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In this paper we develop an analytical expression for the mobile
station transmit power based on a discrete time and state space.
In our model we focus on the time-varying distortions found in
a CDMA reverse link channel, network delays, and the fluctua-
tions in multi-access interference. Based on this description we
are able to characterize the dynamic behavior of the power con-
trol loop and its reaction time to batch arrivals and departures.
We also give an expression for exceeding the dynamic range of
the discrete-step power control algorithm, allowing a systems en-
gineer to calculate the trade-offs between capacity and coverage
of the system.

1 INTRODUCTION

Code division multiple access (CDMA) is the upcoming
standard RF access technology for third generation mobile
communication systems. Its greatest advantage over con-
ventional systems lies in the increase in capacity due to the
application of spread spectrum technology. By spreading
the transmitted signal over a larger bandwidth, the harmful
effects of interference from other users can be mitigated.
This robustness towards interference must be compensated
at the cost of keeping the received signal strength from each
mobile station (MS) at the base transceiver station (BTS) at
equal levels. This, however, requires that the CDMA sys-
tem overcomes the so-called “near-far” problem, where sig-
nals from users that are close to the BTS are much stronger
and therefore eliminate the signals of other users located at
greater distances.

To solve this problem, transmitpower controlin the re-
verse link (mobile-to-base station path) of mobile systems
based on direct sequence spread spectrum for code divi-
sion multiple access (DS-CDMA) is performed. The air
interface standard IS-95A [10] carefully specifies a reverse
link power control algorithm and its accompanying param-
eters. The performance of thissignal-to-interference-ratio
(SIR) balancing algorithm based on local SIR estimates has
been studied by many authors. Viterbi [13] constructed an
analytical model containing inner loop processing (based
on SIR) and outer loop processing based on frame error
performance. Ariyavisitakul et al. [1] conducted a sim-
ulation study of single and multi-cell systems and exam-
ined the dependence of signal and interference statistics on
step size and processing delays. The effects of power con-
trol non-idealities on performance were investigated [2] and
[7]. Distributed algorithms which use network-wide infor-
mation have also been examined, see [3] and [5].

The goal of this work is to formulate a comprehensive
analytical model for the power control loop in [1]. The mo-

tivation behind this goal is to find a robust model of reverse
link power control which will clearly illustrate the trade-
offs between system parameters and their impact on perfor-
mance. System parameters include step size, processing de-
lay, traffic loading, loop dynamic range, and path loss. The
model we propose is a Markov state space representation
of the portion of the mobile transmit power controlled by
the inner power control loop. This model follows naturally
from the IS-95A specification since it specifies a power
control step size as well as an inner loop dynamic range.
These conditions result in a quantization of the reverse-link
inner loop transmit power “states” that the mobile may oc-
cupy. This approach allows direct computation of the statis-
tics of the portion of the mobile transmit power controlled
by the inner loop and it results in a convenient computa-
tional model which clearly shows the effect of the system
parameters on the inner loop processing. The model may
be used to compute the time-dependent loop response or
to compute the probability of exceeding the mobile’s inner
loop dynamic range which can have serious implications on
outage, coverage and capacity.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the power control model and the
basic relations involved in the loop. In Section 3 we derive
our analytical Markov chain model and its implications on
the dynamics of the system. The results of these effects are
given in Section 4 and it is followed by the conclusion and
outlook on future work in Section 5.

2 POWER CONTROL MODELING AND BASIC
RELATIONS

This section describes the basic relations involved in the
inner loop reverse link power control algorithm. In the fol-
lowing, we will be considering the model of the loop pre-
sented in [1], see Fig. 1.
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Figure 1: Model for the inner loop

The main goal of the power control algorithm is to over-
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come the “near-far” problem, i.e., to keep the received
power of all mobiles at the base station (nearly) equal and
to track time-varying channel loss. This is achieved by the
close inter-working of two power control loops, the inner
and outer loop. The outer loop evaluates the current frame
error rate and adjusts the target SIR threshold accordingly.
In the inner loop, the base station compares the received
signal level of each mobile with the outer loop threshold
in order to track the desired signal-to-interference ratio. If
the mobile power is too low, the base station will transmit a
“power up” command bit on the power control sub-channel
of the forward link. Consequently, a too high power level
will result in the transmission of a “power down”. It is not
possible for the mobile to maintain its current signal level.

The command bit is sent without error-coding, thus re-
sulting in a higher error probability than for the other data
transmitted on the forward link. It has been shown, how-
ever, that under certain conditions, power control bit errors
can have little impact on performance [1], [12].

Upon reception of the power control bit the mobile will
update its transmit power by a fixed step size, predefined
here to 1 dB. This update is performed every power con-
trol cycle (defined here as a time interval of 1.25 ms). The
processing of the power control command requires a sub-
channel delay of 3 cycles causing that a power control up-
date computed at timen will take effect at cyclen+ 3.

3 ANALYTICAL MODEL OF THE POWER
CONTROL LOOP

In our analytical model we will focus on the time dynamics
of the mobile transmit power. Since both, the time incre-
ments and the power updates are discrete values of 1.25 ms
and 1 dB, respectively, we can model the transmit power
in a discrete time and state space. In the IS-95 system the
range for the MS transmit power is between -50 dBmW and
23 dBmW. In the following, we will use an abstract index-
ing of power levels, i.e.,j = 0; : : : ; J with J total power
levels. This generalized notation will facilitate any further
work considering different power update step sizes.

Let Sn be a random variable representing the mobile
transmit power at power control cyclen. We will then refer
to the probability that the mobile is transmitting duringn at
power levelj assn(j).

The transmission over the reverse link channel attenu-
ates the signal that the mobile originally sent by thechan-
nel loss. This loss is modeled here by the random variable
Cn. The base station compares the received signal with the
outer loop threshold� and determines the power control
command. We model this command as the random variable
Xn and define the probability for stepping up from levelj

asun(j). Consequently, the probability for a “power down”
command is given bydn(j) = 1� un(j). Please, note that
the indexn indicates the time of computation of the power
control command prior to the sub-channel delay.

3.1 Model Parameters

As mentioned in Section 2 the aim of the reverse link power
control is to provide compensation for time-varying chan-
nel losses and eliminate near-far induced multi-access in-
terference. This may be modeled by a control loop which
forces the effective symbol energy to noise spectral density
ratio (Es=N0)e� to some threshold. This section presents
a system-level model for the(Es=N0)e� which includes
such parameters as the subscriber population and the max-
imum number of active users allowed in the system. While
some researchers have found that normal fluctuations in
subscriber traffic have little effect on power control per-
formance [1], we wish to include it here so that we may
account for the effects of batch arrivals and departures.

We may define a quantity which we will refer to as the
loading factorF = I

I+N
whereI is the total interference

power andN is the noise power. Similar quantities have
been defined by other authors [6]. It is easy to show that
the signal-to-interference-and-noise-ratio (SINR) is related
toF by the expression: SINR=

~S
I+N

=
~S
N
�(1�F ) where

~S is the received signal power. If the system supports only
a single user, the loading is zero and the SINR= SNR, if
the loading is maximumI � N , the loading is unity and
the SINR is zero.

We may derive a more direct relationship between the
number of active users and the average interference. Con-
sider that the interference power is some fraction of the in-
terference and noise powerI = "(I + N) = "(kp � 1) ~S

where 0 � " � 1, ~S is the power of each interfer-
ing signal (they are all assumed to be equal),k is the
number of active users andkp is defined as the maxi-
mum number of active users supported by an interference-
limited system. Thispole capacityis approximatelykp �
(W=R)=(Es=N0)e� + 1 with the spreading bandwidthW
and data bitrateR. Using these relationships we can see that
F = " = (k � 1)=(kp � 1). If we consider thatEs � ~S=R
andI0+N0 � I=W +N=W , a convenient relationship for
(Es=N0)e� results:�

Es

N0

�
e�

=
Es

I0 +N0

=
W

R
�
~S

N
�
�
kp � k

kp � 1

�
(1)

So, fluctuations in the subscriber population result in a lin-
ear fluctuation in the(Es=N0)e� . The quantity in parenthe-
ses represents an interference-induced loss. Ifkp is large,
then the arrival or departure of a few users will be negli-
gible. However, if a batch arrival or departure occurs the
fluctuation in(Es=N0)e� could be substantial. The effect
of these traffic-induced fluctuations on control-loop dynam-
ics is of particular interest here.

3.2 Gaussian Channel Model

A mobile transmits a signal to the base station at power
level Sn. While traversing the reverse link channel it is
being attenuated due to propagation loss, multi-path effects,
and shadow fading. We can therefore define the received
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signal at the base station (in dB)~S = S+(L+Z) as sum of
the transmitted signal and the channel loss, which contains
the propagation lossL and the loss due to shadow fading
Z. For our model we will use the well known Hata model
[8] for computingL and shadowing will be described by a
zero mean Gaussian random variable.

We can then rewrite Eqn. (1) for a given user at power
control cyclen like in Eqn. (2). Please note that from now
on all quantities given here are in dB:�

Es

N0

�
e�;dB

=

�
W

R

�
dB

+ (Sn;dB + Ln;dB + Zn;dB)

�NdB +

�
kp � k

kp � 1

�
dB

(2)

As a first step we will include all factors except forSn
in our loop driving variable of the channel lossCn which
we will model as i.i.d. Gaussian random variable with mean
�C = W

R
+Ln+E[Zn]�N+

kp�k

kp�1
and standard deviation

�C . For the other random variableZn, we need to observe
the mean value, indicated byE[�].

The probability for a “power up” command at cyclen
can then be computed by comparing the(Es=N0)e� value
with the threshold� obtained from the outer loop. For the
sake of simplicity we will assume here a fixed value of� =
14 dB.

P (“power up”) = P

��
Es

N0

�
n

� �

�

This leads us to the probability for “power up” from a
power levelj as:

un(j) =
1

2
+

1

2
� erf

�
� � j � �Cp

2 � �C

�

Since we currently have not included any time-dependent
behavior of the channel, we can also drop the time indexn

and simply writeu(j). The probabilitiesu(j) for a “power
up” command depending on the mobile transmit powerj

are depicted in Fig. 2. Increasing the number of users in the
cell results in a worse(Es=N0)e� ratio (via the multi-access
interference term) and therefore the probability of “power
up” for power levels below the desired threshold increases
as well.
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Figure 2: Probabilities for “power up” command

3.2.1 Dependency Structure and Markov Chain
Description

The time dependent behavior of the inner loop can be
greatly influenced by the power control sub-channel delay
which causes the power control command to take effect 3
time increments after the up/down command was issued.
The three step delay results from ad = 2 step delay in
Fig. 1 and an additional delay of one time increment due to
mobile processing delays.

Transitions from one discrete power level to the next take
place each cycle and are only performed between adjacent
levels. The dependency structure of the power levels for
reaching a given levelj is illustrated in Fig. 3(a).
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Figure 3: Power control model state transitions

Fig. 3(a) illustrates that the power control command “up”
for levelj at timen depends on the probabilities for “power
up” of the 4 possible states that could have been assumed 3
cycles before, i.e., levelsj + 3, j + 1, j � 1, andj � 3 at
time n � 3. Note that for statej it is not possible to have
been in the same state 3 cycles before.

Since the probability for each state at timen� 3 is com-
puted by an equivalent subtree structure, we are also depen-
dent on the probability of reaching these originating states
at timen � 3. We therefore cannot simply assume that
the probabilitiesun(i) are the transition probabilities in our
case because we must also include the paths for reaching
these states. In order to incorporate these paths as well, we
define new super-states�sn(j1; j2; j3) containing 3 succes-
sive ordinary states which indicate the sequence that was
taken.

�sn(j1; j2; j3) = P (Sn = j3jSn�1 = j2; Sn�2 = j1)

Since we only have transitions between neighboring states
to j2 = j1 � 1 andj3 = j2 � 1, we can further limit the
state space. In this case we have4(J + 1) possible preced-
ing super-states�sn�1(j1; j2; j3) and a transition to super-
state�sn(j2; j3; j4) takes place withun�3(j1) or dn�3(j1)
depending on whetherj4 = j3+1 or j4 = j3�1. The tran-
sitions between super-states will then look like in Fig. 3(b).

Based on these super-state transitions, it is possible to
give a state space diagram at timen with the transition
probabilities given byun(i) anddn(i), see Fig. 4.
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The transition probabilities at timen can be ordered in a
Matrix Pn.

3.3 Non-Stationary Case

We first consider a non-stationary case, where we start off
with an initial mobile transmit power distributionS0 at time
n = 0 and iteratively compute the successive power distri-
butionSn of the considered user in cyclen.

Computation of the powerSn+1 is done in accordance
to the scheme described in the previous section with con-
sideration of the possible transition paths. The new state
probabilitiesSn+1 can be computed fromSn by first deter-
mining the corresponding super-state vector�Sn and multi-
plying it recursively with the corresponding transition prob-
ability matrixPn (also known as the power method).

�Sn+1 = �Sn � Pn

The transformation from�Sn+1 to Sn+1 yields the new
state probabilities. This can be achieved easily by adding
all super-states which have a common last state.

sn(j) =
X
j1;j2

�sn(j1; j2; j) j = 0; : : : ; J

Since we are interested in the dynamic behavior of the
system, we will examine the reaction time until the sys-
tem converges from one stable condition to another. We
will focus in this paper on the impact of the power con-
trol algorithm on two important parameters: the number
of users currently served within this cell and the distance
of the observed user from the base station. The effects of
varying these two parameters on the mean mobile transmit
power will be studied. It will also be possible to work with
higher moments as we obtain the complete power distribu-
tion, should this become necessary.

The choice of the initial vector at timen = 0 has a great
impact on the speed of convergence in the system. To make
sure that the system originates from a steady state and is no

longer transient, we need to perform a stationary analysis,
in which we will derive a power distribution that is inde-
pendent of the timen. This is an estimation for a steady
state distribution that we will also use in our experiments
as initial power for the non-stationary experiments.

3.4 Stationary Case

In this section we assume a stationary power control case.
Stationary in this sense means that the probability distribu-
tions of the random variablesSn are independent ofn. We
can then drop the indexn denoting the power control cycle
to obtain �S = lim

n!1

�Sn andX = lim
n!1

Xn. Please, note

that with �S we denote the super-states in our system and
not our original states representing the power levels.

Solution of this Markov process is straightforward [4].
Since the transition probabilities of these states are given,
we can compute the solution of the state probabilities by
solving the following homogeneous linear Eqn. (3).�

�s(0; 0; 0); : : : ; �s(J; J; J)

�
� (P � I) = O (3)

Here,I is the identity matrix andP the transition proba-
bility matrix with entriesu(j) andd(j).

The resulting distribution of the stationary mobile trans-
mit power located at a distance of 2000 m from the base
station in a cell with 15 users is depicted in Fig. 5. As
expected the mobile power follows a normal distribution
in dB which corresponds to log-normal when transformed
into linear space.
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Figure 5: Stationary transmit power distribution

Figure 6 illustrates that the mean stationary mobile trans-
mit power for an observed user increases with the number
of users in the cell. The mean approaches the maximum
power level and causes the signal to exceed the dynamic
range for an increasing distance from the mobile to the base
station.

3.5 Probability of Exceeding the Dynamic Range

From our state space description it is easy to obtain an ex-
pression forrange exceeding(RE). This is defined here as
the probability that channel and/or interference conditions
will require the mobile’s transmitter to exceed the maxi-
mum permissible power. This occurs in the super-states
(J � 1; J; J) and(J; J; J) as illustrated in Figure 4.
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The probability to be in an RE state can then be given as:

PRE = �s(J � 1; J; J) + �s(J; J; J):

Figure 7 shows the corresponding curve for range exceed-
ing as function of the distance of the observed user from
the BTS. Let us now define the random variableY as the
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number of successive RE cases. We can easily obtain the
distribution ofY under the condition that we have an RE
as:

P (Y = i j RE) =

(
dJ�1 i = 1

uJ�1 � ui�1J � dJ i > 1
(4)

In order to get an unconditioned probability for the number
of successive range exceeding cases, we need to uncondi-
tion Eqn. (4) withPRE.

The probability distribution ofY is illustrated in Fig. 8.
In this scenario we assumed the user to be located at a dis-
tance of 3000 m from the BTS and varied the number of
users in the cell. The probability of exceeding the dynamic
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transmitter range determines the outage probability which
in turn influences thequality of service(QoS) in a cell and
is therefore an important component in network dimension-
ing and planning [11].

4 RESULTS

To observe the time dependent dynamic behavior of our
model we conducted several experiments where we varied
the number of users in the system. We assumed an already
“perfectly” power controlled system obtained by the sta-
tionary analysis with initiallyk0 = 15 users and added
�k = 5 users to the system. We measured the power con-
trol cycles it took for the system to again reach a stable state
and compared the iterative result with the one obtained the-
oretically from the stationary analysis. Once stability was
reached, we removed the�k users again until we had our
initial number ofk0 users. In Fig. 9 the mean power of
this experiment is given. Note that the mean power over-
shoots the target value and converges after oscillating about
the theoretical mean. Performing the same experiment for
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different values ofk0 at a fixed observer distance of 1000
meters, we get Fig. 10 for the number of power control cy-
cles until stability is reached when adding users and Fig. 11
for leaving users. Both figures show the sensitivity of the
system for bulk arrivals and departures. The staircase shape
of the curves stems from the fact that we do not have any
fractional power control cycles as this is our smallest unit
of time. In Fig. 10 we add to a system already contain-
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ing k0 = 10; 20; 30 users�k further users until the pole
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capacity is reached or the range exceeding probability of
this state is greater than 10%. It is clear that a system with
a higher load requires more time to converge to a stable
state. The same effect can be seen when removing�k cus-
tomers from the system. Naturally only a maximum ofk0
can be removed. It can be also seen when comparing both
figures that the time for removing�k users is shorter than
for adding the same number.

When observing a user that enters the system at a cer-
tain distance in a cell that is currently loaded withk =
10; 20; 30 users, we obtain Fig. 12. What can be seen is
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Figure 12: Convergence time over the distance from the BTS

that the higher loaded the cell is, the longer it takes until a
stable state is achieved. The most striking fact, however, is
that as long as no RE case occurs, the time for convergence
is independent of the distance of the new user.

5 CONCLUSION AND OUTLOOK

In this paper we presented a new analytic description of the
reverse link power control in an IS-95 CDMA system. We
observed that the transmit power for an arbitrary observed
mobile user follows a log-normal distribution and is very
sensitive to the current level of multi-access interference in
the cell. This has an effect on the quality of service in the
cell in terms of increased signal range exceeding probabil-
ity. The variation of the system parameter settings showed
that the reaction time for batch arrivals and departures in
the cell is also mainly influenced by its current load, but
less dependent on the distance-induced propagation loss.

Our approach so far only considered anadditive white
Gaussian noise(AWGN) channel with no time dependent
behavior. In reality, however, correlations in the fading

channel cause the propagated signal to fluctuate at a greater
degree. One of our next aims is therefore to include a model
that considers fading in a more realistic manner by modify-
ing the loop driving variable.

The results presented here include the inner loop only
(which uses SIR as the performance measure) and do not
yet include outer loop processing based on frame-error
statistics [9]. Another possible extension of the current
model is to include the effects of the open-loop power con-
trol which would allow direct computation of the total mo-
bile transmit power statistics. Both of these topics are slated
as future work.
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