

Autonomically Improving the Security and Robustness of Structured P2P

Overlays

Gerald Kunzmann

Institute of Communication Networks

Munich University of Technology (TUM)

gerald.kunzmann@tum.de

Andreas Binzenhöfer

Institute of Computer Science

University of Würzburg

binzenhoefer@informatik.uni-wuerzburg.de

Abstract
Recent research efforts have shown that peer-to-

peer (p2p) mechanisms incorporate a potential that

goes well beyond simple file sharing. Compared to the

classic client-server architecture, these systems do not

suffer from a single point of failure.

However, there is still the danger that an adversary

is able to attack a specific subpart of the system. This

is especially true for structured p2p networks like

Chord. A well targeted attack could cause disruptions

in its global ring structure and result in severe perform-

ance degradations, loss of resources or major malfunc-

tions.

In this paper we introduce a self-protecting ap-

proach to prevent such disruptions before they actually

happen. However, since it is practically impossible to

avoid all failures and attacks, we also present self-

repairing algorithms, which are able to automatically

detect disruptions and initiate appropriate countermea-

sures to reestablish the structure of the overlay.

1. Introduction

As the Internet is growing, the drawbacks of the

classic client server architecture become an increasing

problem. Current developments in distributed systems

prove that the p2p paradigm has the potential to over-

come such drawbacks. In contrast to the client server

relationship, the inherent structure of p2p networks

naturally resembles the connections between commu-

nicating groups. They are highly scalable since new

users automatically add new resources to the system.

Most importantly, they do not suffer from a single

point of failure.

In this context, structured p2p networks are particu-

larly appealing to companies in order to enable new

business applications. Due to the well defined structure

of the overlay, those systems are able to offer search

guarantees as well as a limited search time delay [1].

However, the functionality of a deployed system heav-

ily depends on the maintenance of its structure. A dis-

ruption of the overlay structure can cause anything

from a degraded performance or a limited functionality

up to the point of a total collapse of the system.

Most structured p2p networks are based on distrib-

uted hash tables (DHT). DHTs store <key, value> pairs

among participants in a decentralized distributed sys-

tem. The pairs can be looked up efficiently by routing

the query request to the pair’s owner. Additionally,

DHTs are designed to be highly scalable and fault-

tolerant.

The ring structure of the most researched structured

p2p system Chord [2] is especially vulnerable to at-

tacks since each disruption of the overlay can cause a

disconnection of the overlay ring. In the worst case the

network is split into two separate rings, which are not

aware of each other. Such disconnections cannot only

be caused by malicious attackers but also by churn, i.e.

by the frequency at which new users join and leave the

system. There are different proposals of how to handle

churn in a structured p2p network [3], however, it is

impossible to entirely avoid failures in the system.

To increase the stability of Chord-based p2p sys-

tems, we present a novel self-protecting approach

which is able to detect possible problems at an early

stage and to react accordingly. However, while it is

certainly important to try to prevent attacks and fail-

ures, one cannot entirely avoid them. As experience

shows, distributed systems will encounter failures and

c ©
2
0
0
6

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
it

iv
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

In
te

rn
a
ti

o
n

a
l

C
o
n

fe
re

n
ce

o
n

S
y
st

em
s

a
n

d
N

et
w

o
rk

s
C

o
m

m
u

n
ic

a
ti

o
n

s.
IC

S
N

C
2
0
0
6
,

2
0
0
6
,

1
0
.1

1
0
9
\/

ic
sn

c.
2
0
0
6
.2

4
.

one should design for it. Therefore we additionally aim

at the recovery from failures rather than at failure-

avoidance alone. Our self-repairing algorithms are able

to automatically detect disruptions and security prob-

lems and will initiate redundant countermeasures to

reestablish the structure of the overlay.

The remainder of this paper is structured as fol-

lows. We summarize related work in Section 2. Section

3 gives a brief overview of Chord with a focus on as-

pects relevant to this paper. Section 4 identifies some

security issues of the Chord protocol. In Section 5 we

show how to recover from disruptions in the overlay

structure and describe an approach of how to try to

avoid them in Section 6. Section 7 finally concludes

the paper.

2. Related Work

There are different kinds of security concerns in

DHT-based p2p networks. Most research so far con-

centrates on misbehaving nodes that do not implement

the protocol correctly or which simply cannot be

trusted. [4] gives a good overview of security problems

which are inherent to large p2p systems. The focus is

on adversary peers which mislead legitimate nodes by

providing them with false information. The authors

concentrate on attacks against the routing and against

the data storage system.

[5] also studies attacks aimed at preventing correct

message delivery in structured peer-to-peer overlays

and presents defenses to these attacks. A secure routing

algorithm is proposed which allows tolerating up to

25% malicious nodes while providing good perform-

ance when the fraction of compromised nodes is small.

peer z
s1

s2

s3

Figure 1: Successors of peer z

Several security threats like the well known Sybil

attack [6] are addressed in [7]. Its main focus is on a

quantitative analysis of routing anomalies that can be

caused by malicious nodes returning incorrect lookup

routes. Finally [8] studies what kind of information an

adversarial node can learn about another node in the

same network through the simple observation of net-

work traffic.

In contrast to the above, the main contribution of

our work is to prevent malicious nodes from destroying

the structure of the overlay network and to develop

self-repairing mechanisms to recover the structure in

case of a disruption.

3. A brief introduction to Chord

This section gives a brief overview of Chord with a

focus on aspects relevant to this paper. A more detailed

description can be found in [2].

In general, a DHT assigns each peer in the overlay

an m-bit identifier using a hash function such as

SHA-1. Chord builds a ring topology (clockwise

marked with numbers from 0 to 2
m
), where the position

of a peer on this ring is determined by a peers m-bit

identifier. If the ring structure is lost, the functionality

of the Chord algorithm can no longer be guaranteed.

Therefore a peer stores information about its

r immediate successors on the ring. Figure 1 shows the

successor list for a peer z and r = 3 successors. It con-

sists of s1, s2, and s3, the three immediate successors

of peer z. If the immediate successor s1 of peer z goes

offline, peer z can still contact the next closest peer s2

of its successor list. As stated in [2], in an N-node

system,)(log2 Nr = peers are sufficient to ensure that

each peer knows the id of its closest living successor.

The hash function also assigns keys to data (re-

sources or keywords). According to Chord, a key k is

assigned to the first node whose identifier is equal to or

follows (the identifier of) k in the identifier space. This

node is called the successor of key k.

A peer could look up another peer or key by pass-

ing the query around the circle using its successor

pointers. To accelerate searches each peer also main-

tains pointers to other peers, which are used as short-

cuts through the ring. Those pointers are called fingers,

whereby the i-th finger in a peers finger table contains

the identity of the first peer that succeeds the nodes

own id by at least 2
i−1

 on the Chord ring. That is, peer z

with hash value idz has its fingers pointing to the first

peers that succeed miid
i

z to1for 2 1
=+

− , where

2
m
 is the size of the identifier space.

peer z

f4

f3

f2

f1

Figure 2: Fingers of peer z

Figure 2 shows fingers f1 to f4 for peer z. Using

these finger pointers, a lookup requires only about

)(log2 NO hops. Searches return a correct answer as

long as each node knows its correct successor. Fingers

are only used to speed up lookups. A detailed mathe-

matical analysis of the search delay in Chord rings can

be found in [1].

4. Security Concerns (and Detection)

Loss of all successors

Erroneous successors can lead to erroneous look-

ups. In the worst case, they can even cause disruptions

in the overlay topology. Chords ring structure can

encounter two different kinds of serious damage. First,

if a peer loses all of its successors, the ring will break

open. Second, the ring structure may be split into two

halves or two separate sub rings.

In this section we discuss different offensive sce-

narios that result in such overlay disruptions. In par-

ticular, we identify different threats and their impacts.

Due to churn or a well directed denial of service

(DoS) attack on at least r successive nodes on the

Chord ring, peer z, that precedes the affected part of

the ring, will no longer be able to contact any of its

successors. In fact, it can be shown, that the probability

to lose all successors due to churn is not negligible [9].

After sending several ping messages to these offline or

attacked nodes, a timer expires and the nodes are re-

moved from z’s successor list. Consequently, the ring

structure breaks open as depicted in Figure 3 (r = 3). A

peer can easily detect such a break in the ring as soon

as it discovers its list of successors to be empty.

peer z
s1

s2

s3

X
X

X?

peer z
s1

s2

s3

X
X

X?

Figure 3: Concurrent failure of p’s successors

As Chord lookups are only performed clockwise,

the peer is not able to search for its new successor.

Therefore performing a rejoin if a peer looses all of its

successors is no feasible solution to this kind of disrup-

tion.

The consequence of a loss of all successors is a

transient routing state. That is, some nodes might no

longer be reachable, while others might not be able to

forward search queries correctly.

Partitioning of the overlay
Another threat to the network is a partitioning of

the overlay structure, i.e. the ring breaks into two or

more separate overlays [2]. This scenario is likely to

occur if gateways between physically separated net-

works fail. Chords stabilization mechanism updates all

erroneous successor pointers. After a certain mean time

to repair two or more consistent sub rings emerge.

Lookups can still be performed correctly in all new

Chord rings, but due to the partitioning, not all data

stored in the original overlay will still be available in

all sub parts. A company running a global DHT appli-

cation, for example, will no longer be able to access all

data stored in the DHT, if one plants access point fails.

Running a DoS attack on nodes that have a critical

location in the physical network is sufficient to damage

the whole network.

In mobile ad-hoc networks (MANETs), network

splits are even a common issue. The overlay is likely to

be partitioned due to frequent and fast node movement,

node failures and MANETs that are out of each others

range. Successive splits without any countermeasures

finally result in many sparely populated subnets.

There exist mechanisms (c.f. Section 6) that reduce

the risk of a ring split, but are not able to avoid them

entirely. Moreover, the above examples clearly indi-

cate that the overlay protocol must be able to recover

from a partitioned network. Therefore, we introduce

some efficient mechanisms that are able to detect and

merge sub rings in Section 5.

5. Recovery

Recovery from a partitioning of the overlay

If an overlay is split into several partitions, but the

nodes are still connected in the physical network, it is

likely that there are still fingers in each partition that

point to nodes in other parts of the network. Lookups

will pass through different sub rings and in the end

return an erroneous result. Nodes can use their finger

entries and information gathered during lookups to

learn about nodes in other partitions. By inserting all

other appropriate nodes into their own successor list,

the separate rings will merge automatically.

However, in scenarios where no physical connec-

tions between separate sub rings exist, as pictured in

the previous section, the partitions cannot be merged.

Fingers pointing to nodes in other parts cannot be con-

tacted and the algorithm that updates the node’s fingers

removes these entries after a while. If the physical

connection between two rings is re-established, nodes

will not learn about the other ring by themselves.

A simple approach is to run a periodic rejoin at

every node. In doing so, each node starts a lookup for

its direct successor via the bootstrap service. It makes

no difference if the bootstrap mechanism is a local or

remote cache of available nodes or a single server. The

proceeding is the same as with a node that joins the

network. If the bootstrap service by chance returns a

node from another partition, this information can be

used to merge both rings. In our simulation environ-

ment we observed that two rings merge within a few

minutes if at least one node learns about any node in

the other ring. The main drawback of this approach is

that each node periodically has to perform a rejoin

operation and therefore stresses the bootstrap service.

The shorter the rejoin period, the faster two different

rings can be detected, but the more the bootstrap

mechanism is stressed. Therefore, this algorithm will

not scale for huge overlay networks.

In a more efficient variant of this mechanism only

one well-defined peer in each ring, e.g. the peer with

the smallest ID sends a periodic message to the boot-

strap server. A peer assumes it is the responsible peer if

its predecessor has a higher ID than the node itself. The

bootstrap server notices separate rings as soon as it

receives messages from different peers. By informing

all involved peers, a merging process can be started. As

only one peer per ring sends periodic messages this

variant is highly scalable. Also, the frequency of per-

forming this algorithm can be increased significantly

resulting in a much faster detection of sub rings.

Recovery from loss of all successors
If the ring breaks due to a failure of r successive

nodes the peer preceding the disrupted part of the ring

is not able to contact any of its successors. As dis-

cussed in the previous section a standard lookup for the

nodes successor will also not return any result. We

present a modified search algorithm that is capable of

performing lookups regardless of disruptions. The key

functionality is an algorithm that redirects a lookup

request in counterclockwise direction if the lookup

skipped one or more nodes. We call this method redi-

rection mechanism. It can also be used in normal op-

eration if a lookup request skips the keys correct suc-

cessor and is received by the wrong succeeding peer.

As soon as a peer recognizes that a search overshot its

target, it applies our redirection mechanism.

A node y can easily detect that a lookup did over-

shoot the correct successor, if it receives a lookup

message for a key k located between the initiator of the

lookup and itself, but node y is not k’s successor. Us-

ing its predecessor, node y is able to redirect the mes-

sage towards the correct successor. The message may

also be redirected over several nodes until the correct

node is reached.

In case of an open ring the node preceding the dis-

ruption can use the redirection mechanism to repair the

overlay disruption. It simply sends a lookup message

for its own ID+1 to the closest available finger. In

general, this is the smallest finger that is situated out-

side the nodes former successor list. As shown in

Figure 4, this node will then redirect the message in

counterclockwise direction until the message arrives at

the other end of the disruption. This peer no longer

possesses a valid predecessor as all of its preceding

peers have failed. Therefore, it assumes that the initia-

tor of the message is its new predecessor. For the same

reason it assumes that it is responsible for the searched

ID and answers the lookup. The initiator of the mes-

sage inserts the sender of the request in its successor

list and initializes a stabilization procedure with its

new successor. The disruption is repaired and correct

routing is reestablished.

peer x

X
X

X
f3

pred

Figure 4: Automatic disruption recovery, ini-

tialized at the beginning of the break

If a peer also stored enough predecessors (i.e. main-

tained a symmetric neighbor list) a similar recovery

mechanism could be used by the peer at the end of the

disruption. A symmetric neighbor list consisting of r

successors and r predecessors is also useful in achiev-

ing a more stable overlay [10, 11] and a more efficient

replication algorithm. In the following we therefore

assume symmetric neighbor lists.

Then, a node that has lost all of its predecessors ini-

tiates a lookup for its own ID (see Figure 5). The

lookup will traverse the ring until it arrives at the node

at the beginning of the disruption. If this node is not

yet aware of the disruption it tries to forward the

lookup message to one of its successors. As all succes-

sors have failed, the node will receive no acknowledg-

ments and after a certain while delete all successors

from its list. A node that is aware of the disruption, as

it has lost all successors, inserts the sender of the

lookup message into its own list of neighbors. It then

forwards the lookup to its new successor and starts

stabilizing with it.

If both nodes at the edges of the rings broken part

run a recovery algorithm the disruption is detected

faster and can be repaired with higher probability. In

the worst case one redundant lookup message is routed

through the ring.

Note that if symmetrical routing [12] is applied, the

redirection mechanisms is no longer necessary. Both

nodes at the edges of the disruption can initiate a sym-

metrical lookup for their own ID.

Recovery using token based stabilization
[11] proposes a Token Ring [13] like algorithm that

replaces Chord’s stabilization messages by tokens,

which are sent in both directions around the ring. This

way, a more stable overlay can be achieved. In normal

X
X

X
finger

Figure 5: Automatic disruption recovery, ini-

tialized at the end of the break

operation nodes are in the state repeat, i.e. they for-

ward all incoming tokens to the next node on the ring.

A node that is situated at one end of a broken ring does

no longer receive token messages from the disrupted

part of the ring. Therefore, it changes to the state active

monitor and starts generating periodic tokens. All to-

kens contain ID and IP address of its initiator. Ac-

knowledgements prevent tokens from being lost as

nodes fail. The token is passed through the ring until it

reaches the peer at the other end of the broken part.

There, the information about the tokens initiator can be

used to repair the ring disruption. The initiator is in-

serted into the empty neighbor list and a stabilization

process is initiated. However, this algorithm does not

scale with the ring size as the token is forwarded from

node to node, requiring N times the average transmis-

sion time to circulate the ring.

6. Avoidance

Regarding the correctness of the Chord overlay, we

observed that the probability of disruptions can no-

ticeably be reduced by some simple modifications to

Chord’s stabilization algorithm.

To avoid a disruption in the ring structure, nodes

should prevent an empty successor list. If the number

of entries reaches a critical minimum, nodes can fill

their successor list with any active node they known

(e.g. finger entries) or learn about (e.g. from received

messages). The redirection mechanism will still guar-

antee correct lookups.

To increase the correctness of the overlay structure

nodes can also decrease their stabilization period. The

more often stabilization messages are sent, the more

up-to-date the neighbor entries. We suggest an adap-

tive mechanism that increases the stabilization period if

the number of known successors shrinks or if the over-

lay structure is measured to be more dynamic. Addi-

tionally the size of the neighbor list can be adjusted

adaptively to the current churn rate in the network.

However, the more often stabilization messages are

sent and the more successors are included in the mes-

sages, the more bandwidth is required. Nodes should

pay attention to their current resource usage to avoid

performing a DoS attack on themselves.

Most importantly, we stress that nodes should make

use of all information they can gather about other

nodes. They should check whether the sender of any

message they receive fits in the list of neighbors or

fingers. If the sender of the message is already part of a

list, update the time last seen for this entry. Therefore,

a node learns about new nodes without the need to wait

for the next stabilization. Additionally, the necessary

bandwidth for checking for the correctness of the fin-

ger entries can be reduced. Fingers with a very recent

time last seen are skipped when fingers are updated.

We also suggest sending information about nodes

that have failed to all neighbored nodes. Therefore,

nodes can replace failed neighbors must faster. Yet, we

dissuade from blindly trusting in information received

from other nodes, as this information may be incorrect.

So, nodes should verify the information, e.g., by send-

ing a ping message to the responsible node. If recursive

routing is applied, nodes exchange a lot of messages

with their successors and fingers. Therefore, nodes are

aware of failed contacts much faster.

Finally, we recommend using a symmetrical Chord

variant with symmetrical neighbor lists [10] and sym-

metrical routing [12]. Additional symmetrical fingers

can be achieved by exploiting the existing overhead

[14]. Symmetrical routing enables nodes to search in

both directions, so a simple disruption in the ring can

be avoided.

7. Conclusion

Disruptions in structured p2p overlays cannot only

be caused by well targeted attacks against specific

nodes but also by churn, i.e. by the dynamic behavior

of the participating peers.

In this paper we presented efficient mechanisms to

actively prevent the loss of the overlay structure in

both scenarios. Using some simple modifications to the

standard algorithm a peer is able to exploit the existing

overlay traffic to improve the stability of the overlay.

We also introduced a self-repairing mechanism,

which is able to detect a disruption in the overlay net-

work and to apply appropriate countermeasures. The

algorithm was designed to be redundant in order to

speed up the healing process and to improve its success

rate.

Finally, we introduced a scalable solution to detect

the existence of disjoint overlay partitions and showed

how to automatically recombine them. Applying our

modifications to a Chord-based p2p system can greatly

improve its security and robustness.

8. References

[1] P.T.-G. Andreas Binzenhöfer. Delay Analysis of a Chord-

based Peer-to-Peer

File-Sharing System. in ATNAC 2004. 2004. Sydney, Aus-

tralia.

[2] I. Stoica, et al. Chord: A Scalable Peer-to-Peer Lookup

Service for Internet Applications. in ACM SIG-COMM.

2001. San Diego, CA, USA.

[3] S. Rhea, et al. Handling Churn in a DHT. in USENIX

2004 Annual Technical Conference. 2004.

[4] E. Sit and R. Morris. Security Considerations for Peer-to-

Peer Distributed Hash Tables. in 1st International Workshop

on Peer-to-Peer Systems (IPTPS). 2002. Cambridge, MA.

[5] M. Castro, et al. Secure routing for structured peer-to-

peer overlay networks. in OSDI '02. 2002. Boston, MA.

[6] J.R. Douceur. The Sybil Attack. in IPTPS02 Workshop.

2002. Cambridge, MA (USA).

[7] M. Srivatsa and L. Liu. Vulnerabilities and Security

Threats in Structured Overlay Networks: A Quantitative

Analysis. in 20th Annual Computer Security Applications

Conference (ACSAC '04). 2004. Washington, DC.

[8] C.W. O'Donnell and V. Vaikuntanathan. Information

Leak in the Chord Lookup Protocol. in Peer-to-Peer Comput-

ing (P2P 2004). 2004. Zurich, Switzerland.

[9] A. Binzenhöfer, D. Staehle, and R. Henjes, On the Stabil-

ity of Chord-based P2P Systems. 2004, University of Würz-

burg.

[10] G. Kunzmann, A. Binzenhöfer, and R. Henjes. Analyz-

ing and Modifying Chord's Stabilization Algorithm to Handle

High Churn Rates. in 6th Malaysia International Conference

on Communications (MICC) in conjunction with Interna-

tional Conference on Networks (ICON). 2005. Kuala Lum-

pur, Malaysia.

[11] G. Kunzmann, R. Nagel, and J. Eberspächer. Increasing

the reliability of structured P2P networks. in 5th International

Workshop on Design of Reliable Communication Networks

(DRCN). 2005. Island of Ischia, Italy.

[12] V.A. Mesaros, B. Carton, and P.V. Roy. S-Chord: Using

Symmetry to Improve Lookup Efficiency in Chord. in Inter-

national Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA'03). 2003.

[13] Wikipedia, Token Ring. 2006.

[14] G. Kunzmann and R. Schollmeier. Exploiting the over-

head in a DHT to improve lookup latency. in 11th Open

European Summer School (EUNICE). 2005. University

Carlos III of Madrid, Colmenarejo, Spain.

