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Abstract— Models for the downlink capacity of WCDMA
systems with dedicated channels as specified in the UMTS Release
’99 rely on the orthogonality factor for approximating the intra-
cell interference due to multi-path propagation. This model is
no longer applicable for the HSDPA as the performance of fast
scheduling and adaptive modulation and coding depends on the
small-scale fading effects. This leads to the problem on how to
produce reliable statistics for the long-term system-level behavior
when small-scale fading effects are not negligible. In this paper we
introduce a general framework on how to perform time-efficient
simulations that capture the effects of small-scale fading.

I. I NTRODUCTION

Mobile network operators continue to deploy the High
Speed Downlink Packet Access (HSDPA) service in their
existing UMTS networks. From the users perspective, the
HSDPA offers high bit rates (promised are up to 14.4 Mbps)
and low latency. From operators perspective, the HSDPA is
hoped to play a key role for the much longed for break through
of high quality mobile data services. From a technical perspec-
tive, the HSDPA brings a new paradigm to UMTS: Instead of
adapting transmit power to the radio channel condition in order
to ensure constant link quality, HSDPA adapts the link quality
to the radio channel conditions. This enables a more efficient
use of scarce resources like transmit power, code resources
and also hardware resources.

In the literature, a wide range of publications on several
aspects of the HSDPA exists. The capacity of the HSDPA,
mostly in terms of throughput, is the focus of many works
which use simulations to obtain their results. The models in
early publications like [1] and [2] concentrate on aspects of
scheduling, HARQ and physical layer techniques. In [3], link-
layer simulations have been performed which are used to fit the
signal-to-noise ratio to CQIs. All these models do not consider
the impact of coexistent dedicated channels on the HSDPA.
This is done in [4], which assumes a fixed number of OVSF
codes reserved for the HS-DSCH in their extensive simulation.
The impact of the HSDPA on network planning is the focus
of [5], [6], [7] and [8]. All these works use simulations for
their results. The impact of code restraints is considered in
[5] and [6], while [7] and [8] concentrate on the influence of
the multi-path model and scheduling. In [9], a method for the
estimation of the interference for the HSPDA is proposed.

Evaluating the performance of HSDPA arises the problem
that the system behavior essentially depends on variationson
a very small time scale. This makes detailed simulations on
the one hand necessary but on the other hand extremely time

consuming such that traffic dynamics that might appear on
much larger time scales can not be simulated. The typical
solution is to apply the results from link-layer simulations e.g.
CQI traces [3] or even a location dependent bandwidth [7], [8]
to system-level simulation. The problem in doing so is that the
traces are in general not location specific and furthermore do
not consider system variations like changes of the other-cell
interference.

The key problem in high-level time-dynamic simulations
is how to determine the amount of data that HSDPA users
transmit in a certain period of time where we assume constant
shadowing and constant transmit powers of all NodeBs, i.e.
during a preriod of time where the system remains constant.
After that period the users might move to new locations, new
users might appear and some users might leave the system
according to the data they transmitted. Then, the data volume
transmitted in the next time period can be determined for
the new situation. We provide a simple and computationally
efficient algorithm to estimate the distribution of the CQI
(Channel Quality Identifier) in a static network situation.The
CQI distribution allows to determine the bandwidth of the
HSDPA users under consideration of the available codes and
the UE classes for different scheduling disciplines. In this
paper we focus on the simplest one, round-robin scheduling.

The rest of the paper is organized as follows: In Section II
we very briefly summarize the key features of HSDPA. In Sec-
tion III we present our model for approximating the HSDPA
bandwidth. In Section IV we demonstrate the accuracy of our
algorithm. In Section V we summarize the main contributions
of this paper and describe the next steps in generalizing the
model.

II. SHORT DESCRIPTION OFHSDPA FUNCTIONALITY

The main features of the HSDPA are AMC (adaptive
modulation and coding), packet-scheduling with time and
code-multiplex, Hybrid ARQ, and short TTIs (Transmission
Time Interval) of 2ms. AMC and opportunistic scheduling are
enabled by a feedback channel that is used by the mobiles to
report their CQI (Channel Quality Identifier) to the NodeB.
The TFRC (Transport Format and Resource Combination)
relates the CQI to the TBS (Transport Block Size, volume
trnasmitted per TTI), the number of parallel codes, and the
reference power adjustment. In [10] TFRCs for different UE
classes are specified. Indirectly, the TRFCs also define coding
rate and modulation scheme. Accordingly, a mobile has to
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estimate its channel quality and map it to the right CQI. In
general this is a quite complicated task as a certain channel
prediction is necessary to compensate for the feedback delay.
In [3] a formula for mapping the SIR to the CQI is proposed:

CQI = max(0,min(30, bSIR/1.02 + 16.62c (1)

Opportunistic scheduling allows the NodeB to consider the
CQIs reported from different mobiles in the scheduling, see
e.g. [11] for different scheduling schemes. Hybrid ARQ en-
ables a secure communication with rather low SIR values
by soft-combining retransmissions with prior transmissions.
According to [3] the first transmission aims at a FER of 10%.

III. B ANDWIDTH APPROXIMATION

In the following we describe an algorithm to approximate
the HSDPA bandwidth in a static network situation. The
network consists of a set of NodeBsB and every NodeBy
transmits with powerTy. We focus on the setMx of HSDPA
mobiles served by NodeBx. NodeBx spends powerTx,h for
the HSDPA and may use up toCx,h codes in parallel.

The propagation channel from NodeBx to mobilek consists
of a set Px,k of paths p with associated average relative
received powermβp

and delayτp, as e.g. defined by the
3gpp [12] for evaluating the HSDPA performance. The average
relative received powers are normalized, i.e. their sum equals
one. Furthermore, letdx,k be the average propagation gain
from NodeBx to mobilek. Then, the powerRx,k,p mobile k
receives on pathp is

Rx,k,p = Tx · dx,k · βp (2)

whereβp is a random variable for the instantaneous relative
propagation loss of multi-path componentp. If every multi-
path component experiences independent Rayleigh fading,βp

is exponentially distributed with meanmβp
. Assuming that the

Rake receiver has a finger on every multipath component and
uses perfect Maximal Ratio Combining, the HSDPA achieves
a SIR of

γk =
Tx,h

Tx
·
∑

f∈Px,k

βf
(

∑

y∈B\x

Ty·dy,k

Tx·dx,k
· By,k

)

+ Bx,k,f

(3)

with By,k =
∑

p∈Py,k

βp and Bx,k,f =
∑

p∈Px,k\f

βp.

In Eq. (3) every finger experiences the same other-cell in-
terference as we assume slowly varying channel conditions.
Thermal noise is neglected since in well-designed networks,
it is by magnitudes less than the multiple access interference.

Let us introduce the variable∆x = Tx,h/Tx for the ratio
of HSDPA power to total cell power, and the variableγk for
the SIR achieved by the total cell power, i.e.

γk,h = ∆x · γk. (4)

For the rest of this paper, we refer to the variableγk as the
normalized SIR (nSIR), and to the variable∆x as the HSDPA
power ratio (PR) .

The TBS is limited by the reported CQI and the available
codes at the cell. We obtain the mean TBS for mobilek in a
random TTI as

E[TBSk] =
∑30

q=0
pk(q) · min

(

TBS(q), TBS∗(Ch,k)
)

,

(5)
wherepk(q) is the probability that mobilek reports CQIq and
TBS∗(Ch,k) is the maximum TBS supported by the available
HSDPA codes. With round robin scheduling, a user transmits
in every nth TTI wheren = Mx is the number of HSDPA
mobiles. Then, the average bandwidthBk of a userk is

Bk = E[TBSk]
n·2ms·(1+perr) (6)

whereperr is the probability of an erroneous transmission in
the first stage of the hybrid ARQ process. Further retrans-
missions occur with low probability such that their impact
on the bandwidth is negligible for this rather coarse band-
width approximation. If we observe a certain period of time
consisting ofT TTIs the average transmitted data volume is
E [Vk] = Bk · T · 2ms.

The key of our bandwidth approximation is an algorithm to
determine the distribution of the CQI in a random TTI with
independent powers for the individual paths. The knowledge
of the CQI distribution allows the computation of the average
bandwidth for other scheduling disciplines like proportional
fair scheduling or MaxCQI scheduling, as well. Furthermore,
the volume transmitted in a certain period of time is actually
a random variable with a variance that strongly depends on
the autocorrelation of the reported CQI. However, further
scheduling disciplines and the CQI auto-correlation are outside
the main focus of this paper.

The distribution of the CQI follows from the distribution
function of γ since the PR∆ means only an offset in the
decibel scale. A direct calculation of the distribution function
of γ, or even of its the mean is numerically intractable. Ac-
cordingly, our approach is to estimate the type of distribution
and approximate the mean and standard deviation. Therefore,
we assume that mean and variance ofγ are functions of the
ratio Σ of average other-cell received power to average own-
cell received power

Σk =
∑

y∈B\x
σk,y with σk,y = (Ty · dy,k)/(Tx · dx,k) (7)

for which we introduce the abbreviation APR. This is of course
an approximation since exactly,γ depends not only onΣk but
on the received power ratioσk,y of every non-serving NodeB.
The assumption that E[γ] is a function ofΣk is also the basis
of the orthogonality factor model

E [γk] = 1
Σk+α

(8)

where the orthogonality factorα assumes values between 0.05
and 0.4 according to the multi-path profile. The orthogonal-
ity factor model is well accepted and introduced in many
textbooks on UMTS radio network planning. In fact, most
work concerning analytical models or higher layer UMTS
simulations rely on the orthogonality factor model. However,



for studying the performance of HSDPA, the orthogonality
factor is not appropriate, since computing the CQI distribution
requires the distribution of the SIR.

Unlike the orthogonality factor model, we are interested
in the nSIR in decibel scale and in the functionsfE(Σ)
and fSTD(Σ) that map the APRΣ to the mean E[γ] and
the standard deviation STD[γ] of nSIR in decibel scale. We
propose to use four-parametric Weibull functions

fa,b,c,d(x) = a − b · e−c·xd

(9)

both for fE andfSTD.
Let us now assume that we know the distribution ofγ in

decibel scale. Then, the mean and standard deviation allow us
to determine the parameters of the function such that we also
obtain the distribution functionaΣ(t) for a certain APRΣ.

Applying Eq. (1) that relates SIR to CQI we obtain the
following CQI distribution:

pCQI(q) =















aΣ (φu(q)) for q = 0
aΣ (φu(q))
−aΣ (φ`(q)) for q = 1, ..., 29

1 − aΣ (φ`(q)) for q = 30

(10)

where the functionsφu(q) and φ`(q) relate CQI q to the
respective maximum and minimum normalized SIR for a
certain HSDPA power ratio. The functions are given as

φu(q) = (q − 15.62) · 1.02 + ∆x,h[dB]
φ`(q) = (q − 16.62) · 1.02 + ∆x,h[dB].

(11)

Finally, the mean TBS follows from Eq. (5) considering the
available codes and the UE class, and Eq. (6) translates
the mean TBS to the mobiles’ bandwidth with round robin
scheduling.

IV. PARAMETERIZATION AND VALIDATION

In this section we will identify parameters for the functions
fE(Σ) and fSTD(Σ) and investigate to what extent we can
speak of functions. Furthermore, we investigate which distri-
bution matches best with the normalized SIR.

1) Simulation Model: At this place we want to demon-
strate the idea and accuracy of our model using a two level
Monte Carlo simulation. In the first level we generate5000
different static network situations. A static network situation
corresponds to a set of NodeB locations, the power of the
NodeBs, and the location of a single mobile. We assign the
mobile to the closest NodeB and determine the APRΣ. In
the second level we generate5000 snapshots of the multi-
path profile, i.e. values forβp, for every static situation which
allows us to determine the mean, the standard deviation, and
a histogram of the normalized SIR.

For evaluating the quality of our model in the most general
way, we generated the set of NodeBs according to a homo-
geneous Poisson process within an area of5km × 5km and
with a density of 1.27 NodeBs perkm2. The NodeB power is
chosen uniformly between 4W and 10W. The mobile is located
randomly within an inner area of3km × 3km. The average
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propagation gain is derived from the distancedisty,k between
NodeB and mobile according to the COST231 model

dy,k[dB] = −140.9 − 36.4 · log10(disty,k). (12)

We consider the three multi-path profiles defined in [12] for
HSDPA conformance testing, ITU Pedestrian A (PA), ITU
Pedestrian B (PB), and ITU Vehicular A (VA). The gainsβ∗

p

of the single multi-pathsp normalized to a maximum path
gain of 0dB are summarized in Tab. I.

2) Parameters for the Weibull functions:The parameters
for the functionsfE(Σ) and fStd(Σ) are found for the three
multipath profiles by fitting the Weibull functions to the
means and standard deviations obtained by the simulation.
The parameters and the corresponding root mean square error
(rmse) are summarized in Tab. II.

Figs. 1 and 2 show the mean and the standard deviation
of the normalized SIR versus the APRΣ. The dots represent
the values obtained from the simulation, the solid lines show
the fitted curves. Note that in Fig. 1 the x-axis is scaled
logarithmically in the left half and linearly in the right half.

The main observations are first, that the mean and the
standard deviation are not exactly functions ofΣ, second,
that the means are much more function-like than the standard
deviation, and third, that the fitted curves match the middle



β∗p1
β∗p2

β∗p3
β∗p4

β∗p5
β∗p6

PA 0 -9.7 -19.2 -22.8 - -
PB 0 -0.9 -4.9 -7.8 -8 -23.9
VA 0 -1 -9 -10 -15 -20

TABLE I

MULTI -PATH FADING PROFILES.

fE(Σ) fSTD(Σ)
PA PB VA PA PB VA

a 9.23 2.87 3.90 4.31 1.60 2.12
b 53.63 51.42 51.06 -0.63 -0.83 -0.68
c 1.57 2.28 2.11 117.06 0.63 0.56
d -0.22 -0.24 -0.24 1.12 -1.14 -1.32

rmse 0.21 0.07 0.08 0.17 0.07 0.09

TABLE II

PARAMETERS FOR THEWEIBULL MODEL

of the occurring values quite well. Furthermore, we observe
that PA with a single dominating path achieves by far larger
mean SIRs than PB and VA but the standard deviation is also
larger. Quite remarkably, the standard deviation of PA is almost
independent ofΣ while the mean varies from +9dB to -9dB.

3) Distribution of the normalized SIR:The next step is
to find a distribution that approximates the distribution ofγ,
preferably for all multi-path profiles and the whole range of
APRs. In order to compare fitted distribution and sample dis-
tribution we compute the probabilitiespsim(i, j) andpest(i, j)
that γ falls in the interval

I(i) =







(−∞;−16.62] for i = 0
(−16.62 + (i − 1; i]) · 1.02 for 1 ≤ i ≤ 40

(24.18;∞) for i = 41

where j denotes the situation withjth smallest value ofΣ,
i.e. thejth point from the left in the previous figures. Then,
we groupJ situations together and define the maximum SSE
of the kth group as

MaxSSE(k) = maxj∈{1,...,100} SSE(k · J + j)

with SSE(j) =
∑41

i=0

(

psim(i, j) − pest(i, j)
)2

.

We consider four distributions in decibel and in linear scale:
Normal, Lognormal, Inverse Gaussian, and Gamma. In decibel
scale we further distinguish the distribution defined by the
sample mean and standard deviation (opt) and the distribution
defined by the mean and standard deviation obtained from the
Weibull model (fit). Fig. 4 depicts the obtained maximum SSE
for the three multi-path profiles. The markers are not drawn at
specific values. Their only function is to improve the clarity
of the figure.

From the figures we conclude that there is no distribution
that is optimal for the whole range of multi-path profiles
and APRs. The best distribution over the whole range is the
Normal distribution in decibel scale with maximum SSEs of
about 0.08 for PB andΣ < 0.1. An Alternative to using a
single distribution for the whole range of APRs is to apply
different distributions to different APR ranges. ForΣ > 0.1 the
Normal distribution in decibel scale or the Lognormal/Inverse
Gaussian distribution in linear scale are good candidates.
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For Σ < 0.1 the Lognormal, Inverse Gaussian, or Gamma
distribution in decibel scale provide quite low SSEs for all
three multi-path profiles.

For further investigation, we compare the sample mean TBS
with the estimated mean TBS. Fig. 3 shows this comparison
for the three multi-path profiles with 15 Codes, UE class 4,
andTx,h = Tx. Additionally, the mean TBS for PA with only
10 and 3 codes are shown. Please note, that all these values
and also the network layouts are chosen artificially with the
only purpose of demonstrating the accuracy of the model.
The difference between Lognormal, Inverse Gaussian, and
Gamma distribution forΣ < 0.1 is not significant. The Normal
distribution matches best for PA with 15 codes, but slightly
underestimates for VA. ForΣ > 0.1 the Normal distribution
leads to quite accurate results in all cases. As a result we
propose either to use only the Normal distribution in decibel
scale, or additionally to use the Lognormal distribution in
decibel scale forΣ < 0.1. The decision for Lognormal instead
of Inverse Gaussian or Gamma is the simpler computation
of its distribution function. An alternative would be to usea
single sample distribution forΣ < 0.01 since the other-cell
interference becomes negligible.

V. CONCLUSION

We presented a method to determine the bandwidth of an
HSDPA user in a static network simulation which means that
only small-scale fading effects occur. The key component of
the model and also the main contribution of this paper is the
estimation of the CQI distribution from the ratio of average
other-cell interference to average own-cell interferencewhich
can be easily determined for static network situations. The
method can be seen as an extension of the orthogonality factor
model to cover the whole SIR distribution and not only the
mean SIR. One drawback of the model is that the parameters
found for the Weibull functions are quite specific for the multi-
path profiles and not as easily scalable as the orthogonality
factor. In this paper we focused on deriving the mean data
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Fig. 4. SSE for fitting normalized SIR distribution

volume transmitted in certain period of time when round-robin
scheduling is applied. The model also allows to consider other
scheduling disciplines like maxCQI-scheduling or proportional
fair scheduling.

The method is applicable in Monte Carlo simulations, in
high-level time dynamic simulations and analytic models. As
an example please refer to [13] for an analytic model based
on this method or to [14] where the method is used to
investigate HSDPA resource allocation strategies by system-
level simulations.

A further advantage of this method is that it is entirely
described by the set of parameters for the Weibull functions.
That makes it easily applicable for researchers that do not
have a physical layer simulator at their disposal. Furthermore,
the usage of this model can make simulations from different
researchers better comparable since the impact of the lower
layer is clearly defined.
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