admit
about the double amount of flows, i.e., the available bandwidth
is safely overbooked. To that end, EBAC collects samples
of the utilization of the overall flow reservations. It derives
the inverse of the 99%-quantile and takes the inverse as the
overbooking factor. The quantile leads to a more conservative
overbooking factor than the mean. This design decision has
been made to avoid congestion due to statistical fluctuations. If
a conventional static histogram is used for the implementation,
EBAC cannot adapt quickly to new traffic properties while the
TEWMH allows for a fast reaction regardless of how many
samples have already been collected by the histogram.

The paper is structured as follows. Section II adapts the
time-exponentially weighted moving average (TEWMA) for
rates from [1] to averages. It is similar to the TEWMH,
however, it is less complex. Section III explains possible im-
plementation of static and dynamic histograms and it presents
the TEWMH. Section IV introduces the fundamentals of
EBAC, illustrates the application of the TEWMH, and points
out its benefit. Finally, we summarize this work and draw our
conclusions in Section V.

II. T IME-EXPONENTIALLY WEIGHTED MOVING AVERAGE

(TEWMA)

Similar but simpler than the derivation of the current distri-
bution of a random variableX is the estimation of its current
mean. In [1], four different methods have been presented
to calculate time-dependent rates. We adapt them for the
computation of time-dependent means and discuss their pros
and cons.

A. Stochastic Point Processes

In the following, we observe a stochastic point processXi ,
i ∈N0. Arrivals of sizeXi happen at timesti ∈R0, i ∈N0. It
describes, e.g., the packet sizes and the temporal structure
of a packet arrival process. If the process is stationary, the
distribution for all Xi are identical. In practice, however, we
might observe that theXi depend on the daytime. For instance,
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the traffic volume in a network varies over time and other
aggregate properties like the traffic composition are also time-
dependent.

B. Static Mean

The static mean is calculated byE[X] = 1
n ∑0≤i<nXi . The

drawback of this equation is that all samples from the past are
considered to calculate the mean. Therefore, if the distribution
of the Xi change, the obtained mean value hardly changes if
the numbern of already collected samples is large. Thus, the
calculation of the conventional definition of the mean does not
allow to track temporary changes of the mean valueE[X].

C. Time-Dependent Average Based on Discrete Intervals
(Avg-DI)

To calculate a time-dependent average based on discrete
intervals (Avg-DI), the time axis is slotted into equidistant
intervals of length∆t. We define the set of indices with all
arrivals in the j-th interval by I j = {i : j · ∆t ≤ ti < ( j +1) ·
∆t}. The empirical mean for intervalj is then calculated by
E[X] j =

1
|I j |

∑i∈I j
Xi . The valueE[X] j is taken as an estimate

for the time-dependent average during the( j+1)-th interval.
We define the memoryM of time-dependent means by the time
a sample contributes to the resulting average. In the case of
Avg-DI, a sample contributes exactlyM =∆t. Avg-DI suffers
mainly from two drawbacks. If the interval length∆t is short,
the statistical base for the computation ofE[X] j is extremely
weak. If∆t is long, the average values are late or even obsolete
since only the average values for the last past interval are
available.

D. Exponentially Weighted Moving Average (EWMA)

The timeliness of the mean values can be improved by
the exponentially weighted moving average (EWMA) without
disregarding the past samples. It starts withE[X]0 = X0 and
calculates the succeeding values recursively byE[X]i = w ·
E[X]i−1+(1−w) ·Xi . The average of the last arrival instant is
valid until the next one. In contrast to Avg-DI, samples always
contribute to the EWMA but their strength is devaluated by
w whenever a new sample arrives. Thus, the memory depends
on the temporal structure of the process. The average memory
of the EWMA isM= 1

λ ·(1−w) ·∑∞
i=0wi = 1

λ wherebyλ is the
interarrival rate of the process. Thus, the memory depends on
the arrival rate only. The weight parameterw just controls the
averaging strength of the EWMA, i.e., largew lead to slowly
changing results and smallw lead to quickly changing results.
The EWMA comes with a semantic problem. It disregards
the interarrival time between the samples, i.e., the impactof
a new sample on the new mean is the same whether the last
calculation of the EWMA has been long time ago or only
recently.

The EWMA was introduced by [2] and this mechanism
has been studied quite intensively especially in the field of
economics for chart analysis [3]–[8]. The EWMA is also used
in many technical documents of the IETF [9], [10], the most
prominent one is probably the obsolete estimation of the round
trip time for TCP in [11].

E. EWMA Based on Discrete Intervals (EWMA-DI)

EWMA-DI is a combination of Avg-DI and EWMA: it
applies the EWMA to the time-dependent averages obtained
from Avg-DI. The corresponding memory isM=∆t · (1−w) ·

∑∞
i=0wi =∆t which is now independent of the arrival rateλ .

However, this method suffers from the same disadvantages as
Avg-DI and its averaging strength depends on the choice ofw.
In addition, samples from an interval with only a few arrivals
have more impact on the mean than others.

F. EWMA Based on EWMA-Based Sums (EWMA-ES)

The static meanE[X] = S[X](t)
N(t) is calculated as the sum

of all already arrived sample sizesS[X](t) divided by the
sum of all arrivalsN(t) (counter). We enhance this concept
by devaluatingS[X](t) and N(t) in regular intervals∆t by
a parameter 0<w<1. This resembles a combination of the
static mean and EWMA-DI. EWMA-ES combines the positive
properties of EWMA-DI and the static mean as it is time-
dependent and reacts immediately when new samples are
collected. The average memory of the EWMA-ES isM =
∆t ·∑∞

i=0wi− ∆t
2 =∆t · ( 1

1−w−
1
2). The design and the memory

analysis of the EWMA-ES look cumbersome, but the EWMA-
ES serves as comprehensible predecessor for the TEWMA
since the limit for ∆t → 0 of EWMA-ES with a constant
memory leads to the TEWMA.

G. Time-Exponentially Weighted Moving Average (TEWMA)

The time-exponentially weighted moving average
(TEWMA) is an elegant enhancement of the EWMA-
ES. It is defined byE[X](t)= S[X](t)

N(t) with S[X](t0)= X0 and
N(t0)=1. The sumsS[X](t) andN(t) are updated by

S[X](ti) = S[X](ti−1) ·e
−γ ·(ti−ti−1) +Xi (1)

N(ti) = N(ti−1) ·e
−γ ·(ti−ti−1) +1 (2)

whenever a new arrival occurs. The memory of the TEWMA is
exactlyM=

∫ ∞
0 e−γ ·tdt = 1

γ and an exact half-life periodTH =
ln(2)

γ of the sample can be derived by the equation1
2 =e−γ ·TH .

Like EWMA-ES, TEWMA improves the timeliness of the
calculated mean without disregarding the temporal structure of
the process and in addition, it is independent of the sampling
time interval∆t.

H. Comparison of the Averaging Methods

We illustrate the impact of the temporal structure of the
process on the time-dependent average for some of the above
presented concepts. We consider four different but very similar
realizations of a single stochastic process that produce two
samples within the first three potential arrival instantst ∈
{1,2,3}. Thus, the arrival rate for that interval isλ = 2

3
which determines the average memory of the EWMA. To be
comparable from a memory point of view, we set∆t = 1

λ for
the interval-based mean andγ =λ for the TEWMA.

Table I shows that the static mean is unaware of the order
and temporal structure of the stochastic process. Avg-DI at
time instantt =2 is based on the average of the samples at



t = 0 and t = 1 and, therefore, it yields delayed results. The
results of the EWMA depend significantly on the value ofw
and are insensitive to the temporal structure of the process.
The TEWMA produces timely results and respects both the
trend and the temporal structure of the process, i.e., it matters
whether a sample arrives att =0 or at t =1.

TABLE I

COMPARISON OF AVERAGING METHODS WITH REGARD TO THE

TEMPORAL STRUCTURE OF THE MEASURED PROCESS.

X(0) X(1) X(2) Static Avg-DI EWMA EWMA TEWMA
mean w= 2

3 w= 1
3 γ =λ

4 – 1 2.5 4 3 2 1.63
– 4 1 2.5 4 3 2 2.01
– 1 4 2.5 1 2 3 2.99
1 – 4 2.5 1 2 3 3.37

III. T IME-EXPONENTIALLY WEIGHTED MOVING

HISTOGRAM (TEWMH)

In this section, we discuss the implementation of time-
dependent histograms according to the concepts of time-
dependent averages. Some of these concepts are trivial, others
are new. In particular, the new TEWMH is a non-trivial
adaptation of the TEWMA concept to histograms.

A. Static Histograms

A histogram discretizes a certain value range[vlow,vhigh]
into nbins equidistant subintervals numbered from 0 tonbins−1,
the so-called bins. Each of them is associated with a counterc j ,
0≤ j<nbins. A random variableXi is collected in the histogram
by incrementing the counter for binb(Xi −vlow)\(

vhigh−vlow
nbins

)c
by 1 and by incrementing the total number of hitsnhits by
1, too. If the random variableXi lies outside the considered
interval, counter 0 ornbins−1 is incremented. All collected
values contribute equally to the relative frequencyh j =

c j
nhits

of
their corresponding bins. Therefore, the static histogramis not
able to represent the latest trends of the observed process in
the empirical distribution.

B. Time-Dependent Histogram Based on Discrete Intervals
(Hist-DI)

Time-dependent histograms based on discrete intervals
(Hist-DI) are analogous to time-dependent averages based
on discrete intervals (Avg-DI). The data are collected during
an interval of length∆t and during that time, the relative
frequencies from the previous interval are taken as results.
This approach comes with the same disadvantages as Avg-DI:
for small intervals the data lack statistical significance and for
large intervals the results are late.

C. Exponentially Weighted Moving Histograms (EWMH)

The exponentially weighted moving histogram (EWMH)
starts with an increment of 1 for the counterc j corresponding
to the first sample to assure that the sum of the counters is 1
which is an invariant of this method. It continues with incre-
ments of(1−w) combined with a devaluation of each counter

by w whenever a random variable is observed. The countersc j

contain directly the relative frequencies, therefore, a very large
w is recommended. The EWMH inherits the disadvantages of
the EWMA, e.g., the memory of this approach depends on the
arrival rateλ of the process. Moreover, the EWMH requires
very large computation overhead since all counters must be
devaluated whenever a new observation is made.

D. EWMH Based on Discrete Intervals (EWMH-DI)

Similarly to EWMA-DI, EWMH-DI is a combination of
Hist-DI and EWMA: it applies the EWMA process to the
counter valuesc j obtained from EWMA-DI. EWMH-DI in-
herits its memory from EWMA-DI and suffers from the same
shortcomings.

E. EWMH Based on EWMA-Based Counters (EWMH-EC)

The EWMH-EC works basically like the EWMA-ES. It in-
crements the corresponding counters by 1 whenever a random
variable is observed and devaluates all countersc j and nhits

of the static histogram in regular intervals of length∆t. The
EWMH-EC is simpler to implement than Hist-DI and EWMH-
DI because it requires only a single data structure, and it needs
less computation power than the pure EWMH since counters
are devaluated only after∆t time. The EWMH-EC inherits its
memory from the EWMA-ES. The limit for∆t → 0 of the
EWMH-EC with a constant memory leads to the TEWMH
presented in the next section.

F. Time-Exponentially Weighted Moving Histograms
(TEWMH)

The TEWMH is basically derived from the TEWMA.
Whenever a new random variableXi is observed, the corre-
sponding counterc j andnhits are set to

c j(ti) = c j(ti−1) ·e
−γ ·(ti−ti−1) +1 (3)

nhits(ti) = nhits(ti−1) ·e
−γ ·(ti−ti−1) +1 (4)

cn6= j(ti) = cn6= j(ti−1) ·e
−γ ·(ti−ti−1), (5)

i.e., the other counterscn6= j are just devaluated bye−γ ·(ti−ti−1).
This makes the approach as computationally expensive as the
pure EWMH method since all counters are updated upon a
new observation. We get rid of scaling down the other counters
by leaving them untouched and scaling up the increments in
Equation (3) and 4 instead. Thus, only two counters need to
be incremented in case of a new observation:

c j(ti) = c j(ti−1)+eγ ·(ti−tR) (6)

nhits(ti) = nhits(ti−1)+eγ ·(ti−tR) (7)

taking the last reset instanttR into account. When the number
of hits nhits(ti) becomes too large, the counters are reset by
c j(ti)=

c j (ti)
nhits(ti)

and nhits(ti)=1, and the new reset timetR= ti
is stored.



G. Derivation of Percentiles

The percentile or quantile of a distribution regarding a
random variableX is defined by

Xp = min(x : P(X ≤ x) ≥ p) . (8)

An estimation of the time-dependent quantileXp(t) can be
derived from the TEWMH or EWMH-EC by

Xp(t) = min

(

vlow · j : ∑
0≤i< j

ci(t) ≥ p·nhits(t)

)

. (9)

Thus, the relative frequency of the smallest bins is summed
up such that their sum is equal to or larger thanp. The lower
bound of the next largest bin yields the desired percentile
value.

IV. A PPLICATION OFTEWMH TO EXPERIENCE-BASED

ADMISSION CONTROL (EBAC)

In this section, we show the application of the TEWMH
in the context of experience-based admission control (EBAC).
We briefly review the concept of EBAC that we first presented
in [12]. We calibrated its basic parameters in [13] and investi-
gated its behavior in the presence of traffic changes in [14].In
this paper, we illustrate the impact of the histogram type on
the reaction time of EBAC and show the benefit of TEWMH.

A. Basic EBAC Mechanism

The idea of EBAC is briefly described as follows. An
admission control (AC) entity limits the access to a linkl
with capacityc(l) and records all admitted flowsf ∈ F(t) at
any timet together with their requested peak rates{r( f ) : f ∈
F(t)}. When a new flowfnew arrives, it requests a reservation
for its peak rater( fnew). If

r( fnew)+ ∑
f∈F(t)

r( f ) ≤ c(l) ·ϕ(t)·ρmax (10)

holds, admission is granted andfnew joins F(t). If flows
terminate, they are removed fromF(t). The experience-based
overbooking factorϕ(t) is calculated by statistical analysis
and indicates how much more bandwidth thanc(l) can be
safely allocated for reservations. The maximum link utiliza-
tion thresholdρmax limits the traffic admission such that the
expected packet delayW exceeds a maximum delay threshold
Wmax only with probability pW.

The reserved bandwidth of all flows isR(t)=∑ f∈F(t) r( f )
while C(t) denotes the unknown mean rate of the traffic
aggregateF(t). The intention of EBAC is to derive a suitable
overbooking factorϕ(t) that takes advantage of the peak-to-
mean-rate ratio (PMRR)K(t)= R(t)

C(t) of the traffic aggregate.
EBAC makes traffic measurementsM(t) at an appropriate
time scale on the link and samples the reservation utilization
U(t)=M(t)/R(t) by a histogram [13] to derive thep-percentile
Up(t) of the empirical distribution ofU . Its reciprocal yields
the time-dependent overbooking factorϕ(t) = 1/Up(t) as the
contents of the histogram depends on the current timet.

B. Impact of the Histogram Type on the EBAC Reaction Time

In [13], EBAC worked well when we used static histograms
for the measurement of the utilization of the reservations since
the flows had constant traffic properties and the statistical
properties of the collected utilization values did not change
over time. However, in the presence of traffic changes, the
percentile of the utilization must quickly reflect the new condi-
tions, thus, the applied histogram must be time-dependent.To
keep things simple, we study the behavior of EBAC on a single
link with a capacity of 10 Mbit/s. As AC only reacts to avoid
congestion, we operate the link under saturated conditions,
i.e., we trigger so many flow requests that many of them are
rejected.

In [14] we investigated EBAC for very fast traffic changes,
i.e., the PMRRK(t) of the traffic aggregate suddenly increased
or decreased. A PMRR increase means that less traffic is sent
than before and a PMRR decrease denotes more traffic from
the admitted flows. The adaptation of the overbooking factor
ϕ(t) works very fast when the PMRRK(t) suddenly decreases,
but is is relatively slow when it increases. Very fast decreases
of PMRR may result from coordinated QoS attacks of all
admitted traffic sources, which is an extreme and also not very
realistic scenario.

In this paper, we investigate the impact of a slow increase
of the PMRRK(t) on the reaction time of the EBAC. We
have almost the same experiment settings like in [14] where
also the detailed traffic model is described. We simulate the
EBAC with the following time-dependent parameters. Until
simulation timet=230 s, new flows have a PMRR ofk( f )=2
and afterwards new flows have a PMRR ofk( f ) = 4. We
perform this experiment 50 times and present averaged results
in Figures 1(a) - 1(d). The figures show the link bandwidth
c(l), the reserved rateR(t), the measured rateM(t), the
resulting overbooking factorϕ(t) and the effective PMRRK(t)
of the admitted flows. Figure 1(a) shows that the overbooking
factorϕ(t) approximates the PMRRK(t) quite well as long as
K(t) is constant. As soon as the PMRR of the entire aggregate
K(t) increases since old flows withk( f )=2 terminate and new
flows with k( f ) = 4 are admitted, the reservation utilization
U(t) decreases, but a significant amount of samples is required
that the quantileUp(t) decreases, too. This delays the increase
of the overbooking factorϕ(t). The reserved capacity grows
with the overbooking factor because we assumed a sufficiently
high request rate such that free capacity can be used whenever
available by EBAC. Sinceϕ(t) is underestimated compared to
K(t), the measured traffic rateM(t) drops under 7.5 Mbit/s
for a while. The results in Figure 1(a) belong to EBAC
implementations with EWMH-EC with a memory ofM=14 s
and a devaluation interval of∆t=10 s. This produces the same
curves like the TEWMH with the same memory. Figures 1(b)
- 1(d) show the results for time-dependent histograms of type
EWMH-EC with the same memory ofM = 14 s but longer
devaluation intervals of∆t = 110,210,310 s. The resource
utilization for large values of∆t is lower than for small
ones which is disadvantageous in a situation where traffic is
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Fig. 1. Impact of length∆t of the devaluation interval for EWMH-EC histograms with a memoryof M = 14 s on the reaction time of EBAC if the
peak-to-mean rate ratio of new flows suddenly changes fromk( f )=2 to k( f )=4 at timet =230 s.

blocked. The curves forϕ(t) and the accompanyingR(t) tend
to have steps whose corners approachK(t). The size of the
steps clearly correlates with the devaluation interval because
the percentileUp(t) increases when the counters with high
utilization values in the histogram are devaluated. At these
time instants, there is no safety margin betweenϕ(t) and
K(t) anymore, which might lead to QoS violations. Histograms
with large values of∆t have a very small devaluation factor
w for a short memory ofM = 14 s such that the overall
sum nhits(t) in the histogram becomes extremely small. As
a consequence, sufficiently many new samples are required to
produce a good estimate for the quantileUp(t). We performed
the same experiments with the TEWMH, too, with different
thresholds to normalize the counters. They all lead to the
same smooth results as in Figure 1(a) but without updating
all counters within relatively short intervals of∆t =10 s.

After all, the presented curves show that the EWMH-EC is
well feasible, but it must be carefully parameterized, i.e., its
devaluation interval∆t must not be chosen too long compared
to its memoryM. Very short intervals increase the computation

overhead for the devaluation of the counters. The TEWMH is
simpler since it does not require any other parameters besides
the length of its memoryγ. Its quantile reacts rather quickly to
changes of the traffic properties compared to the one from the
EWMH-EC with large∆t and improves thereby the timeliness
of the histogram without sacrificing the statistical significance
of its values.

V. CONCLUSION

The conventional calculation of average values and the
conventional evaluation of histograms to derive empirical
distributions respect all samples equally. As a consequence,
their results do not react quickly to changes of the statistical
properties of the observed random variable. In earlier work,
we proposed several methods to derive time-dependent rates
of a point processX(t). In this paper, we adapted these
concepts to calculate time-dependent averages. We extended
them to time-dependent histograms to obtain time-dependent
empirical distributions that allow, e.g., the derivation of time-
dependent percentiles ofX. The most elegant method is the
time-exponentially weighted moving histogram (TEWMH). In



contrast to other methods, it provides timely results since
the impact of collected samples is immediately seen in the
empirical distribution. It has a relatively low computational
overhead and it is simple to use as it relies only on the
single parameterγ that controls the length of its memory. To
illustrate the usefulness of the TEWMH, we used it to make
experience-based admission control (EBAC) self-adaptiveto
changes of the traffic properties. Our experiments showed that
the TEWMH leads to stable results while other time-dependent
histogram types can lead to artifacts in the system that are
caused by additional implementation parameters of the these
histograms.

Due to its simplicity regarding both its implementation and
parametrization, the TEWMH is a good concept for measure-
ments in self-adaptive systems as they require timely feedback
for quick reactions to changes in the observed environment.
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