
A Priori Detection of Link Overload
due to Network Failures

Jens Milbrandt, Michael Menth, and Frank Lehrieder

Department of Distributed Systems, Institute of Computer Science
University of Würzburg, Am Hubland, D-97074 Würzburg, Germany

Phone: (+49) 931-888 6644, Fax: (+49) 931-888 6632
{milbrandt,menth,lehrieder}@informatik.uni-wuerzburg.de

Abstract. Restoration or protection switching mechanisms are triggered by link
or node failures to redirect traffic over backup paths. These paths then carry the
normal and the backup traffic which may lead to overload and thereby to qual-
ity of service (QoS) violations, i.e. to excessive packet loss and delay. In this
paper, we present a method to assess the potential overload of the links due to
network failures. We calculate the complementary cumulative distribution func-
tion (CCDF) of the relative load for each link in the network. We discuss various
performance measures that condense this information to a single value per link
which is suitable for a link ranking. This helps to identify weak spots of the net-
work and to appropriately upgrade the bandwidth of links although they are not
overloaded during normal operation. We implemented the concept in a software
tool which helps network providers to anticipate the potential overload in their
networks prior to failures and intended modifications (new infrastructure, new
routing, new customers, . . . ) and to take appropriate actions.

1 Introduction

Network resilience is an important issue in carrier grade networks. It comprises the
maintenance of both the connectivity and the quality of service (QoS) in terms of packet
loss and delay during network failures. To maintain connectivity, restoration or protec-
tion switching mechanisms are triggered by link or node failures and redirect traffic
over backup paths. These paths then carry the normal and the backup traffic which may
lead to overload and thereby to QoS violations. While the service availability in terms
of connectivity has been studied quite well [1], the a priori detection of overload due to
network failures has not yet been investigated in depth.

In this paper, we present a concept to calculate the risk of overload due to network
failures and implement it in a software tool. Basically, failures are associated with cer-
tain probabilities and the triggered traffic redirection causes a specific relative link load
on all links. Considering all possible network failures, the law of total probability al-
lows the derivation of the complementary cumulative distribution function (CCDF) of

This work was funded by the Bavarian Ministry of Economic Affairs and the German Research
Foundation (DFG). The authors alone are responsible for the content of the paper.

N
O

T
IC

E
:

T
h
is

is
th

e
a
u

th
o
r’

s
v
er

si
o
n

o
f

a
w

o
rk

a
cc

ep
te

d
fo

r
p

u
b

li
ca

ti
o
n

b
y

S
p

ri
n

g
er

.
C

h
a
n

g
es

re
su

lt
in

g
fr

o
m

th
e

p
u

b
li
sh

in
g

p
ro

ce
ss

,
in

cl
u

d
in

g

ed
it

in
g
,

co
rr

ec
ti

o
n

s,
st

ru
ct

u
ra

l
fo

rm
a
tt

in
g

a
n

d
o
th

er
q
u

a
li
ty

co
n
tr

o
l

m
ec

h
a
n

is
m

s,
m

a
y

n
o
t

b
e

re
fl

ec
te

d
in

th
is

d
o
cu

m
en

t.
C

h
a
n

g
es

m
a
y

h
a
v
e

b
ee

n

m
a
d

e
to

th
is

w
o
rk

si
n

ce
it

w
a
s

su
b

m
it

te
d

fo
r

p
u
b

li
ca

ti
o
n

in
K

o
m

m
u

n
ik

a
ti

o
n

in
V

er
te

il
te

n
S

y
st

em
en

(K
iV

S
),

2
0
0
7
.

T
h

e
fi

n
a
l

p
u

b
li
ca

ti
o
n

is
a
v
a
il
-

a
b

le
a
t

S
p

ri
n

g
er

v
ia

h
tt

p
:/

/
d

x
.d

o
i.
o
rg

/
1
0
.1

0
0
7
\/

9
7
8
-3

-5
4
0
-6

9
9
6
2
-0

1
5
.



the relative load of all links. However, this simple principle comes with several prob-
lems that are solved in this paper.

Firstly, the evaluation of all possible failure scenarios is computationally not feasi-
ble for medium size or large networks. Therefore, the analysis must limit its scope to
the most relevant failure scenarios. In most previous studies, only the impact of single
failures has been considered as the probability of multiple failures is rather low. How-
ever, the number of multiple failures increases strongly with the network size such that
their overall probability cannot be neglected for the approximation of the CCDF. We
define all (multi-)failures with a probability larger than pmin as relevant – irrespective
of their number of failed components – and consider them for our analysis. We present
an algorithm to efficiently find the set of all relevant failure scenarios. The framework
is designed in such a way that both independent and correlated multiple failures can be
respected. The latter ones are better known as shared risk resource groups (SRRGs) [2].
For instance, shared risk link groups (SRLGs) consist of IP links that are logically dis-
tinct on the network layer but share a common resource on the link layer; the failures
of this common resource makes all links of the SRLG inoperative.

Secondly, the CCDF of the relative link load is the most detailed information we
obtain from the analysis, but it is not suitable to compare the risk of link overload of
several links because the CCDF does not define a strict order relation among them.
To facilitate link rankings, we discuss various performance measures that condense the
information of the CCDF into a single value. These condensed values help operators to
quickly identify the most critical links and to find weak spots in their networks. It allows
them to prevent congestion due to redirected traffic by upgrading the bandwidth of the
most jeopardized links appropriately although they are not overloaded during normal
operation.

This paper is structured as follows. In Section 2 we review related work regarding
network resilience. Section 3 explains our algorithms to calculate the CCDFs of the
relative link loads that are caused by the most relevant failures. Section 4 visualizes
these CCDFs and develops simple assessment functions to condense their information
into a single value; furthermore, additional features of our software tool are illustrated
to provide a quick overview of the potential overload in the entire network. Finally,
Section 5 summarizes this work and gives an outlook on possible extensions.

2 Network Failures and Resilience

In this section, we review basics about network failures and resilience mechanisms that
deviate the traffic around an outage location in the network. We give an overview on
similar work and comment on our contribution.

2.1 Network Failures
A good overview and characterization of network failures is given in [3, 4]. We can
distinguish planned and unplanned failures. Planned outages are intentional, e.g. due to
maintenance, and operators can take countermeasures in advance. Unplanned outages
are hard to predict and can be further subdivided into failures with internal causes (e.g.
software bugs, component defects, etc.) and those with external causes (e.g. digging
works, natural disasters, etc.).



Quantitative analyses and statistics about frequency and duration of failure events
that occur in operational networks like the Sprint IP backbone are given in [5, 6]. They
show that link failures are part of everyday’s network operation and the majority of them
is short-lived, i.e., their duration is shorter than 10 minutes. Moreover, they indicate that
20% of all failures are due to planned maintenance activities. Of the unplanned failures,
almost 30% are shared by multiple links and are related to problems with routers or
optical equipment, while 70% affect only a single link at a time.

The mean time between failures (MTBF) and the mean time to repair (MTTR) are
used to characterize the unavailability of a network element by p= MTTR

MTBF . Different
values for MTBF and MTTR can be found in the literature for nodes and for links [3,4,
7–9]. In this study, we choose MTTR=2 h and MTBF=2 ·106 h for nodes, i.e. pnode=
10−6. Furthermore, we use MTTR=12 h and MTBF= 300 km

L(l) ·365 ·24 h for links where

L(l) denotes the length of the link l such that we get plink=L(l)/219000 km.

2.2 Resilience Mechanisms

In case of a network failure, resilience mechanisms redirect the affected traffic around
the failure location. They can be classified into protection switching and restoration.
Protection switching establishes backup paths in advance while restoration finds a new
path after a failure has occurred. Therefore, protection switching reacts faster than
restoration. A good overview of resilience mechanisms can be found in [3, 4]. In this
study, we use IP rerouting for illustration purposes, but our framework does not depend
on any specific routing or resilience mechanism.

IP networks implement destination based routing and calculate the routing tables
in a distributed manner according to the shortest path principle. If a link or node fails,
the routing tables are automatically recalculated and the traffic follows the next short-
est paths after some time [10]. Thus, e2e IP connectivity is maintained as long as the
network is physically connected. If several shortest paths exist towards a destination,
the traffic may be forwarded to the interface with the highest priority, which is single
shortest path (SSP) routing, or it may be split equally among all interfaces of the short-
est paths, which is called equal-cost multipath (ECMP) routing. In our study, we use
ECMP with the standard hop count metric, i.e., all link costs are set to one. However,
the link costs may be manipulated for traffic engineering purposes, e.g., to minimize
the link utilization under normal conditions [11] or to make the network robust against
link failures [12–15].

2.3 Related Work Regarding Resilience Analysis

The authors of [16] present calculations for e2e availability of various resilience mech-
anisms, e.g. dedicated and shared primary and backup path concepts or restoration
methods. When rerouting in networks is considered, many multiple failures affect the
availability which leads to complex calculations. Therefore, either a limited number of
most probable failure scenarios is taken into account [17] or the analysis is limited to
only single or double failures. In [18–21] the impact of double failures is analyzed in
networks that are resilient to single failures. Most papers regarding resilience issues
consider only e2e availability [1], but some other studies also take the expected lost
traffic (ELT) as a performance measure into account to quantify the missing capacity



during failures [7, 9]. To reduce ELT, backup capacity is required that may be used by
low priority traffic during failure-free operation of the network [22]. Resilience can also
be considered on the application layer, e.g., the availability of services can be improved
by alternative servers and caching techniques [23]. NetScope is a tool to calculate the
load on the links of a network to predict the effect of various traffic matrices, special
failure scenarios, or alternate routing, and can be used for the inner loop of routing op-
timization [24]. Our tool is basically an extension of that approach towards statistical
results.

2.4 Contribution of this Work

The above mentioned studies are static in the sense that they respect only explicitly
specified failures of (single) network elements. This is a reasonable start for resilient
QoS provisioning, but the probability of multiple network failures grows with increas-
ing network size. Therefore, multiple failures need to be taken into account if the net-
work size increases. The objective is to make networks resilient to the majority of likely
failure scenarios in the sense that no overload occurs due to redirected traffic. Hence,
the impact of the majority of likely failure scenarios is more important for the network
resilience than the impact of a few devastating but very unlikely multiple failures.

The novelty of this work is the assessment of the potential overload in a network.
We present a framework that yields a distribution of the link load caused by redirected
traffic in failures scenarios. This helps Internet service providers (ISPs) (1) to detect
weak spots in their network and (2) to improve the resilience of their network system-
atically without general overprovisioning [25]. The improvement can be achieved (a)
by improved routing and rerouting in failure cases, (b) by the upgrade of existing links,
or (c) by the introduction of new infrastructure. We currently develop a tool that pre-
dicts the resilience of the network after such modifications to support the ISP with his
decision process.

3 Calculation of the Relative Link Load

We assess the potential overload of the links by analyzing the impact of failure scenarios
on their relative link load. As not all failure scenarios can be covered by the analysis due
to computational complexity, we determine the most relevant ones and take only them
into account. Various failure scenarios lead to the same so-called “effective” working
topology. We take advantage of that fact for the calculation of the traffic rates on the
links. They are needed to derive the link-specific conditional complementary cumula-
tive distribution function (CCDF) of the relative link load.

3.1 Relevant Failure Scenarios

In our study, we consider a network G=(V,E) consisting of routers v∈V and directed
links l ∈E . A simple application of our framework assumes link and node failures as
basic and independent failure events. However, it is possible to model failure events
on an even lower level, e.g., individual interfaces and line cards. The set Ŝ represents
the set of all independent failure events. Note that this set may also contain shared risk
resource groups (SRRGs) such as shared risk link or node groups (SRLG, SRNG) [2].



Each of these failure events occurs with probability p(ŝ) and we number the events ŝi

(0≤ i< |Ŝ|)1 in a descending order according to p(ŝi). A (compound) failure scenario
s⊆ Ŝ consists of several independent failure events ŝ∈Ŝ that incidentally occur at the
same time. Its probability is p(s)=(Πŝ∈s p(ŝ)) · (Πŝ∈Ŝ\ s(1− p(ŝ))) and it is relevant if
it has a probability of at least p(s) ≥ pmin. Finally, the set of relevant failure scenarios
S={s∈P Ŝ : p(s)≥ pmin} comprises all relevant failure scenarios and is a subset of the
power set P Ŝ . In particular, the failure-free scenario s= /0 is relevant and part of S.

Algorithm 1 constructs S. At the beginning, the global set of relevant failure scenar-
ios is initialized with S= /0. The recursive procedure RELEVANTSCENARIOS(i,s, p(s))
is called with arguments (0, /0,1). The algorithm steps recursively through the set of
independent failure events ŝi∈Ŝ. It constructs a compound failure scenario s incremen-
tally and the recursion ends either if the probability p(s) of the partial compound failure
scenario s is lower than pmin or if all independent failure events ŝi∈Ŝ have been con-
sidered as potential members of s. In the latter case, the failure scenario s joins S at the
end of each recursion. At program termination, the set S contains all compound failure
scenarios with a probability of at least pmin.

Input: failure event number i, partial scenario s, and its probability p(s)

if (i = |Ŝ|) then {all independent failure scenarios have been considered}
S← S ∪{s}

else {partial scenario s is probable enough to be relevant}
if (p(s) · p(ŝi)> pmin) then RELEVANTSCENARIOS(i+1,s∪ ŝi, p(s) · p(ŝi))
if (p(s) · (1−p(ŝi))> pmin) then RELEVANTSCENARIOS(i+1,s, p(s) · (1− p(ŝi)))

end if

Algorithm 1: RELEVANTSCENARIOS: constructs the set of relevant scenarios S.

3.2 Effective Topologies

The effective topology T (s) caused by a compound failure scenario s is characterized
by its set of working links and nodes. A link works if and only if itself and its adjacent
routers do not fail. A router works if and only if itself and at least one of its adjacent
links do not fail. Thus, all scenarios containing the failure of a router and some of its
adjacent links lead to the same effective topology T . We subsume all of these scenarios
in the set S(T ) and the probability of T is inherited by p(T )=∑s∈S(T ) p(s). The set
T =

⋃
s∈S T (s) denotes the set of all relevant effective topologies.

3.3 Calculation of the CCDF of the Relative Link Load

Network failures lead to rerouting and changed load situations on many links. To detect
the risk of potential overload due to failures, we derive the CCDF of the relative loads
on all links based on the relevant failure scenarios s∈S and their probabilities p(s). An
aggregate g symbolizes the traffic between two specific routers and G is the set of all
aggregates. The rate of a single aggregate is c(g) and it is given by the traffic matrix.
The routing function u(T, l,g) determines the fraction of the rate c(g) of aggregate g

1 |X | denotes the cardinality of a set X .



that flows over link l in the effective topology T . It allows the computation of the traffic
rate on link l in the presence of effective topology T by c(T, l)=∑g∈G c(g) ·u(T, l,g).

Input: set of effective topologies T
for all T ∈ T do

CALCULATEROUTING(T)
for all l ∈ E do

c(T, l)← 0 {initialization}
for all g ∈ G do

c(T, l)← c(T, l)+ c(g) ·u(T, l,g)
end for
L(l)← L(l)∪ (T,c(T, l))

end for
end for

Output: link-specific load sets L(l) for l∈E

Algorithm 2: CALCULATELOAD: calculates the load c(T, l) for each link l∈E and for
all considered effective topologies T ∈T .

The load set L(l) contains all tuples (T,c(T, l)) consisting of the effective topolo-
gies T ∈ T and the corresponding traffic rates c(T, l) on link l. Algorithm 2 com-
putes the load sets L(l) for all links l ∈E in an efficient way. The number of tuples
(T,c(T, l))∈L(l) depends on the set of relevant failure scenarios S which further de-
pends on the threshold pmin. In particular, the probability of all relevant failure scenarios
p(S)=∑s∈S p(s) is smaller than 1 in most practical scenarios. Based on the traffic rates

c(T, l) and the capacity c(l) of link l, its relative load U(T, l) = c(T,l)
c(l) can be calcu-

lated. This link load U(T, l) differs from a link utilization by the fact that it can take
values larger than 1, neglecting that traffic may be lost due to congestion. It is useful to
estimate the link bandwidth required to carry the traffic without any loss.

Finally, we can calculate the conditional CCDF of the relative link load by

p(U(l)> u|S) = 1
p(S) · ∑

{s:s∈S∧U(T (s),l)>u}
p(s). (1)

We can also give a lower and upper bound for the unconditioned CCDF of U(l) by
plower

bound(U(l)> u)= p(U(l)>u|S) · p(S) and pupper
bound(U(l)> u)= p(U(l)>u|S) · p(S)+

(1−p(S)).

4 Application Examples

We illustrate the above presented concept in an example network. We show the impact
of the probability threshold pmin on the trustworthiness of the obtained CCDFs of the
relative link load and demonstrate that the CCDFs do not establish an absolute order
among the links. Therefore, we introduce different assessment functions that condense
the information of the CCDF into a single value to get a simple result for the risk of



overload and to facilitate a comparison among links. The assessment functions also
help to visualize the potential overload of the entire network at a glance. Finally, we
give some examples for the applicability of the analysis in practice.

4.1 Test Environment

In the following, we apply the above presented analysis to the topology depicted in
Figure 3 which is the basic structure of a typical core network in the U.S. There is
one traffic aggregate g=(v,w) for each pair of nodes v and w, and we define a static
aggregate rate

c(g)=c(v,w)=

{ π(v)·π(w)·C
Sumx,y∈V ,x �=yπ(x)·π(y) if v �= w

0 if v = w
(2)

where π(v) is the population of city v∈V and C is the rate of the overall network traffic.
The populations for all cities associated with the nodes in our test network are taken
from [26].

We assume hop-count based shortest path routing and rerouting using the equal-cost
multipath (ECMP) option. We dimension the link capacities of our test network such
that they are utilized by 20% in the non-failure case. Therefore, the choice of the overall
rate C is irrelevant as we look only at the relative link load. This is an artificial scenario
as it disregards available granularities for link capacities. However, we use this artificial
setting only to illustrate our framework and we do not derive any results that are biased
by this simplifying assumption.

For the sake of simplicity, we limit our view to bidirectional link failures and node
failures as basic failure events ŝ. We use the unavailability values given in Section 2.1
as failure probabilities p(ŝ). However, our tool is able to handle also more detailed
failures such as those of line cards or single interfaces. In addition, SRRGs can also be
modelled.

4.2 CCDF of the Relative Link Load

We first study the impact of the probability threshold pmin that controls the set of rele-
vant failure scenarios S taken into account in the analysis. Then, we compare the CCDF
for different links and show that it is not possible to establish a link order based on the
CCDF of the relative link load.

Impact of the Probability Threshold pmin on the CCDF Figure 1(a) shows the condi-
tional CCDF of the relative link load for link Dal→Was. The x-axis indicates the relative
link load u and the logarithmic y-axis the probability p(U(l)>u|S) that this value is
exceeded. The points below the curve represent the effective topologies T ∈T (S) that
result from the relevant scenarios S and that cause the decay of the CCDF. Their coordi-
nates consist of the relative link loads U(T, l) and the probability p(T ). In our software
the points for the effective topologies are sensitive such that the set of subsumed failure
scenarios is displayed when the mouse is dragged over them.

The curve in Figure 1(a) is calculated based on a threshold of pmin = 10−6 which
leads to a set of |S|= 3260 relevant failure scenarios with an overall probability of
p(S)= 0.994504. The graph also shows the lower and upper bound for the uncondi-
tioned CCDF. The probability threshold pmin=10−6 leaves a large uncertainty regarding



(a) pmin=10−6→
|S|=3260, p(S)=0.994504.

(b) pmin=10−8→
|S|=42030, p(S)=0.999475.

Fig. 1. Conditional CCDF of the relative link load U(l) for link Dal→Was together with the lower
and upper bound for the unconditioned CCDF.

the unconditioned CCDF in the range of interest where the link tends to be overloaded.
Therefore, we plot the CCDF for pmin = 10−8 in Figure 1(b). As a consequence, the
set of relevant failure scenarios is now significantly larger such that it covers a proba-
bility of p(S)=0.999475. The curve has now a different shape in the right part of the
graph and the distance between upper and lower bound for the conditioned CCDF is
significantly smaller. In the following we use pmin=10−8.

Comparison of the CCDFs for Different Links The conditional CCDF of the relative
link load U(l) of a link l contains the maximum information about its overload prob-
ability. If the CCDF p(U(l0)>u|S) of the relative load of a link l0 lies for all values
below the one of another link l1, then the risk of overload for l0 is clearly smaller than
for l1. However, Figure 2 shows that link Dal→Was has a lower CCDF value than link
SaF→Was for some relative link load values u (e.g. u=0.4), and for some other values
this is vice-versa (e.g. u=0.6). Therefore, the CCDF does not provide an order relation
for links and it is not appropriate for rankings of the links according to their potential
overload.

4.3 Simple Assessment Functions for Potential Overload
The objective of our resilience analysis is to identify links that are most likely to be
overloaded, but the CCDF cannot achieve that goal. Therefore, we propose three dif-
ferent assessment functions R(l) that condense the information of the CCDF to a single
value. They may be used for link rankings and to identify the most critical links.

Assessment Function Based on Overload Probabilities The network provider can
define a critical relative link load value uc that should not be exceeded. Thus, we define
the assessment function for potential overload on link l by Ruc(l)=p(U(l)>uc|S). Note
that this ranking depends on the critical relative link load value uc. Table 1 presents
the rankings for uc∈{0.3,0.6,0.9} and shows that the value uc indeed influences the
ranking for the selected links.

Assessment Function Based on Relative Link Load Percentiles Another assess-
ment function uses percentiles of the relative link load, i.e. the relative link load values



Fig. 2. Conditional CCDF of the relative link load for link Dal→Was and SaF→Was for pmin =
10−8.

Table 1. Links ranked according to the overload probability Ruc(l).

link Ruc(l), link Ruc(l), link Ruc(l),
id uc=0.3 id uc=0.6 id uc=0.9

SaF-Sea 0.0734 LoA-SaF 0.0329 LoA-SaF 0.0324
LoA-SaF 0.0600 Den-SaF 0.0318 SaF-Sea 0.0285
Den-SaF 0.0540 SaF-Sea 0.0291 Den-SaF 0.0252

Rq(l)=min(u : p(U(l)≤ u|S)≥ q). It depends on the percentile parameter 0≤ q≤ 1.
Table 2 shows the rankings for q∈{0.999,0.99999} and makes the dependency of Ruc

on the percentile parameter q obvious for selected links.

Table 2. Links ranked according to the relative link load percentile Rq(l).

link Rq(l), link Rq(l),
id q=0.999 id q=0.99999

Sea-Tor 1.512 NeO-Orl 8.761
Kan-SaF 1.3 Kan-SaF 2.628
NeO-Orl 0.2 Sea-Tor 2.198

Assessment Function Based on Weighted Relative Link Loads The above overload
measures consider only a single point within the conditional CCDF of the relative link
load U(l), but operators might wish to take the information of the entire CCDF into
account. We achieve this by weighting the CCDF with a suitable weight function w(u):

Rw(l) =
∫ umax

0
p(U(l)> u|S) ·w(u)du (3)

and we choose w(u)=10emlwd
u

umax whereby emlwd is the maximum logarithmic weight
difference. This assessment function respects all relative link load values up to umax in
the diagram. Thus, the ranking depends on umax and emlwd . Table 3 shows the rankings



for umax =1 and emlwd ∈{2,4} and makes the influence of the latter parameter explicit
for selected links.

Table 3. Links ranked according to their weighted relative link load Rw(l).

link Rw(l), link Rw(l),
id emlwd =2 id emlwd =4

Dal-Was 0.514 Mia-Orl 6.7
Sea-Tor 0.511 Sea-Tor 5.926
Mia-Orl 0.478 Dal-Was 4.526

4.4 Potential Overload at a Glance

We show the potential overload in the network at a glance by displaying its topology
with gray shaded links. The different intensities indicate the risk of overload due to
network failures and, therefore, the value of the assessment function R(l) is translated
into an intensity value. A slide bar for the parameter uc, q, or emlwd allows to change
the intensities to get the suitable contrast. This is well feasible in realtime since the cal-
culation of the above assessment functions needs only the stored CCDF but no further
time-consuming analysis. Figure 3 illustrates the concept for the assessment function
based on overload probabilities with uc=0.6.

Fig. 3. The contrast of the links indicates their risk of overload due to network failures: dark links
are more likely to be overloaded than light links.

4.5 Application Scenarios for A Priori Detection of Link Overload

Our tool allows a network operator to detect link overload a priori, i.e. before conges-
tion occurs in the network due to redirected traffic in failure cases, and helps them to
dimension the link bandwidths large enough to support QoS also during local network
outages. The tool may be applied before the network configuration is changed to antici-
pate the impact of the changes on the potential overload. We list some examples of such
changes.

– The tool helps to analyze whether a planned bandwidth upgrade of a link is suffi-
cient to improve its potential overload or whether the upgrade is even wasteful.

– When new links or nodes are added to the network, the routing changes in the
failure-free scenario and also in failure scenarios which impacts the potential over-
load on the links.



– When link metrics are changed, the routing changes both in the failure-free scenario
and in failure scenarios which also impacts the potential overload on the links. It
also helps to optimize link metrics manually.

– When new customers are added, the traffic matrix changes which impacts the rela-
tive load of the links and thereby their potential overload in the network.

– SRLGs of leased lines are not always known in advance. If new knowledge about
them is available, a new failure event ŝ is added that entails the simultaneous fail-
ure of the links in the SRLG. This may have a tremendous effect on the potential
overload.

5 Conclusion
Network failures trigger restoration or protection switching mechanisms that redirect
traffic onto backup paths which increases the relative load of their links. In this paper,
we have proposed a framework to assess the risk of link overload in a network due
to failures that occur with certain probabilities. We implemented a tool that derives an
approximative complementary cumulative distribution function (CCDF) of the relative
link load for all links in the network. The analysis considers only the set of relevant
failure scenarios which have a probability larger than a minimum threshold pmin.

As the full information of the CCDF is often too complex for practical applications,
we proposed to condense it to a single value by so-called risk assessment functions for
which we discussed three basically different approaches. Their outcome can be used
to rank links according to their risk of overload. These values lead to a presentation
of the analysis results that is useful for network operators to quickly identify the links
that have the highest risk to be overloaded although they do not reveal problems in the
failure-free case. These links may be upgraded with additional bandwidth to prevent
congestion due to redirected traffic in advance.

Currently, we extend our tool to a priori detect overload which may also be due to
other causes such as local hot spots [25] or inter-domain rerouting [27].
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