
Efficient Simulation of Large-Scale P2P Networks:
Packet-level vs. Flow-level Simulations

Kolja Eger∗

Hamburg University of Technology (TUHH)
Institute of Communication Networks

Germany

Tobias Hoßfeld, Andreas Binzenhöfer
University of Würzburg

Institute of Computer Science
Germany

Gerald Kunzmann
Technical University of Munich

Institute of Communication Networks
Germany

Abstract

Peer-to-peer (P2P) networks can reduce the distribu-
tion cost of large media files for the original provider of
the data significantly. Thereby, the BitTorrent protocol is
widely used in the Internet today. Most research work stud-
ies the protocol analytically, by simulations at the flow-level
or real world experiments. Thereby, for flow-level simula-
tions the influence of neglecting packet-level characteristics
is not yet quantified. Therefore, this paper compares packet-
level simulation results with flow-level values and analyti-
cally derived bounds. Our findings show that BitTorrent is
near to optimal at flow-level for different scenarios. Nat-
urally, packet-level results deviate more from the optimal
values but differences are at most around 30% in our sim-
ulations. Furthermore, we show that the propagation de-
lay can significantly influence the download performance
of BitTorrent.

1 Introduction

The Peer-to-Peer (P2P) paradigm offers obvious advan-
tages for the fast distribution of large content in the Internet.
While in the client/server architecture the total load mustbe
carried by the server(s), it is distributed among the users in
a P2P network.
A popular example is the BitTorrent protocol [7]. Basically,
with two simple ideas this protocol increases efficiency and
reduces free-riding, which was a severe problem in the first
P2P networks [3]. Firstly, a file is fragmented into a number
of smaller pieces, called chunks. When a peer completes the

∗Corresponding author: eger@tuhh.de

download of a chunk, it can already upload it to other peers.
Secondly, each peer controls to whom it uploads data. This
is called choking/unchoking in BitTorrent (see Section 2 for
details).
BitTorrent networks cause large amounts of traffic in to-
day’s Internet and have gained much interest in research and
practice. Three types of approaches can be found frequently
in the literature to analyze its performance. These are ana-
lytical studies like [16], simulations at the application-layer
[5] and the analysis of real traces [12]. Whereas analyti-
cal models are based on simplifying assumptions, simula-
tions at the application-layer take only the access link band-
width into account and model the data transfers as flows.
These flow-level simulations overestimate the performance
of BitTorrent because characteristics of the packet-levelare
ignored. Real world experiments suffer from the lack of
knowledge about the properties of all peers in the network.
Because of the high simulation complexity packet-level
simulations are rarely conducted for P2P networks. How-
ever, for BitTorrent the number of active peers is much
smaller than in other P2P networks, because only one file
is shared per overlay network. By looking at statistics for
popular torrents we observed up to 10000 peers per overlay
network for very popular data. But this number decreases
sharply to 1000 peers and below for less demanded data.
Thus, medium-sized BitTorrent networks can also be simu-
lated at packet-level.
Packet-level simulations are not only helpful to validate
simplified simulation models but also to study the influ-
ence of the lower level protocols on the BitTorrent perfor-
mance. Since data in BitTorrent is transferred over TCP,
one of the reasons to simulate at packet-level is to take the
exact behavior of TCP into account. The influence of TCP

1

c ©
2
0
0
7

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u
se

s,
in

a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
i-

ti
v
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

2
n

d
W

o
rk

sh
o
p

o
n

th
e

U
se

o
f

P
2
P

,
G

R
ID

a
n

d
A

g
en

ts
fo

r
th

e
D

ev
el

o
p

m
en

t
o
f

C
o
n
te

n
t

N
et

w
o
rk

s
(U

P
G

R
A

D
E

-C
N

’0
7
)

in
co

n
ju

n
ct

io
n

w
it

h
th

e
1
6
th

IE
E

E
H

P
D

C
,

2
0
0
7
.



on BitTorrent’s unchoking algorithm can be notable: TCP
throughput depends, among others, on the round trip time
(RTT) between the peers. Thus, the achieved throughput
increases with decreasing RTT. So it can be reasoned that a
peer unchokes other peers, which are near to it with respect
to the delay between peers. This means that the perfor-
mance of a peer does not only depend on its upload capac-
ity, but also on the RTT to other peers. To prove or disprove
such cross-layer interactions packet-based simulations are
inevitable. Another reason for packet-level simulations is
to study the traffic aggregation of P2P applications at the
edge and core routers of a network for developing and vali-
dating new traffic models which incorporate P2P traffic.
To the best of our knowledge this paper presents the first
simulation results at packet-level for BitTorrent-like P2P
networks. Further contributions are the comparison to an-
alytical results as well as simulations on flow-level for two
scenarios (flash crowds and networks with constant number
of peers). Furthermore, we show that the download perfor-
mance of a peer depends on the delay to other peers.
The paper is structured as follows. Section 2 presents as-
pects of the BitTorrent protocol which are relevant for this
paper. Details about the simulation methodology used in
this paper are presented in Section 3. Simulation results are
discussed in Section 4. Section 5 concludes the paper.

2 BitTorrent Protocol

The BitTorrent protocol [7] was implemented with the
objective to disseminate one large file (or a composition of
large files) to a large number of users in an efficient way.
Therefore, for each file an overlay network is created. The
file sharing is based on the swarming principle, which is
also denoted as multi-source download. Here, the file of in-
terest is fragmented into chunks. When a peer completes the
download of a single chunk, it offers it to other peers which
so far have not downloaded this chunk. Thus, peers ex-
change chunks with each other although they did not finish
the download of the complete file. Therefore, the resources
in the P2P network are used more efficiently and the net-
work also scales for large peer populations with respect to
download time.
According to the original BitTorrent specification, each
overlay network consists of two different kinds of peers,
the seeds and the leechers, and a so-called tracker. A seed
holds the complete file and uploads to others altruistically,
whereas a leecher is still downloading the file. The tracker
is a centralized component which stores information about
all peers. A new peer, which enters the network, asks the
tracker for a list of active peers in the overlay. The tracker
returns a random subset to the requesting peer. Further-
more, an active peer contacts the tracker from time to time
to obtain information about new peers in the network. An

extension [2] of the protocol also incorporates the exchange
of information about other peers in the network between
connected peers. This is often stated as trackerless Bit-
Torrent. This paper focuses on the original version with
a tracker.
BitTorrent specifies the messages between the tracker and
a peer and between peers themselves. Furthermore, it im-
plements two important algorithms which are run by each
peer. These are the peer selection and the piece selec-
tion algorithm. The peer selection process is called chok-
ing/unchoking in BitTorrent. Each peer controls to whom
it uploads data. When a remote peer is selected for upload
an UNCHOKEmessage is sent. A upload is stopped with
a CHOKE message. Each peer uploads to a fixed number
of other peers (the default value is four). Thereby, a peer
chooses to upload to other peers from which it has the high-
est download rates. As a seed unchoking is based on the
download rate of the connected peers rather than the up-
load rate. By default this tit-for-tat strategy is run every
ten seconds by every peer, whereby the download rates are
determined by a moving average over the last 20 seconds.
To discover new peers with better performance a so-called
optimistic unchoke is done additionally. Here, one of the
peers is unchoked independently of its rate. The optimistic
unchoke is changed every 30 seconds to provide enough
time to be possibly unchoked by the remote peer in return.
Another rule in BitTorrent is to choke a peer when it has
sent no data message in the last minute. This is called anti-
snubbing.
The piece selection algorithm determines which file frag-
ment is requested when a peer is unchoked by a remote peer.
The decision process follows the following rules: Firstly,
when some bytes are received from a specific chunk the
remaining parts of that chunk are requested. This scheme
is called strict priority. Since peers forward only complete
blocks (where data integrity is verified) to other peers, this
mechanism ensures that blocks are completed fast. When
strict priority is not applicable, the rarest block is requested.
Since a peer has only a local view of the network it can
only estimate rarity based on the chunk information of its
neighbors. These information are available to the peer by
the BitTorrent messagesBITFIELD andHAVE (see [1] for
details).
When a peer has no chunk at the beginning of the download,
BitTorrent deviates from the rarest-first policy and the new
peer requests a block randomly. This is intended to ensure
a faster completion of the first block such that the upload
bandwidth of that peer can be used by others.
Normally, oneREQUESTmessage asks for a data portion
which is smaller than the chunk size. The default values
in the original implementation are 256 KB as chunk size
and 16 KB per request. To prevent that the sender runs out
of requests and has to wait for a new request from another

2



peer, the first requests after an unchoke are sent as a batch.
By default the batch size is 5 requests. In normal mode
a peer requests each part only once. This can become a
problem at the end of the download. When the rest of the
file is requested at a very slow peer, the downloading peer
has to wait long although other peers may handle the re-
quest faster. Therefore, a peer can switch to the endgame
mode, where it requests the same parts at multiple peers.
Although, a peer can cancel requests at remote peers the
endgame mode can consume additional bandwidth by trans-
ferring redundant parts.
The BitTorrent protocol is neither standardized nor fixed
and a large number of different applications, which use the
BitTorrent protocol, are available. Especially, the imple-
mentation of the peer and the piece selection is implemented
in different ways, because it is not part of the protocol but in
fact part of the first specification. For example, [5] proposed
a smart seed to ensure that the original provider of a file
uploads the whole file once before sending duplicated data.
Similar, [1] describes the super-seeding method, which tries
to overcome the same problem at start-up. Also to improve
fairness the tit-for-tat strategy can be replaced by a band-
width trading scheme [8].

3 Simulation Methodology

The objective of this work is to estimate the differ-
ences between packet-level and flow-level simulations for
BitTorrent-like P2P networks. We denote it as BitTorrent-
like, because we do not intend to implement a specific ver-
sion of BitTorrent, but aim at assessing the differences be-
tween a full simulation of all network layers and simpli-
fied simulations on the application-layer. Thus, some func-
tionalities were simplified and others were omitted. In de-
tail, in our simulator no torrent file is used and the down-
loaded data is not checked for data integrity by hash values.
The HTTP tracker protocol is not implemented. That is, all
tracker traffic is directly given to the peers rather than being
transmitted over the network. We use this simplification be-
cause we are predominantly interested in the efficiency of
the data transfers between the peers. Each peer runs the ba-
sic unchoking algorithm in [7]. Thereby, anti-snubbing and
the endgame-mode are neglected. We omitted the endgame
mode in our implementation because it is not clearly speci-
fied when a peer switches to the endgame mode. Hence, dif-
ferent implementations realize it differently. Furthermore,
anti-snubbing was omitted because it can result in situations
where a peer does not contribute its upload bandwidth al-
though it can transfer data to other peers. This can cause
inefficiency in the network.
However, we implemented the super-seeding functionality
[1] because it improves considerably the performance for
the flash crowd scenario (see Section 3.4).

3.1 Packet-level Simulator

We used ns-2 [14] for the packet-level simulations and
added four classes. These are BitTorrent application, Bit-
Torrent tracker, BitTorrent connection and BitTorrent mes-
sage. Furthermore, minor changes were done to the imple-
mentation of the node, agent and FullTcp implementation
in ns-2 to handle a BitTorrent application1.
ns-2 provides different versions of the TCP protocol. We
used FullTcp since it supports bidirectional data transfers.
Normally, ns-2 does not transfer application data but simi-
lar to the TcpApp implementation for a web cache we ex-
tended the code to handle application data. Therefore, we
added the class BitTorrent connection, which buffers the ap-
plication data at the sender. On the other end of the connec-
tion the TCP agent informs the BitTorrent application with
an upcall when new data is received. If a full BitTorrent
message is received, the application accesses the data at the
sending BitTorrent connection and handles it.
The FullTcp implementation does not support a receiver
advertised window. Since autotuning of the buffer size is
available (e.g. Linux kernel 2.6.17 and later) we assume
that the buffer size at the receiver is not the bottleneck in
the network. Interested readers are referred to a Gnutella
implementation [11] for ns-2 which incorporates the adver-
tised window.
The BitTorrent implementation is modular. That is, the peer
and the piece selection algorithms can be replaced by alter-
natives. Thus, different implementations of BitTorrent-like
networks can be compared easily by simulations.

3.2 Flow-level Simulator

It is widely assumed that the bottlenecks in P2P networks
are the access links of the users. This seams reasonable be-
cause most peers are home users who are connected e.g.
with DSL or cable modems to the Internet. Thus, most
of their uplink bandwidths are in the range of 64kbps to
1024kbps. Furthermore, the core of the network shows a
low utilization of the available bandwidths [15] and small
packet loss rates due to congestion [9].
Often also the TCP behavior is ignored and the simulation
takes only the application-layer into account and uses the
access link bandwidth as the speed of the bottleneck. In
our flow-level simulator we also neglect the downlink and
assume the uplink is the bottleneck in the whole network.
Since home users often have asymmetric access links (e.g.
ADSL) and/or set the upload bandwidth in the application
lower than the physical capacity, this assumption is reason-
able. When altruistic behavior is noticeable the download
capacity must also be taken into account since in this case a

1The source code of our BitTorrent implementation will be available
from the website of the corresponding author

3



peer receives data from numerous other peers. A model for
this case is discussed in [17].
The flow-level simulator is a derived class of the packet-
level simulator. This enables the reuse of large parts of
the code and a correct comparison between both simula-
tion approaches. Only the way how BitTorrent messages
are handled is changed. While in the packet-level simu-
lator messages are handled by the TCP agent, the flow-
level simulator differentiates between control and data mes-
sages. The control messages are delivered directly to the
receiver whereas thePIECEmessages are queued in an up-
load queue. To minimize the number of generated events
the upload queue of a peer is handled before the unchok-
ing algorithm is run. That is, a peer computes the amount
of data which it transmits between two consecutive runs of
the peer selection algorithm, denoted as unchoking inter-
val in the following, and dequeues the number of allowed
messages from the upload queue. Then, these messages are
directly handled by the receiver. To ensure a fair sharing of
the upload bandwidth requests are not pipelined in the flow-
level simulations.
The flow-level simulator uses a single recurring event per
peer. This reduces the computational complexity signifi-
cantly. Further details on efficient discrete event simula-
tions can be found in [6].

3.3 Topologies

A network topology is only used for the packet-level
simulator. Based on the assumption that the bottleneck of
the network is at the access links of the users and not at
the routers, we use a simplified topology in our simulations.
We model the network with the help of access and overlay
links. Each peer is connected with an asymmetric link to
its access router. All access routers are connected directly
to each other modeling only an overlay link. This enables
us to simulate different upload and download capacities as
well as different end-to-end (e2e) delays between different
peers. This topology is denoted as the overlay topology in
the following.
One disadvantage of the overlay topology is the required
number of links. ForP peers in the network the number
of links in the topology isZ = (P + 1) · P/2, becauseP
links are needed to connect each peer with an access router
and(P −1)P/2 links are needed to connect all routers with
each other. Thus, the number of links increases quadrati-
cally with the number of peers in the network potentially
causing a memory problem for large peer populations.
One possible solution to overcome this problem is to neglect
the differences in e2e delay between the peers. This would
result in omitting the overlay links in the already simplified
topology resulting in a star topology withZ ′ = P links.
Another approach is to take a real topology and connect

peers randomly to the routers of the core network. We used
the German Network [4] in this work. A more sophisticated
solution for simulations with different e2e delays between
peers is presented in [13].
The performance of the overlay, star and German network
topologies are compared by simulations in Section 4.3.

3.4 Simulation Scenarios

To model the user behavior in BitTorrent networks we
have to consider, most importantly, the leecher arrival pro-
cess and the seed leaving process. For a detailed represen-
tation also the download pauses of a leecher and its leaving
process have to be taken into account. Thereby, the leav-
ing process is initiated by an error or by an user, who is
not satisfied with the progress of the download. Addition-
ally, seeds also rejoin the network although a user has no
motivation to do that. This is due to the implementation of
specific clients, where the software automatically connects
to the network after start-up and serves the file. For the sake
of simplicity we concentrate in the following on the leecher
arrival process and the seed leaving process and neglect the
others.
The first experiment studies the worst case scenario for
file dissemination, which is called the flash crowd effect.
Thereby, initially only one seed and a number of leechers
are in the network. This represents an extraordinary burden
on the network because only one peer can upload data to
others at the beginning. We assume new seeds stay in the
network until all peers have finished their download. For the
case of peers with the same upload capacityC the download
time can be estimated analytically. We denote the file size,
the chunk size and the number of parallel uploads asSF , SC

andU , respectively. AfterSF /C the whole file is available
in the network. The lastU chunks uploaded by the seeder
are the rarest chunks in the network as each of them is only
available at the seeder and one other peer. For a uniform
dissemination of the rarest chunks the seed uploads each
rarest chunk once. The other peers upload the rarest chunk
they holdU times. Thus, the number of peers which hold
a rarest chunk increases by

⌈

(1 + 1/U)(U + 1)i
⌉

, where
i is the number of time intervals it takes to upload a full
chunk toU peers. This time interval can be computed with
U · SC/C. With P peers in the network the total download
time is

tflashcrowd =
SF

C
+

USC

C











logU+1











P

1 +
1

U





















, (1)

whered·e andb·c denotes the ceiling and the floor function,
respectively. Equation (1) holds whenP is a multiple of
(1 + 1/U)(U + 1). For other values ofP it is exact if each
chunk is downloaded from a single source.

4



In the second experiment we simulate a constant number of
peers in the network. We assumeS seeds andL leechers are
present in the network. Furthermore, a leecher leaves the
network when its download is completed. To keep the peer
population constant a new leecher with no chunks enters the
network. At the beginning of the simulation the leechers
have a random set of chunks. This simulation setup studies
the performance of peers with different download progress.
Furthermore, it can be easily studied analytically. The total
capacity in the network is

∑S

s=1
Cs +

∑L

l=1
Cl, whereC

denotes the upload capacity of a peer. The objective of the
tit-for-tat strategy in BitTorrent is to upload to those peers
which upload in return. Thus, in the optimal case the down-
load bandwidth achieved by trading chunks with other peers
is equal to the peer’s own upload bandwidth. Another por-
tion of the download bandwidth is contributed by the seeds
in the network. If these resources are allocated in a fair
manner a peer has a download bandwidthx of

xl = Cl +

∑S

s=1
Cs

L
(2)

Equation (2) overestimates the download performance of a
peer because it neglects that a peer needs a chunk which
is of interest for other peers. This is not always the case.
Particularly, at the start a peer has no complete chunk and
cannot barter with its own bandwidth. Thus, its download
bandwidth depends only on the altruistic behavior of others.

4 Simulation Results

4.1 TCP behavior

Before simulating the BitTorrent network we were inter-
ested in the TCP performance in general. We measured the
aggregated goodput of four TCP connections which share
one bottleneck link. Thereby, four corresponds to the de-
fault number of data uploads in BitTorrent. Since the bot-
tleneck link represents the access link to the ISP we varied
the capacity from 64 kbps to 1024kbps and set the delay to
1 ms. Each TCP connection traverses another link where
the one-way propagation delay is determined according to
a uniform distribution between 1 ms and 100 ms. With a
capacity of 100 Mbps no packet losses occur at the second
link. We used the FullTcp/NewReno agent in ns-2. Packet
size was 1460 Bytes excluding IP and TCP headers. A good
queue limit was determined for each upload capacity be-
forehand. We measured the goodput over two time inter-
vals. Thereby, 10 s is exactly the interval of the peer se-
lection algorithm of BitTorrent. The mean values and 95%
confidence intervals over 10 runs are depicted in Figure 1.
The utilization of the upload bandwidth increases with in-
creasing upload capacity. For measurements over 100 s the
utilization is larger than 90% for 128 kbps and higher. Only

64 128 256 512 1024

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Upload Capacity [kbps]

G
oo

dp
ut

 / 
U

pl
oa

d 
C

ap
ac

ity

10s
100s

Figure 1. Normalized TCP goodput

for 64 kbps the utilization is poor for both measurement in-
tervals. Here the bandwidth-delay-product is so small that
the TCP connections cannot operate in congestion avoid-
ance state for this packet size. But also for 128 kbps
TCP performance varies strongly influenced by the differ-
ent round-trip-times (RTT) of the connections for a mea-
surement time of 10 s.
These results indicate the influence of TCP on the BitTor-
rent performance. Because the utilization of TCP increases
with increasing upload capacity, we expect that the differ-
ences between packet-level and flow-level simulations of
BitTorrent become smaller. Furthermore, by looking at the
differences for the two measurement intervals in Figure 1,
the time intervals, for which peers are unchoked, have an
influence on the utilization of the available bandwidth.

4.2 Flash crowd

For the flash crowd scenario we measured the total
download time until all peers have finished their download.
We simulated a 100 MB download with varying number of
peers, which have an upload capacity ofC = 1024 kbps.
Figure 2 shows the mean and the 95% confidence inter-
vals for 5 simulation runs. The theoretical values are com-
puted with equation (1). For packet-level simulations the
star topology is used. To simulate asymmetric access links
the downlink capacity is set 8 times higher than the uplink
speed. The propagation delay of each link is determined
randomly between 1-50 ms. Super-seeding mode is used
for both simulation types.
The original content provider needs at least 819 s to upload
the file to the network. Theoretically, the distribution of the
data to all peers in the network is very fast and scales with

5



64 kbps 128 kbps 256 kbps 512 kbps 1024 kbps
Theoretical [s] 13500 6750.2 3375.1 1687.6 843.78
Flow-level [s] 16161±78 7791±122 3637±49 1769±5.7 897±6.7

Packet-level [s] 17645±201 8549.3±72.7 4220.2±34 2043.3±6.4 1028.1±4.3

Table 1. Total download time for flash crowd of 100 peers for di fferent upload capacities (and 95%
confidence intervals)

0 100 200 300 400 500 600 700 800 900 1000

800

850

900

950

1000

1050

1100

Number of Peers

T
ot

al
 D

ow
nl

oa
d 

T
im

e 
[s

]

Theoretical
Packet−level
Flow−level

Figure 2. Total download time of flash crowd
with different number of peers

an increasing number of peers. Also the simulation results
reveal that the content distribution with BitTorrent scales
well. At flow-level the results are only up to 9% higher as
the theoretical values. Packet-level results are up to 27%
higher.
At flow-level nearly the same download time is observed for
250 peers and more. Although the increase of the download
time at packet-level is small, it increases by 6% from 100 to
1000 peers.
The super-seeding mode improves the download perfor-
mance considerably. Without it we measured up to 70%
higher download times, because the original seed frequently
uploads chunks, which were already available in the net-
work instead of the missing ones. Similar results are also
reported in [5] for flow-level simulations.
In our simulations super-seeding mode is left when the seed
has received HAVE messages for every chunk. This was
around 830 s and 890 s for flow-level and packet-level sim-
ulations, respectively.
Further results with different upload capacities are summa-
rized in Table 1 for a network of 100 peers and several
upload capacities. Here, the differences between theoret-

400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Download Time [s]

E
m

pi
ric

al
 C

D
F

Overlay Topology
Star Topology
German Network
Flow−level

Figure 3. Constant population of 100 peers
for flow-level and different topologies for
packet-level

ical values and flow-level and packet-level results are at
most 20% and 30%, respectively. With larger uplink band-
width the differences are smaller (around 6% and 15% for
1024kbps). Because this behavior is observed for both sim-
ulation models, not only the TCP behavior discussed in Sec-
tion 4.1 accounts for it but also the BitTorrent implemen-
tation itself. Since with smaller uplink bandwidth a peer
uploads less data per unchoking interval, a downloader has
to be unchoked for multiple unchoking intervals until it can
complete a chunk. E.g. with 128 kbps only 160 KB are
transferred at most in an unchoking interval of 10 s. Thus,
a peer has to be unchoked for more than 6 intervals to com-
plete a single chunk. On the other hand with 1024 kbps up
to 5 chunks can be uploaded in one unchoking interval.

4.3 Constant Peer Population

In this section we present results for the second exper-
iment discussed in Section 3.4 for 1 seed and 99 leechers.
All peers have an upload capacity of 1024 kbps. Figure 3
shows the results for the flow-level and the three topologies

6



discussed in Section 3.3 for packet-level simulations for in
total 10000 simulated peers.
To ensure a fair comparison between the different topolo-
gies we set the propagation delay appropriately. We choose
the propagation delay randomly between 1-100, 1-50 and 1-
18.5 ms for the overlay, star and German network topology,
respectively. (The German network has an average distance
of 2.7 hops [4].)
The results in Figure 3 show similar performance for the
three topologies. The mean download times are 960, 973
and 961 s for the overlay, star and German network topol-
ogy, respectively. Thus, the packet-level results are lessthan
20% above the theoretically optimal value of 811 s, which
can be computed by dividing the file size of 100 MB with
equation (2). Moreover, the mean download time at flow-
level is with 838 s only 3% larger than the optimal case.
One reason for this good performance is that peers finish
their first chunk fast and thus can provide their upload band-
width to others. For the packet-level simulations it takes a
mean value of around 15 s until a peer finishes the download
of its first chunk. Since uploads are done for the flow-level
simulations only once per unchoking interval, the mean is
around 22 s to finish the first chunk in this model.

4.4 Delay

It is well known that the TCP throughput depends on the
RTT (e.g. [10]). Thus, if two TCP flows compete for the
resources of the same bottleneck link, the connection with a
smaller RTT will receive a higher bandwidth share than the
other one. Since a BitTorrent peer uploads to those peers
from which it downloads with high rates, peers on links
with large delays experience a worse performance. To con-
firm this claim we ran a simulation using the star topology.
Thereby, one set of peers is connected over a link with 10 ms
delay and the other set with 100 ms delay. The cumulative
distribution functions for 3 runs are shown in Figure 4.
The results from the different runs are nearly identical. With
a smaller delay peers download much faster. The mean
download time over all runs is 857 s for peers connected
on a link with 10 ms delay and 1237 s connected by a link
with 100 s delay. Thus, the mean download performance
deteriorates by 44% for peers with higher delays.

4.5 Simulation Complexity

In general, the complexity of simulations is much higher
on the packet-level than on the flow-level. For example, the
simulations described in Section 4.3 for 100 active and in
total 10000 peers take, depending on the topology, between
8-10 hours at packet-level and less than 1 hour at flow-level
with an Athlon 64 x2 Dual Core 4400+ processor. Further-
more, simulation time increases significantly with increas-

400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Download Time [s]

E
m

pi
ric

al
 C

D
F

delay = 10ms delay = 100ms

Figure 4. Download times for peers with dif-
ferent delays

ing number of active peers.
For all simulations we used the heap structure for the event
scheduler of ns-2. Although, theoretically a calendar queue
has a hold time ofO(1) and outperforms a heap with
O(log(n)) (see e.g. [6] for details), we observed better per-
formance using the heap structure2.
Except for the overlay topology, which already exhausts the
RAM of 3GB for 1000 peers, the memory consumption is
acceptable. The star topology and the flow-level consume
8% and 3.5% of the available RAM for 1000 peers only.

5 Conclusion

This paper determines the differences between packet-
level and flow-level simulations for BitTorrent-like P2P net-
works and compares the results with simple analytical mod-
els. The results for the flow-level simulations are near to the
optimal values indicating that the BitTorrent protocol works
efficient for the discussed scenarios. Naturally, packet-level
simulations deviate more from these values but in the con-
ducted experiments the download performance is at most
30% worse as compared to the analytical results.
Although packet-level simulations are more complex as on
flow-level, they are required for studying cross-layer in-
teractions. We showed by simulations that the download
performance with BitTorrent depends on the delay to other
peers. This stems from the usage of TCP as transport pro-
tocol. Future work will study these cross-layer interactions
in more detail.

2The patch from http://netlab.caltech.edu/∼weixl/technical/ns2patch/
for ns-2 did not speed up our simulations.

7



Acknowledgements

The authors would like to thank Prof. Ulrich Killat, Prof.
Phuoc Tran-Gia, and Prof. Jörg Eberspächer for enabling
and supporting this work.

References

[1] Bittorrent Protocol Specification v1.0.
http://wiki.theory.org/BitTorrentSpecification.

[2] Experimental Draft: BitTorrent Tracker-
less DHT Protocol Specifications v1.0.
http://www.bittorrent.org/DraftDHT protocol.html.

[3] E. Adar and B. A. Huberman. Free riding on Gnutella.First
Monday, 5(10), Oct. 2000.

[4] A. Betker, C. Gerlach, R. Hülsermann, M. Jäger, M. Barry,
S. Bodamer, J. Späth, C. Gauger, and M. Köhn. Reference
transport network scenarios. MultiTeraNet Report, 2003.

[5] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. An-
alyzing and improving BitTorrent performance. Technical
Report MSR-TR-2005-03, Microsoft Research, 2005.

[6] A. Binzenhöfer, T. Hoßfeld, G. Kunzmann, and K. Eger.
Efficient simulation of large-scale P2P networks: Compact
data structures. InWorkshop on Modeling, Simulation and
Optimization of Peer-to-peer environments (MSOP2P) in
conjunction with Euromicro (PDP 2007), Naples, Italy, Feb.
2007.

[7] B. Cohen. Incentives build robustness in BitTorrent. In
Proc. 1st Workshop on Economics of Peer-to-Peer Systems,
Berkeley, June 2003.

[8] K. Eger and U. Killat. Bandwidth trading in unstructured
P2P content distribution networks. InProc. IEEE Interna-
tional Conference on Peer-to-Peer Computing (P2P2006),
pages 39–46, Cambridge, UK, Sept. 2006.

[9] S. Floyd. Measurement Studies of End-
to-End Congestion Control in the Internet.
http://www.icir.org/floyd/ccmeasure.html.

[10] S. Floyd and K. Fall. Promoting the use of end-to-end con-
gestion control in the internet.IEEE/ACM Trans. Netw.,
7(4):458–472, 1999.

[11] Q. He, M. Ammar, G. Riley, H. Raj, and R. Fujimoto. Map-
ping peer behavior to packet-level details: A framework for
packet-level simulation of peer-to-peer systems.mascots,
00:71, 2003.

[12] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A.
Hamra, and L. Garcés-Erice. Dissecting BitTorrent: Five
months in a torrent’s lifetime. InPassive and Active Mesure-
ments, pages 1–11, April 2004.

[13] G. Kunzmann, R. Nagel, T. Hossfeld, A. Binzenhöfer, and
K. Eger. Efficient simulation of large-scale P2P networks:
Modeling network transmission times. In15th Euromi-
cro Conference on Parallel, Distributed and Network-based
Processing (PDP 2007), Naples, Italy, Feb. 2007.

[14] ns-2 (The Network Simulator). Sources and Documentation
from http://www.isi.edu/nsnam/ns/.

[15] A. Odlyzko. Data networks are lightly utilized, and will
stay that way.Review of Network Economics, 2(3):210–237,
September 2003.

[16] R. Qiu, D. Srikant. Modeling and performance analysis of
BitTorrent-like peer-to-peer networks.Computer Commu-
nication Review, 34(4):367–378, 2004.

[17] D. Schlosser, T. Hoßfeld, A. Binzenhöfer, K. Eger, and
G. Kunzmann. Efficient simulation of large-scale P2P net-
works: Modeling bandwidth. submitted for publication.

8


