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Abstract— In this paper we present and evaluate a fully
distributed file-sharing system architecture. Initially, a seeder
node splits a large file into moderate-sized chunks and offers it for
download. The seeder and all peers interested in downloading the
file join a Chord-based overlay and contact each other randomly
for chunk transfers. We report and discuss PlanetLab tests on this
system as well as on our modified Chord implementation which it
is based on. We give an algorithm for finding uniformly random
peers in the overlay and another for estimating the distribution
of chunk copies. Both algorithms turn out to have a significant
effect on the performance, the first one in particular.

I. INTRODUCTION

BitTorrent [1] introduced a very effective technique for
distributing a large file to a large number of recipients. The
basic idea is that the file is chopped into small chunks that
the recipients can immediately upload further. With optimal
coordination, the number of copies of each chunk grows
exponentially fast until it saturates. The main point in this
paper is that good performance is in fact possible without
any centralized coordination, indicating that the “tracker”
functionality of the original BitTorrent may not be necessary.

The experimental prototype of a BitTorrent-counterpart with
completely distributed architecture, considered in this paper,
was originally designed in the Finnish research project PAN-
NET in 2005. This system is based on random encounters,
i.e., the peers contact each other randomly and download in
each encounter one or several chunks if such are available
by the contacted peer. The PAN-NET prototype uses Chord
[2] as the underlying overlay network structure where random
contacts can be realised. The prototype was developed further
in EuroNGI’s REDLARF project, aiming at field testing in
PlanetLab [3]. Two kinds of tests were run. First, we wanted to
obtain experience and insights about how well the Chord pro-
tocol works in real implementations and what improvements
in it are recommendable. These tests were performed using
a Java implementation written at the University of Würzburg.
The second set of tests was made with the PAN-NET prototype
after improving its Chord implementation according to the
experience from the first set.

This work was funded by the EuroNGI Network of Excellence in the
context of the joint specific research project REDLARF (JRA.S.15)

Some theoretical and simulation-based work already ex-
ists, posing interesting questions for tests with a practical
implementation. Massoulie and Vojnovic [4] studied a similar
system as an abstract model obtaining some remarkable results
and insights. In particular, they found that a file sharing system
based on random encounters can reach a balanced state where
it works very effectively and, moreover, does not even need
strategies like “transfer rarest chunk first”. Moreover, the peers
were assumed non-altruistic in the sense that they stay in
the system only as long as they have not downloaded all the
chunks. In contrast to this steady-state scenario, Norros et al.
[5], [6] focused on the so called flash crowd scenario, where
all nodes except the original seeder join the file distribution
overlay simultaneously and empty-handed. In this scenario,
the chunk selection strategies and other auxiliary algorithms
turned out to have much more significant impact than in the
steady-state scenario. Purely random chunk selection policy
easily results in at least one chunk becoming rare in the
system, but the situation can be improved without need of
centralized algorithms.

A detail which is trivial in models and simulations but
highly non-trivial in real implementations is the selection
of uniformly random peers. One of the main contributions
of this paper is the very significant effect of the Random
Forward Address algorithm which was proposed but not yet
implemented in [5].

The remainder of this paper is organized as follows. Sec-
tion II gives a brief overview of related work. The design and
the architecture of our file distribution system which is based
on random encounters is described in Section III. A general
description of the emulation environment as well as a detailed
look at the Würzburg Chord prototype is given in Section IV.
Sections V and VI summarize the results obtained from the
practical evaluation of the two prototypes, regarding different
aspects of the system. Section VII concludes the paper.

II. RELATED WORK

Fundamental performance limits of file sharing were ob-
tained in [7], [8]. The performance of distributed file sharing
systems has been studied both with simulations and with math-
ematical models. Since the large number of parameters and
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complicated algorithms make accurate mathematical models
intractable, articles such as [4], [9] and [10] modelled the
systems in limiting regimes. Simulation studies such as [11]
and [12] allow to consider the effect of various parameters
(e.g., the chunk selection policy, the peer selection policy,
and heterogenous upload and download bandwidths) on the
performance of the system. The phenomenon of one chunk
becoming very rare in random chunk selection policy was
observed in [11]. Several simulation studies have shown that
the rarest first policy outperforms other policies such as
random selection [11], [12], and hence could be one of the
main reasons for the good performance of BitTorrent.

The BitTorrent tracker builds bounded degree random
graphs that are well suited for the file dissemination. It was
shown recently that such graphs can be obtained also in a
distributed manner, resulting in a ’truly trackerless BitTorrent’
[13]. There are several versions of ‘trackerless BitTorrent’ that
distribute the tracker functionality with the help of a Kademlia
DHT [14]. None of these is based on random encounters
however.

Recently, it was proposed to apply Network Coding [15]
to content distribution in order to improve the throughput
utilization and to deal with well known problems such as the
last chunk problem. Peers exchange encoded versions of the k
initial chunks, whereas k linearly independent blocks suffice
to recreate the original file. A summary of the advantages and
disadvantages can be found in [16]. Note that our algorithm
deals with the simple distribution of chunks and is thus
independent of whether network coding is applied at a higher
layer or not.

ChunkCast [17] is similar to our approach in that it also
relies on a DHT in order to make the distribution of large
content more efficient. However, in this case the DHT is
used to find sharing peers which are physically close to the
downloading peer. The evaluation was performed on a cluster
of 40 computers using Modelnet [18] to emulate a wide-area
physical topology with realistic latency and bandwidth con-
straints. The study did not consider the overhead introduced by
the DHT layer, even though it is frequently used to store and
share information about which peer possesses which chunks.

In this context, PlanetLab [3] is often used to study different
aspects of DHT implementations under realistic conditions.
The most prominent example is OpenDHT [19], which builds
the basis for a variety of different applications. However, in
contrast to this work, most evaluations of DHT implemen-
tations in testbeds concentrate on the redundant storage of
resources. The OceanStore Project [20], e.g., tries to build
a highly-available and persistent storage utility based on an
infrastructure which is comprised of untrusted and unreliable
peers. In this paper, we follow a different approach and utilize
the underlying DHT to achieve random lookups. That is, we
do not store any resources in the DHT, but solely use the
overlay structure as an efficient way to keep the participating
peers connected.

III. THE FILE-SHARING SYSTEM “PAN-NET” BASED ON

RANDOM ENCOUNTERS

Basic scenario: One peer, called the seeder, has the com-
plete file, chopped into chunks, and stays in the system as
long as it wants to distribute the file. All peers, including
the seeder, run the same software. The seeder initiates an
overlay network, in our implementation a Chord. A peer
interested in the file gets from the seeder access to the overlay
and thus the possibility to contact other members of the
overlay. A new member remains invisible for Chord searches
(a “parasite”) by delaying its first stabilize command until
it has downloaded one chunk.

Encounter procedure: Peer A, the initiator, sends to a
randomly selected peer B its chunk-bitmap (0 for missing,
1 for present chunks) and an optional list of specially wanted
chunks. A transfer rate (interpreted as upper bound) can be
specified as well. Peer B answers with its own bitmap and,
optionally, its list of “recommended” chunks and its opinion
on the maximal transfer rate. Peer A then sends its decision
on the chunk to be downloaded, and B starts to upload that
chunk. After a succesful download, peer A selects another
random peer, and the process continues.

Upload restrictions: Several simultaneously active upload
processes are allowed. However, their number is bounded by
a system parameter.

Leaving procedure: When a peer has downloaded all
chunks of the file, it either leaves the system (“non-altruistic
behavior”) or changes to a seeder mode for a random time T
(“altruistic behavior”). In this paper we study only the non-
altruistic case.

Random Forward Address (RFA) procedure: Finding
a uniformly random peer from an overlay is a non-trivial
problem that has not been considered much in literature (see,
however, [21]). In Chord, for example, it is not sufficient
to issue a find successor(x) command with a random
argument x, because the nodes are not equidistant on the
Chord ring. We propose the following algorithm. Each peer,
say A, maintains a storage for one address, say rA, where it
initially stores its own address. When a peer B wants to find a
random peer, it issues find successor(x) with random x
and gets the address of, say, C. Peer B then contacts C with a
RFA request and receives the content of rC , whereas C stores
the address of B in rC to wait for the next request. In this way,
the address of peer B is forwarded with the same frequency
as B is itself initiating contacts. If all peers have the same
downloading speed, the forwarded addresses are distributed
almost uniformly.

Although the seeder does not make downloads, it must also
issue RFA messages in order to be found. In our implementa-
tion, this happens at regular intervals as long as the number of
the seeder’s upload processes is below the allowed maximum.
The interval length is a system parameter. When an altruistic
node has collected all chunks, it changes to a seeder mode and
sends out RFA messages with the same rule as the original
seeder.



Chunk distribution estimation: Each peer can maintain an
estimate (f1, . . . , fp) of the relative frequencies of the number
of copies of each chunk in the overlay. The initial values are all
zeroes. In each encounter, upon reception of a peer’s bitmap
(ι1, . . . , ιp), the estimate is updated as

f
(new)
i := γf

(old)
i + (1− γ)ιi, i = 1, . . . , p, (1)

where p denotes the number of chunks and γ is a system
parameter. We used the value γ = 0.95 and guess, without
having studied this question closer, that the optimal value
probably depends somewhat on p but not much on the size of
the overlay. The chunk selected for transfer is the seemingly
rarest possible, according to the downloader’s distribution
estimate.

IV. DESCRIPTION OF THE EMULATION ENVIRONMENT

To backup our theoretical results we conducted several em-
ulation experiments in PlanetLab [3], a large overlay network
testbed composed of many computers which are distributed
around the globe. The intentions of our prototype studies in
PlanetLab are two-fold. On the one hand, we intend to investi-
gate the functionality of our algorithms and see in how far we
can exploit the Chord structure to realize random encounters.
On the other hand, we want to study the practicability of
using Chord as the basis for our prototype by investigating
the involved overhead as well as the robustness against churn
and flash crowd behavior. To that end, we implemented two
different prototypes, one at VTT and one at the University of
Würzburg. Both prototypes are based on the same architecture
described in Section IV-B but investigate the different aspects
mentioned above.

A. Lessons Learned form PlanetLab

At the time of our studies PlanetLab consisted of 718
machines, hosted by 345 sites, spanning over 25 countries.
However, we were only able to disseminate our prototype to
451 of the 718 machines. During the following emulations, we
furthermore had permanent problems to deploy the necessary
configuration files to about 80 hosts which were frequently
unreachable due to downtimes and other issues. This left us
with a total of 370 successfully initialized nodes in our slice.

After requesting all peers of the slice to register for the next
emulation run, the central administration entity was usually
contacted by about 300 to 315 peers. Further emulations
revealed that many peers in PlanetLab are unable to reach
each other. Simple ping messages in a fully meshed overlay
showed that 30 peers could not be contacted by 75 percent
of the peers in our slice. Another 30 peers had a very bad
connection quality, DNS problems, a very high load, varying
SSH-keys, or simply not enough disk space to write log files.

Considering the above, we concluded that 250 peers is the
maximum number of peers which can be used in our emula-
tions. However, to be able to produce comparable emulation
runs and achieve reproducible results, we limited the emulation
environment to the 150 peers with the best performance. This
number is also backed up by the monitoring statistics for

PlanetLab from the CoMon project [22]. The CoMon project
provides a node-centric view of all nodes in PlanetLab which
can be queried based on user-provided criteria. During the
times of our emulations about 475 peers were online on
average from which about 275 had more than 50 slices running
and about 115 produced a 5 minute system load average of
more than 10. If we also consider nodes which have permanent
DNS problems, a current CPU utilization of over 99 percent,
or not enough disk space, this adds up to a total of about
330 unusable peers. In fact, a query for usable nodes running
less than 5 slices and having a system average load of less
than 5 returned approximately 160 peers which agrees with
our findings.

B. Architecture of the Prototypes

The original description of Chord [2] gives a good theoret-
ical overview of the system but does not suffice to maintain
the stability of the overlay, nor the redundancy of the stored
resources under churn [23]. Based on our experience with
Chord, we applied appropriate modifications which are able
to cope with the kind of user behavior expected for our appli-
cation. Since our algorithm does not need any documents, our
major modification is to omit anything related to replication
or redundancy. Other modifications concern the join, stabilize,
and lookup routines.

Join: Each time a peer joins the overlay it needs to obtain
a list of its current overlay neighbors and additionally has to
be introduced to them. In our implementation a joining peer p
contacts a random peer in the overlay which in turn initiates
a search for the direct successor s of p. Peer s answers this
query by directly sending a stabilize message to peer p and
additionally notifies all appropriate neighbors about the arrival
of peer s. To initialize its routing table, peer p downloads the
current finger list from one of its new overlay neighbors.

Stabilize: The stability of the overlay network heavily
depends on the correctness of the pointers to the overlay
neighbors [24]. To keep the neighbor lists up-to-date, each peer
periodically exchanges neighbor lists with its direct successor
and predecessor every tstab seconds. In order to improve the
robustness of the overlay, we use symmetric neighbor lists
instead of maintaining just one single predecessor. In addition
to its periodic stabilize messages, a peer immediately shares
newly gained information about the status of other peers [25].
That is, each time a peer detects an offline node (notify down)
or gets to know a new peer (notify up) it notifies its neighbors
accordingly. The result section will show that the involved
overhead is negligible but has a great effect on stability.

A major problem of the original Chord algorithm is that
of oscillating offline entries. That is, when a peer detects and
removes an offline entry from its list of neighbors, there is still
the risk that another peer, which has not yet learned about
the offline status of the peer, re-introduces this peer at the
next stabilize instant. This way offline entries may indefinitely
circulate in the neighbor lists of the peers. Therefore, each
peer maintains a downlist, a list of peers which it knows to
be offline. Entries of this list will only be removed after three



stabilize instants or if a falsely assumed offline entry directly
contacts the peer.

Lookup: The original Chord algorithm applies a recursive
routing scheme, where a query is passed from one peer to
another peer until the final destination is reached. Since the
initiator of the search does not get any progress report during
the search process, it is hard to set timeouts or pinpoint
the exact location where the search failed. As an alternative,
routing can be performed iteratively, where each peer involved
in the search directly reports back to the initiator of the
search. While this avoids the above mentioned problems it
significantly slows down the entire search process. Therefore
we use a hybrid routing scheme [26], where the query is passed
recursively from peer to peer but each peer reports back to the
initiator of the search instead of to the peer which relayed the
search. This combines the advantages of recursive and iterative
routing, while it does not introduce any additional overhead.

Churn: In literature, there are two predominant ways to
model churn. The first assumes churn per network by specify-
ing a global join and leave rate [23], whereas the global join
process is modeled by a Poisson process with rate λ. One of
the main problems of this model is that the number of nodes
joining the system within a given time interval is independent
of the current size of the system. The second way is to model
churn by specifying a distribution for the time a peer spends
in the system (online time) or outside the system (offline time),
which makes it comparable in networks of different size. In
this paper, we follow the latter approach. To be able to model
the offline time of a peer, we assume a global number of n
peers, each of which can either be online or offline. Joins are
then modeled by introducing a random variable Toff describing
the duration of the offline period of a peer. Accordingly, leaves
are modeled by a random variable Ton describing the online
time of a peer. To remain comparable to other studies, Ton

and Toff are exponentially distributed with mean E[Ton] and
E[Toff], respectively.

Administration of the Emulation Runs: Finally, to con-
duct experiments in PlanetLab one has to carefully organize
and manage the individual emulation runs. Our emulation
environment is based on the Nixes tool set [27] which provides
a set of scripts to install, maintain, control, and monitor
remote applications via SSH. In this context, we implemented
the Chord-Admin tool which resides on a central entity as
shown in Figure 1. It is responsible for the organization
and administration of the individual experiments, which were
conducted as follows:

1) At first we installed the prototypes on all 451 machines
of our PlanetLab slice.

2) Once every day we determined a list of the 200 best
peers. This was done by sending a simple ping message
from each peer to all other peers of the slice. We then
chose those peers which could be reached by the most
other peers and had the smallest 5 minute average load.

3) At the beginning of each experiment, the Chord-Admin
sends a request to all of the 200 peers asking them to
participate in this particular emulation run.

Chord-Admin

`

`

`

`

PlanetLab

Fig. 1. Basic architecture of the testbed environment

4) The invited peers register with the Chord-Admin.
5) Once there are enough peers to conduct the experiment,

the Chord-Admin distributes the individual configuration
files to the corresponding peers. Each configuration file
contains information about how long the emulation is
running and when a peer should join or leave the overlay.

6) After having distributed the configuration files, the
Chord-Admin sends a starting signal to all participating
peers. This way the accuracy of the time synchronization
is roughly in the order of one overlay hop, which is
sufficient for the kind of statistics we are interested in.

7) In the final step the Chord-Admin automatically collects
all log files from the participating peers and prepares
them for evaluation.

A typical disadvantage of distributed prototype studies is the
lack of a global view of the system. We therefore implemented
two different possibilities to generate a global snapshot. In
the first approach, all participating peers write their current
state to a log file at the predetermined times. However, due
to high load and other problems on some of the PlanetLab
machines it is difficult to verify whether all log files were
written at approximately the same time. Therefore in the
second approach the Chord-Admin queries all participating
peers in parallel at the given time in order to generate a
global snapshot. While this approach does clearly not scale, it
sufficed for the size of our emulations. A practical algorithm
to generate snapshots of larger scale overlays can be found in
[28].

V. EVALUATION OF THE PRACTICABILITY OF CHORD AS

THE PAN-NET OVERLAY

At first we want to investigate whether it is practicable to
use Chord as the basis for our file-sharing algorithm. Therefore
we have a closer look at the overhead created by the Chord
layer and verify if our modified overlay mechanisms are able
to handle the expected user behavior.

In our first scenario, we let x peers join the Chord ring, wait
until the overlay is stable and then let the individual peers



perform searches for random identifiers. This resembles the
search of a downloading peer for a random peer from which it
will download the next chunk. Figure 2 shows the mean search
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Fig. 2. Average search time and percentage of successful searches

time (c.f. left y-axis) and the percentage of successful searches
(c.f. right y-axis) for overlay sizes between 25 and 150 peers.
In agreement with theoretical results [29], the mean search
time increases approximately logarithmically with the size of
the overlay. The absolute values for the mean search time are
significantly less than one second, which indicates that the
search time is negligible in comparison to the expected time
it takes to download an entire chunk. Furthermore, while in a
stable overlay network all searches should be successful, we
experienced some failed searches. This reflects the background
churn in PlanetLab, which arises due to high loads, short
downtimes, or missing routes between two hosts.

To study the general behavior of the prototype under churn,
we configured 100 peers to have exponentially distributed
online and offline times with E[Ton] = E[Toff] in order to keep
the mean number of online peers stable. Figure 3 shows the
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Fig. 3. Consumed bandwidth in dependence of the mean online time.

overhead generated by the different functions of the Chord
layer in dependence of the mean online time. The left y-
axis shows the mean bandwidth generated by lookups, finger
updates, and the periodic stabilize calls. In our implementation

we update one finger every 30 seconds, which makes the
generated overhead independent of both the current size of the
system and the current churn rate. The main part of the over-
head traffic is used for the periodic stabilization of the overlay
structure. In general it can be said that the overhead traffic
required to maintain the overlay is negligible compared to
the traffic which will be generated while downloading chunks.
Finally, the right y-axis shows the bandwidth required by the
triggered notify down/up messages. The additional overhead
introduced by this modification is negligible compared to the
periodic stabilize traffic. It furthermore shows a self-organizing
behavior as the amount of overhead adapts to the current churn
rate in the system.
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To analyze the impact of a flash crowd behavior, we let x
peers join the network simultaneously and study the time it
takes until all successor and predecessor pointers are accurate.
Figure 4 shows the mean time which passed before steady
state was reached for the successor and predecessor pointers
and different flash crowd sizes. The results represent the mean
over 10 emulation runs, whereas the error bars show the 95
percent confidence interval. It takes slightly longer to stabilize
the successors than the predecessors as searches in a Chord
ring are performed in a clockwise direction. Thus predecessors
tend to contact their successors more often than vice versa.

A more problematic aspect of churn are unfriendly leaves.
To study the correctness of neighbor pointers in such scenarios,
we look at mass exits which might e.g. happen at the end of
a work day. Figure 5 looks at the mean percentage of offline
entries in a peer’s neighbor list after a certain percentage of
all peers left the overlay within x minutes. In general, the
longer the duration of the mass exit, the more time there is
for stabilization and the less offline entries arise. While almost
70 percent of all neighbor pointers are invalid if 90 percent
of all peers leave within 5 minutes, the overlay will still be
connected. Thus, similar to the previous scenario, it will take
longer to search for other peers (which might not necessarily
be random), but it will still be possible to find file sharing
partners.
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VI. EVALUATION OF THE PERFORMANCE OF THE PEER

AND CHUNK SELECTION ALGORITHMS

A number of test runs of the PAN-NET client software was
performed in PlanetLab with the following scenario:

File size 51 MB
Chunk size 512 kB
Number of chunks 102
Number of nodes 50-52
Maximal chunk transfer bitrate 30 kB/s
Nominal chunk download time 17 sec
Node activation interval 16 sec
Max # paraller uploads 3

In order to avoid complications possible in a flash crowd
scenario of Chord (such problems were in the focus of the
previous section), the nodes were activated one in turn with
intervals of 16 seconds. Thus, the last activation happened
about 50× 16 = 800 seconds from the start of the test.

Results on the following three algorithm combinations are
reported in this paper:

test IDs RFA distribution estimation
27, 28, 29 NO YES
48, 49, 56 YES YES
61, 62, 63 YES NO

The following table presents summarizing characteristics of
the test results:

test fs resp tot av upl lim Cho err
27 2.88 3686 1210 169
28 2.11 3977 1273 188
29 2.28 3876 1306 171
48 0.98 3264 162 204
49 0.93 3286 185 263
56 0.57 2794 240 182
61 0.64 2971 212 187
62 0.71 2846 205 169
63 0.56 2827 205 144

The entries are the mean find successor response time
(fs resp), mean download time of the whole file (tot av),

the number of download requests rejected because of the
parallel upload limit (upl lim), and the number of Chord
error messages (Cho err) (times in seconds). The differences
in find successor response times may be due to small
improvements made into the software or simply to load
variations in PlanetLab.

The nodes logged all their chunk transfers and other events
of interest. Since the PlanetLab hosts have reasonably well
synchronized clocks, the logged events could be easily com-
bined to produce pictures of the growths of (i) the number of
copies of each chunk, (ii) the number of chunks in possession
of each peer, and (iii) the number of uploads performed by
each peer. These plots provided interesting qualitative insight
into each of the three algorithm combinations. On the other
hand, the three runs with each combination produced quite
similar pictures, except for the behavior of some individual
hosts probably suffering from PlanetLab overload.

Let us start with the case that both RFA and distribution
estimation were applied. Fig. 6 shows that it took about 1600
seconds before all chunks were copied from the seeder at least
once. After a chunk has been uploaded from the seeder, the
number of its copies grows very fast, until it reaches an average
level. After 2000 seconds, the distribution of chunk copies is
roughly uniform. Fig. 7 shows that the nodes collect chunks
very regularly, except for one node which lags behind in the
last phase. The upload picture Fig. 8 reveals that in the “end
game” phase only the seeder performs uploads. The seeder is
more active in uploads than the other nodes because it tries to
maintain a maximal number of parallel uploads, in our case
three (see Section III). The upload processes are very regular,
thanks to the RFA.
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Fig. 6. Growth of chunk copies in time, with RFA and distribution estimation.
One curve for each chunk. (Test number 56.)

Let us now look how the performance changes when RFA
is switched off, and the peers encounter each other directly
according to find successor(random) commands. The
difference of the upload curves in Fig. 9 and those of the
previous picture is dramatic. Without RFA, the upload curves
have different slopes, depending on their ID’s distance from
their predecessor’s ID. Interestingly, even the distribution
estimation (1) seems to lose its effect, as indicated by Fig. 10
(we even observe a rare chunk phenomenon “in nature”). Since
the seeder does not announce itself as it does with RFA, the
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Fig. 7. The nodes’ download processes, with RFA and distribution estimation.
One curve for each node. (Test number 56.)
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Fig. 8. Uploads per node, with RFA and distribution estimation. One curve
for each node. (Test number 56.)
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Fig. 9. Uploads per node, without RFA but with distribution estimation. One
curve for each node. (Test number 29.)
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Fig. 10. Growth of chunk copies in time, without RFA but with distribution
estimation. One curve for each chunk. (Test number 29.)
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Fig. 11. Growth of chunk copies in time, with RFA, without distribution
estimation. One curve for each chunk. (Test number 61.)
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Fig. 12. The nodes’ download processes, with RFA, without distribution
estimation. One curve for each node. (Test number 61.)

peers may have difficulties in finding it, if its Chord-position
happens to be unlucky. On the other hand, we remind that
RFA’s own signalling load is unbalanced, reflecting the nodes’
Chord positions.

Our third combination focuses on the role of the distribution
estimation. The difference between Fig. 11 and the earlier Fig.
6 is very clear: the selection of the rarest chunk on the basis
of distribution estimation causes a much faster run-out of all
chunks from the seeder and a more balanced chunk distribution
after that than the random chunk selection. However, the
download picture of test 61 (Fig. 12) shows good performance
except for two nodes, whose problems are probably caused by
PlanetLab-related phenomena rather than our algorithms.

Still more insight into the performance differences in our
three scenarios is obtained by considering the amount of
unsuccessful encounters, where the encountered peer does
not possess any chunks that the initiator of the encounter
does not already have. Fig. 13 shows the cumulative number
of unsuccessful encounters in each of the nine tests. The
numbers differ in orders of magnitude so that we had to use a
logarithmic plot. On the other hand, curves belonging to same
scenario are very similar. Note also that when both RFA and
distribution estimation are applied, there are extremely few
unsuccessful encounters after all chunks have been copied at
least once, whereas the scenario without estimation has another
burst of them in the end game phase.
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Fig. 13. Cumulative number of unsuccessful encounters in each test.
Horizontal axis: time. Vertical axis: log10 of the number of unsuccessful
encounters. One curve per test. Top three: tests 27, 28, 29. Middle three: tests
61, 62, 63. Bottom three: tests 48, 49, 56.

VII. CONCLUSION

Although our tests on the PAN-NET client were not ex-
tensive and rather had a preliminary character, the results
were encouraging. Indeed, it seems to be possible to obtain
good performance in BitTorrent-like file-sharing without the
use of any tracker functionality, just relying on randomness.
Our Random Forward Addressing algorithm (which increases
the uniformity of the random encounters) and our chunk
distribution estimation algorithm turned out to have significant
positive effect on the performance.

Our studies focusing on the practical functioning of Chord
showed that Chord applies well to the role of a file-sharing
overlay. It is, however, important to improve the stability of
Chord with certain additions to the standard protocol.

In a very big flash-crowd scenario, the bootstrap server (in
our case identical to the seeder) providing access to the Chord
could become a bottleneck for building the overlay. Some
random entry point mechanism could be the solution.

We plan to continue performance tests with different sce-
narios, e.g. with heterogeneous transfer rates per peer. Another
important dimension, security issues, have so far been ne-
glected in this study, but they will require serious consideration
before a concept like ours could be recommended for open use.
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