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Abstract—Intra-domain routing in IP networks is based on the
shortest path principle by assigning administrative weights (costs)
to links. The resulting least-cost paths determine routes between
pairs of routers. If several such equal-cost paths exist between
a pair of routers, it may not be clear which of them is actually
used to route traffic. This makes it difficult to predict the network
traffic flow distribution. Therefore, the selected link costs should
assure uniqueness of the shortest paths. On top of that, the link
costs can be optimized with respect to some traffic objective.
The resulting optimization problem, referred to as SSPP, turns
out to be NP-hard. SSPP can be formulated as a mixed-integer
programming problem and, as such, solved with branch-and-
bound (B&B). In this paper, we consider three methods for SSPP.
Two of them are exact methods based on B&B, namely branch-
and-cut and constraint programming. Since the exact solutions
of SSPP may require excessive computation time and may not
always be effective when applied to practical networks, we also
study a fast heuristic method. Finally, in a numerical study, we
compare the effectiveness of the three approaches.

I. INTRODUCTION

Packet forwarding in IP networks depends on the destination
address of the packets. Upon arrival of a packet in a router,
the longest match of the address with the prefixes in the
router forwarding table is determined, and the corresponding
entry determines the interface to which the packet is sent.
Forwarding tables are typically determined using the data from
a distributed routing protocol of an autonomous system (AS) of
the Internet. Examples of such shortest path routing protocols
are Open Shortest Path First (OSPF) or Intermediate System-
to-Intermediate System (IS-IS). Intra-domain routing protocols
usually rely on administrative link weights considered as
virtual link costs. The protocols determine the entries of the
forwarding tables so that traffic is forwarded on the least-cost
paths. Thereby, the cost of a path is the sum of the costs of its
links: this is known as the shortest-path principle. When there
are several equal-cost paths between two routers, two options
can be applied to cope with this issue.

• Packets are forwarded to the interface with the lowest
number [1, Section 7.2.7] (or a similar rule is used). Since
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this rule is not always implemented in practice, the choice
of the path over which the traffic is routed can become
random. Thus, the exact flow distribution in the network
cannot be predicted. This may cause problems in capacity
planning and lead to problems with assuring quality of
service (QoS), hence.

• Traffic is equally distributed to all outgoing interfaces of a
router that lead to a shortest path. This is called equal-cost
multipath (ECMP) routing. However, in ECMP per-flow
load balancing is required to avoid re-ordering of packets.
Balancing flows of different size may be difficult [2].

As both options have drawbacks, it is reasonable to avoid
equal-cost paths and enforce unique shortest paths through a
properly designed system of administrative weights.

Traffic engineering with IP routing consists in modifying
the administrative link weights that control the layout of the
shortest paths. Weight modifications should lead to path pat-
terns optimizing certain objectives. Optimization of different
objective functions has been studied in the literature. For
example, the maximum ρ = maxe∈E ρe of link utilization ρe
(e ∈ E) can be minimized. In [3], [4], excessive link utilization
is penalized by introducing a piece-wise linear increasing
convex function Φ(ρe) and minimizing the sum of penalties∑

e∈E Φ(ρe). Resilient routing requires that the minimization
is performed for all links of the network both for the failure-
free scenario and for considered failure scenarios (see [5], [6],
[7], [8], [9], [10]). Additional constraints for multi-layer traffic
engineering can also be taken into account [11].

In this paper we study three methods for optimization
of single-shortest path (SSP) routing patterns in order to
minimize the maximum link utilization ρ. The underlying
problem is NP-hard (see [3] and [12]) and has been ap-
proached with stochastic heuristics such as tabu-search [3],
[10] or evolutionary algorithms [13], [14], [15], and with exact
methods [16], [17], [9], [18], [19], [20].

To obtain an optimal set of link weights, we formulate a
mixed-integer programming (MIP) problem called SSPP (SSP
Problem), and solve it by two enhancements of the branch-
and-bound (B&B) approach, namely branch-and-cut (B&C)
[12], [19], [21] and constraint programming (CP) [22], [23].
These enhancements aim at finding exact solutions and may
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require excessive computation time already for medium-size
network instances. Therefore, we also present a simple ”hill
hopping” heuristic (HH) [11]. We explain our methods in
detail and apply them to a set of different problem instances.
We compare the quality of their results and their computation
time.

The paper is organized as follows. In Section II, we give
an MIP formulation of SSPP. Section III introduces the three
different solution methods. In Section IV, we compare the ef-
fectiveness of the three methods on a set of network instances.
Conclusions are given in Section V.

II. SSPP: BASIC PROBLEM FORMULATION

An AS network is modeled by a directed graph G = (V, E)
with the set of nodes V and the set of links E . The originating
node of link e ∈ E is denoted by a(e), and the terminating
node by b(e). The notations δ+(v) and δ−(v) stand for the sets
of all links originating and terminating, respectively, at node
v ∈ V , i.e., δ+(v) = {e ∈ E : a(e) = v} and δ−(v) = {e ∈
E : b(e) = v}. Link capacities ce, e ∈ E , are assumed to be
given, as well as (deterministic) traffic demands between the
nodes. Each traffic demand is represented by a pair of nodes
and a traffic volume that must be carried by the network. The
volume of traffic generated at node v ∈ V and destined to node
t ∈ V is given by hvt. Link capacities and demand volumes
are expressed in the same units of bandwidth.

A (somewhat complicated) MIP formulation of SSPP is as
follows:

minimize ρ (1a)

subject to
∑

e∈δ+(v)xet −
∑

e∈δ−(v)xet = hvt v, t ∈ V (1b)
∑

e∈δ−(t)xet =
∑

v∈V\{t}hvt t ∈ V (1c)
∑

t∈Vxet ≤ ceρe e ∈ E (1d)
ρ ≥ ρe e ∈ E (1e)
rb(e)t + we − ra(e)t ≥ 1− uet t ∈ V, e ∈ E (1f)
rb(e)t + we − ra(e)t ≤M(1− uet) t ∈ V, e ∈ E (1g)
rtt = 0 t ∈ V (1h)∑

e∈δ+(v)uet ≤ 1 v, t ∈ V (1i)
xet ≤ uetM t ∈ V, e ∈ E . (1j)

SSPP uses a big constant M and the following variables:
• x = (xet ≥ 0 : e ∈ E , t ∈ V): vector of continuous flow

variables; xet denotes the total flow destined to node t
realized on link e

• u = (uet ∈ {0, 1} : e ∈ E , t ∈ V): binary vector of
routing variables; uet = 1 if, and only if, link e is on a
shortest path to destination t

• w = (1 ≤ we ≤ W : e ∈ E): vector of continuous vari-
ables representing link weights (W - maximum weight)

• r = (rvt ≥ 0 : v, t ∈ V): vector of variables representing
lengths of the shortest paths; rvt denotes the length of
the shortest path from node v to destination t, calculated
according to link weights w.

The variables are supposed to fulfil the following relations:
• uet = 0 implies that xet = 0
• rvt =

∑
e∈P we, where P is a shortest path from v to t

(uet = 1 for all e ∈ P); rtt = 0 for each t ∈ V .
Formulation (1) specifies a multi-commodity flow optimization
problem in aggregated node-link notation (cf. [12]). Con-
straints (1b)–(1c) express the aggregated flow conservation
conditions for the flow variables x.

Constraints (1d)–(1e) force that the maximum over all
normalized link utilization levels ρe, e ∈ E ,ρ is expressed by
variable ρ which is minimized through objective (1a).

The quantity rb(e)t + we − ra(e)t in constraints (1f)–(1g)
measures the difference between the length of the shortest path
from a(e) to t (given by ra(e)t) and the length of the shortest
path from a(e) to t necessarily traversing link e (for the latter,
the length of the sub-path from b(e) to t is determined by
rb(e)t). Note that link e is on a shortest path to node t if, and
only if, rb(e)t + we = ra(e)t – this condition is enforced by
constraints (1f)–(1h). Hence, the routing vector u determines
the shortest paths according to the weight vector w.

Constraint (1i) enforces that the shortest path between each
pair of nodes is unique, and constraint (1j) makes sure that
traffic is not routed on the links that do not belong to the
shortest paths. Namely, constraint (1i) assures that for each
node v ∈ V there is at most one outgoing link that belongs
to the shortest path to destination t ∈ V , while constraint (1j)
enforces traffic destined to node t to use only the links e ∈ E
allowed by the routing configuration specified by vector u
(i.e., the links with uet = 1). Thus, both constraints assure a
single shortest path routing pattern.

The MIP formulation (1) was invented by A. Tomaszewski
for the ECMP version of the considered problem in 2000
(see Section 7.2.1 in [12] and references there). Analogous
formulations were published in the literature (see [17], [9],
[24], [25]). In [20], a non-linear version of the considered
problem is described. Although the above formulation is
among the best in terms of the number of involved variables
and the quality of the lower bounds provided by its linear
relaxation, a direct use of standard MIP solvers to SSPP can
fail already for rather small networks with, say, V = 10 nodes.

III. RESOLUTION METHODS FOR SSPP

A. Branch-and-Cut

Problem SSP, as any other MIP problem, may be ap-
proached with B&B. B&B is a general optimization method
that systematically explores the problem solution space
through the so called branching. The method excludes sub-
regions of the space that can be proved not to contain any
optimal solution (bounding). In SSPP, variables u are binary
and all other variables are continuous. Hence, only variables
u are subject to branching. Initially, all uet, e ∈ E , t ∈ V , are
relaxed, i.e., assumed to be continuous in the range [0, 1]. The
current set of the relaxed variables u is denoted by U ; hence,
initially, U = E × V . In further steps of the B&B algorithm,
some variables from u will be fixed to 0, and some to 1. The
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corresponding current sets of variables will be denoted by U0
and U1, respectively. (Initially, U0 = U1 = ∅.) It will always
hold that U ∪U0∪U1 = E ×V , and the three sets are mutually
disjoint. Besides, ρbest is initially set to +∞.

B&B for SSPP is presented in Algorithm 1. The algorithm
successively solves linear programming (LP) (sub)problems,
being linear relaxations of SSPP determined by the sets
U ,U0,U1. Each such relaxed subproblem is denoted by
P (U ,U0,U1), and is given by (1) with the binary requirement
for u substituted with: 0 ≤ uet ≤ 1, (e, t) ∈ U , uet =
0, (e, t) ∈ U0, uet = 1, (e, t) ∈ U1. Certainly, problems
P (U ,U0,U1) can be efficiently solved using LP solvers, for
example CPLEX. In Algorithm 1, such a solution is returned
by procedure solution(U ,U0,U1, û, x̂, r̂, ŵ, ρ̂). The value of
ρ̂ determines the lower bound on the value of the objective
function (ρ) that can be attained in the B&B subtree de-
termined by the sets U0 and U1. If in vector û all entries
are binary then the current solution is an optimal solution
for the original problem assuming U0 and U1. Otherwise,
a pair (e, t) ∈ U with 0 < ûet < 1 is selected for
branching, and two new subproblems, with variable uet equal
to 0 and to 1, respectively, are created. As this procedure is
repeated recursively, all the resulting sub-regions of variables
u represented by sets U0 and U1 form a tree structure (referred
to as B&B tree) with the nodes (called B&B nodes) represented
by triples (U ,U0,U1).

B&B nodes related to feasible solutions (with binary u) of
(1) are the leafs of the B&B tree. All other nodes, are related
to fractional solutions and are subject to further branching.
However, branching in a certain node (U ,U0,U1) may not be
necessary: this is the case when the current lower bound ρ̂ is
greater than or equal to ρbest, i.e., to the value of the objective
of the currently best feasible (binary) solution of SSPP. The
value of ρbest is referred to as upper bound.

The upper bound ρbest, initially set to +∞, is updated
whenever a leaf of the B&B is encountered. As this in
general happens very seldom, the algorithm can be addition-
ally equipped with a heuristic finding a suboptimal feasible
solution of SSPP based on the current fractional solution
(û, x̂, r̂, ŵ, ρ̂). In effect, the current upper bound ρbest is
the best feasible solution obtained so far, either as a binary
solution of a B&B leaf or by the heuristic. In general, the
heuristic is not invoked at every B&B node as this could be too
time consuming (the number of visited B&B nodes is usually
enormous) with respect to gains related to the value of the
upper bound.

In fact, an upper bound heuristic can be an important
element of the B&B framework as heuristics providing feasible
solutions of good quality can significantly improve the effi-
ciency of B&B. Using problem-dependent user-defined heuris-
tics can improve effectiveness of B&B, because commercial
MIP solvers are equipped only with heuristics working for
general MIP problems.

The second means to improve B&B is to use the so
called valid inequalities (or simply cuts) – this leads to
an enhancement of B&B known as B&C (branch-and-cut).

The idea is to insert one or more additional inequalities to
problem P (U ,U0,U1) at a B&B node. Such an inequality
must not be violated by any integral (feasible) solution, and
at the same time must be violated by the current solution
(û, x̂, r̂, ŵ, ρ̂) with fractional û. If properly done, this can
substantially strengthen the lower bound ρ̂ and, consequently,
lead to more frequent bounding. Many authors consider B&C
to be potentially the best exact (and also approximate, if we
do not require to reach strict optimum) method for resolving
MIP problems, SSPP in particular. Valid inequalities based on
the so called shortest path routing necessary condition can be
found in [26] and [27]. Other types of inequalities are derived
along similar lines in [9], [20], [28], [29], [30], [31], [32],
[33]. We note that some of such inequalities hold only for
networks with undirected links and demands, as for example
inequality (12) in [20] or the 3-node condition in [33].

Input: G(V, E), capacities c, demands h

procedure BBB(U ,U0,U1)
begin
solution(U ,U0,U1, û, x̂, r̂, ŵ, ρ̂); {subproblem}
if U = ∅ or ∀ (e, t) ∈ E × V, ûet ∈ {0, 1} then

if ρ̂ < ρbest then
(ρbest,xbest,wbest) := (ρ̂, x̂, ŵ)

end if
else

if ρ̂ ≥ ρbest then
return; {bounding}

else
begin {branching}
choose (e, t) ∈ U such that ûet is fractional;
BBB(U\{(e, t)},U0 ∪ {(e, t)},U1);
BBB(U\{(e, t)},U0,U1 ∪ {(e, t)});

end if
end if
end {procedure}

Output: wbest

Algorithm 1: RECURSIVE BRANCH-AND-BOUND FOR SSPP

In our implementation of B&C, we use two types of
problem-dependent valid inequalities generated for routing
variables u. Such inequalities are specified for problems
P (U ,U0,U1) with continuous routing variables uet ∈ U and
must be satisfied by all feasible binary u, at the same time
cutting off as many fractional u as possible.

We introduce two properties [18], called transit and cycle
(cf. Figure 1), and the corresponding valid inequalities (based
directly on the properties of the shortest paths) of the form:

∑

(e,t)∈I1

(1− uet) +
∑

(e,t)∈I0

uet ≥ 1 (2)

where I0, I1 ⊆ E × V, I0 ∩ I1 = ∅.
To explain the transit property consider two shortest paths

starting at node s: one destined to node v, and the other
destined to node t (as depicted in the left part of Figure 1).
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Fig. 1. TWO TYPES OF VALID INEQUALITIES

Assume that the path from s to v traverses t. Then, according
to the shortest path condition, the sub-path from s to t for
both considered paths must be the same (otherwise, no weight
system can generate these two paths as unique shortest paths).
Hence, we can formulate the transit property: if t is a transit
node on a shortest path from s to v, then all links between s
and t on the path to v must belong to a shortest path from s to
t. Clearly, if there were a shorter path from s to t then it would
have to be used to v as well. Assuming that e is the first link
of path Pb(e)t from s to v we can formulate a valid inequality
separating vectors u which contradict the transit property:

∑

f∈Pb(e)t

(1− ufv) + (1− uev) + uet ≥ 1. (3)

To find the most violated inequality (3) for given s, v, t, and
e, it is sufficient to find a shortest path Pb(e)t from b(e) to t
using the values 1−uev for the link weights. We note that this
inequality is stronger than the one used in [9], because it does
not consider the values of the variables defining the shortest
paths from t to v, and considers the paths from s to t but not
from s to v.

The cycle property expresses a relation between shortest
paths to a single destination. Since the values of link weights
w are positive, the distances of the consecutive nodes to that
destination are decreasing on the shortest path to a destination.
Thus, the segments Pst and Qts of two such paths cannot form
a cycle. The following inequality separates vectors u which
contradict this property:

∑

f∈Pst

(1− ufv) +
∑

g∈Qts

(1− ugv) ≥ 1. (4)

To find the most violated inequality (4) for given s, t, and v,
it is sufficient to find a pair of shortest paths, one from s to t,
and one from t to s, using the values 1−uev as link weights.

To generate all violated inequalities of type (3) and (4) for
a given vector u, it is thus sufficient to determine, for each
destination node v, the shortest paths between all pairs of
nodes, using values 1 − uev for the link weights; thus, the
entire generation has the overall complexity of O(|V|4).

Now, we describe a heuristic that generates feasible so-
lutions (upper bounds ρbest) during our B&C process. The

heuristic is based on a method discussed in [16]. The idea
of this method reflects the fact that link weights of the form
we = 2e, e ∈ E = {1, 2, . . . , E} generate routing patterns
with a unique shortest path between each pair of nodes. This
is pretty obvious that for these specific link weights all simple
paths have mutually different lengths (see [27]).

Suppose that V = {1, 2, . . . , V } (each node is identified by
an integer) and consider a somewhat different form of the link
weights: wo = (wo

e : e ∈ E) (where wo
e = ŵe · 2|V| + 2a(e)),

formed for a given vector of integral weights ŵ = (ŵe :
e ∈ E). It can be shown that the weight system wo always
generates unique shortest paths.

For ŵ we can use a vector of rounded weights obtained
from a fractional solution of the linear relaxation of a B&C
subproblem P (U ,U0,U1). Clearly, the numbers ŵe · 2|V| can
assume large values, exceeding the assumed bound W . To
alleviate this, a simple compression of values of vector ŵ is
made in the following way. Suppose there are K different
values in vector ŵ. Then, the smallest values in ŵ are set to
1, the next smallest values—to 2, and so on, until the largest
values in ŵ are set to K.

Additionally, to better explore the feasible solution space,
the described heuristic generates several weight systems ŵ by
adding some small integers (as {0, 1, 2}) to the compressed
weights ŵ. Then, vector wo is computed for each perturbed
weight vector ŵ. Moreover, for each such obtained feasible
solution, the heuristic performs several additional steps trying
to improve it. The heuristic iteratively identifies all links with
the maximum link utilization ρe, increases the value of the
corresponding original weights, and recomputes the solution.
This aims at decreasing loads of the overloaded links (as in
general an increased weight of a link makes the number of the
shortest paths traversing the link smaller). Similarly, links with
the minimum loads are expected to be under-loaded, so the
heuristic occasionally decreases the values of original weights
related to such links.

B. Constraint Programming

In this section, we describe an exact optimization method
for SSPP based on constraint programming (CP, see [22] for
details). In CP, problems are modeled using variables and
constraints. Each variable has a domain (typically discrete)
of possible values. Each constraint is imposed on a set of
variables, and restricts the combinations of values that can
be assigned to these variables. An assignment to all variables
which is consistent with every constraint is a feasible solution
to the problem.

The process of searching for solutions is systematically
organized by traversing a binary search tree, in which each
node maintains its own version of the variable domains.
The root node uses the original variable domains, while the
domains at other nodes may be subsets of the original domains,
reflecting search decisions that have been made on the path
to the node. Nodes are expanded by doing domain splitting.
First, the domains from the expanded node are copied to its
children. Then a branching variable, v, is chosen, and finally
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half of v’s domain is removed from the left child and the other
half from the right child. A node in which every variable has a
single domain defines a full assignment, and if this assignment
is consistent with every constraint, then the node represents a
solution. In this way, the entire solution space is explored.
So, if there is a feasible solution, the method is guaranteed
to find it. For optimization problems, it is common to let one
variable represent the value of the objective function, and use
B&B search (described in Section III-A) to find an optimal
solution. Thus, like B&C, CP optimization is exact in the sense
that it finds provably optimal solutions.

The main difference compared to B&C lies in how the
constraints are used to prune the search space. During search,
constraint-specific algorithms are used to remove inconsistent
values from the domains of the variables on which a con-
straint is defined. These domain reductions take place in the
domains belonging to the current search node. Thus, variable
domains are pruned based on one constraint at a time, but
with constraint-specific pruning methods, removing values that
cannot be part of any solution allowed by the constraint. A
reduction of a variable domain based on one constraint may
make it possible to make further domain reductions based
on other constraints. This process in known as constraint
propagation, and will go on until a fixpoint has been reached
where no more domain reductions can be inferred. At this
point, the current search node is expanded, triggering new
rounds of constraint propagation at its child nodes.

Here, we describe the main features of the CP-based
method. For details, we refer to [34], where a similar version of
the method was described. The CP method basically handles
capacity constraints in the same way as the B&C method,
by embedding a linear program for the multi-commodity flow
problem, constraints (1b)-(1d) in a CP constraint. The main
difference between the CP and B&C models lies in how
the admissibility of the path system is enforced, i.e., how
constraints are used to make sure that the chosen path set
is realizable as single shortest paths w.r.t. some weights.

In [35], a necessary condition for admissibility is described,
identifying structures called valid cycles that cannot occur
in any admissible path set. This condition is conveniently
expressed on the routing variables, u, defined in Section II.
These variables are included in the CP model, together with
the valid cycles constraint which enforces the condition.

We add an alternative set of routing variables, q to the
basic problem formulation (1), where qsvt = 1, if and only if,
traffic from s to t is routed through node v. These variables
are linked to the u-variables by a channeling constraint, to
keep the two representations consistent. On the q-variables,
we impose the four-node constraint which restricts routing
decisions for all groups of four nodes. For each such group,
the constraint looks at the possible assignments to the 24 q-
variables that are defined only on these four nodes. Out of
the 224 ≈ 16 · 106 assignments to these variables, it turns out
that only 3225 are possible in admissible path systems, and the
four-node constraint will enforce that one of these assignments
is chosen. This constraint can be implemented efficiently – it

is not necessary to check against all 3225 assignments each
time the consequences of a variable assignment is propagated.

We also include in the model the inverse shortest paths con-
straint that embeds an LP formulation of the inverse shortest
paths problem, i.e., the problem of finding a set of weights
that define a given set of paths as shortest paths. This LP
formulation can include decisions about partial path systems,
so it can be applied at any point in the search. Since this
constraint is rather time-consuming, it is not applied at every
search node, but it is always run at nodes that correspond to
complete assignments, where the path system is fully defined
and, thus, a solution candidate. This is necessary, since this is
the only constraint that excludes all inadmissible solutions.

A standard B&B search only provides an upper bound on
the objective function: the best solution found. To estimate the
quality of such a solution, it is necessary to also have a lower
bound. One way of achieving this is to guess a lower bound,
zLB , enforce zLB as an upper bound on the CP model, and
solve this problem. If the problem has no solutions, then zLB

is a proven lower bound. In the CP method, we use a search
scheme in which we run a standard B&B search in parallel
with a search that mainly looks for a lower bound. This second
search iteratively guesses a bound, and runs a search with a
limited number of backtracks using this bound. If a solution
was found during an iteration, then the upper bound of the
B&B search is updated. If infeasibility was proved for the
guessed bound, then it is recorded as a new lower bound.
After each iteration, the search is restarted with a new bound
guess. The technique of restarting a search after a number of
backtracks is known as random restarts [36].

C. Hill Hopping Heuristic

In the previous subsections we have presented two exact
methods for SSPP. These methods are based on B&B and
because of that they can exhibit excessively long runtimes
to find provably optimal solutions, even for relatively small
networks. Because of NP-hardness of SSPP, B&B is virtually
the only exact approach to the problem, so the time issue is un-
avoidable. Therefore, we need to consider more time-efficient
heuristic methods for SSPP that scale with the network size
and do not necessarily scan the whole solution space.

In this subsection, we present such a heuristic approach,
called hill hopping (HH), to tackle the SSP problem in a time
efficient way also for large networks. The price paid for time
efficiency is that HH does not guarantee optimal solutions. A
formal description of HH is given by Algorithm 2.

The gist of the heuristic, introduced in [11], is to first pick
up, in a random way, a vector w, and then determine, by
a simple algorithm, a set of its neighboring vectors that are
better than w in terms of the objective function. This step
is iteratively repeated until an assumed limit of successive
iterations with no improvement is exhausted.

HH starts with a random selection of a weight vector
w ∈ {1, 2, . . . ,W}|E| (weights are assumed to be integers
between 1 and W ). At this point, vector w becomes the current
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best weight vector wbest. Then, we define a neighborhood set
N (wbest) of the current best weight vector wbest.

The neighborhood is generated by the so called Random
Neighborhood Generation (RNG) algorithm, already presented
(together with two other algorithms for neighborhood genera-
tion) in [11]. RNG has two parameters, C and ∆w. It chooses
a non-empty subset E ′ ⊆ E with at most C links and modifies
their weights by at most ∆w. Mathematically,

N (wbest) = {w : |we − wbest
e | ≤ ∆w, e ∈ E ′}, (5)

where 1 ≤ we, w
best
e ≤ W . Since we solve the SSP problem,

we have to eliminate all vectors w which generate multiple
shortest paths and, therefore, to use an SSPP-feasible neigh-
borhood NSSPP(w

best) defined by

NSSPP(w
best) = {w ∈ N (wbest) : w is SSPP-feasible}. (6)

To produce NSSPP(w
best) we consecutively perturb the current

best vector wbest and check the SSPP-feasibility of the resulting
vectors (i.e., whether the vector generates unique shortest paths
for all node pairs) inside the routing calculation. Vectors that
generate multiple shortest paths for some node pair are imme-
diately discarded and not considered for the neighborhood.

Maximum link utilization ρ(w) is calculated for each new
w ∈ NSSPP(w

best). The basic feature of HH is the threshold
T, T ≥ 1, allowing a vector w to be a successor of wbest,
if ρ(w) ≤ T · ρ(wbest). HH is motivated by the general
hill climbing local search heuristic (e.g., [11, Section 3.1]).
However, HH does not get stuck that easily at a local minimum
as it can “hop” over the local minima while wandering around
the solution space. The steps of HH are iteratively repeated
until the algorithm is unable to improve during N iterations.

Input: G,W,C, T,N,∆w
randomly pick w ∈ {1, 2, . . . ,W}|E| feasible for SSPP;
wbest ← w; wnew ← w; n← 0;
while n < N do

randomly select w ∈ NSSP(w
new); {cf.Equation (6)}

n← n+ 1;
if ρ(w) ≤ T · ρ(wbest) then

wnew ← w; {to prevent continuous decrease}
if ρ(w) < ρ(wbest) then

wbest ← w; n← 0
end if

end if
end while

Output: wbest

Algorithm 2: HILL HOPPING HEURISTIC FOR SSPP

IV. NUMERICAL RESULTS

In this section, we present and compare the results of apply-
ing the three methods described in the Section III to a common
set of network instances. The instances are characterized in
Table I. In each case, every node has a separate demand to all
other nodes. The individual demand volumes are in general
different, and so are the link capacities.

A. Branch-and-Cut

The B&C method described in Subsection III-A was imple-
mented through the use of Callable Library API 1.2 to program
SSPP, and then to resolve it with CPLEX 9.1 (cf. [37]). In
effect, the problem is resolved by means of the CPLEX built-
in B&C solver. The solver calls our externally defined cut-
generation procedure at each B&B node. The procedure uses
the current fractional solution obtained at a B&C node and
searches for the violated transit and cycle valid inequalities
which are generated using a shortest path algorithm. If one (or
more) violated valid inequality is found, CPLEX re-optimizes
the current linear relaxation of the basic problem with new
valid inequalities. The procedure is repeated until no violated
valid inequality is found.

B&C invokes the upper bound heuristic procedure every 60
seconds. If a linear relaxation subproblem cannot be solved
in this time (what is often the case for large networks), the
heuristic is invoked at every visited B&B node. The heuristic
extracts the integral weights hatw from the fractional solution
provided by the last visited B&B node. Then, the compressed
weights are increased by a random integer from the set
{0, 1, 2}. After that, the heuristic assigns a random order of
indices to the network nodes V and calculates the resulting
feasible weight vector wo (wo

e = ŵe · 2|V| + 2a(e) : e ∈ E).
Further, the heuristic continues to improve each such solution
wo in |E| steps. Weights corresponding to the most heavily
loaded links are increased with probability 0.9, and the values
of weights corresponding to the least heavily loaded links are
decreased with probability 0.1.

The experiments were performed on a machine running
Windows XP on an Intel Pentium 4 (3.0 GHz) processor with
1.96 GB of RAM. The CPU was used up to 50%.

B. Constraint Programming

The CP-based method was implemented in using the con-
straint solver JaCoP [38], a constraint solver implemented
in Java. The embedded linear programs were solved using
lp solve. The experiments were performed on a machine
running Linux on an Intel Pentium 4 3.0 GHz processor with
1 GB of RAM.

To improve the performance of CP, the constraint model
would have to be stronger. Thus, a more thorough pruning
of the search space would have been allowed. One weakness
of the CP model, compared to B&C, is that the admissibility
constraints interact poorly with the capacity constraints. The
main capacity constraint, based on the multi-commodity flow,
does not incorporate any admissibility constraints, so there is
no mechanism similar to the cuts of B&C that can strengthen
lower bounds based on the admissibility requirement.

For the two labnet problems, the CP based method fails to
find lower bounds. The reason is that none of the randomly
restarted iterations has guessed a bound for which the search
space was exhausted. One way of achieving a lower bound in
such a situation would be to use the lower bound given by
the multi-commodity flow constraint at the root of the search
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TABLE I
NETWORK DATA AND RESULTS FOR THE THREE METHODS APPLIED ON THE NETWORK INSTANCES SORTED BY CATEGORIES

Number of Lower bound / estimated Upper bound / best found Time (s) Gap (%)
Network nodes links B&C CP B&C CP HH B&C CP HH B&C CP

network 6 6 18 1.2414 1.2414 1.2414 1.2414 1.2414 0.2 1.2 1.0 0.00 0.00
network 8 8 24 1.3134 1.3134 1.3134 1.3134 1.3134 3.8 8.6 2.2 0.00 0.00

network 10 10 30 1.2014 1.2014 1.2014 1.2014 1.2014 25.8 39.0 4.6 0.00 0.00
network 12 12 36 1.0400 1.0451 1.1310 1.1310 1.1310 10800.0 10800.0 11.8 8.04 7.59
network 14 14 42 1.0000 0.8512 1.2748 1.9901 1.2714 10800.0 10800.0 21.8 21.56 57.23
network 16 16 48 1.0064 1.2356 1.2832 1.3746 1.2832 10800.0 10800.0 28.5 21.57 10.11
artificial 6n 6 28 0.8846 0.8846 0.8846 0.8846 0.8846 0.3 0.6 1.1 0.00 0.00
polska 12n 12 36 0.9955 0.9955 0.9955 0.9955 0.9955 18.6 13.2 8.0 0.00 0.00
polska 28n 28 80 0.9942 0.9671 1.0088 1.1468 1.0000 10800.0 10800.0 160.7 1.45 15.67

cost239 defaultTM 11 52 0.4863 0.3682 0.6274 0.8820 0.6274 10800.0 10800.0 8.5 22.49 58.25
cost239 ecmpScaledTM 11 52 0.5135 0.3888 0.6625 0.9314 0.6625 10800.0 10800.0 8.6 22.49 58.25
cost239 sprScaledTM 11 52 0.3043 0.2304 0.3926 0.5519 0.3926 10800.0 10800.0 8.6 22.49 58.25

geant defaultTM 19 60 0.2972 0.2958 0.3421 0.4944 0.3456 10800.0 10800.0 67.2 13.13 40.17
labnet ecmpScaledTM 20 106 0.4155 0.0000 0.4477 0.8055 0.4516 10800.0 10800.0 172.2 7.19 100.00
labnet sprScaledTM 20 106 0.2836 0.0000 0.3055 0.5499 0.3083 10800.0 10800.0 164.2 7.17 100.00

nobel ecmpScaledTM 28 82 0.5605 0.4664 0.6042 0.9968 0.5651 10800.0 10800.0 281.2 7.23 53.21
nobel sprScaledTM 28 82 0.5664 0.4713 0.6106 1.0073 0.5711 10800.0 10800.0 263.9 7.23 53.21

tree. However, it is likely that this bound would be weak, for
the same reason that the current method fails.

C. Hill Hopping Heuristic

For the evaluation of HH, we used a Java tool implemented
for [11] with extended functionality specific to SSPP problem.
The application ran on a PC with an Intel Core2 CPU 6600
with 2.4 GHz and 1 GB of RAM using Linux. Only one single
CPU core was used to run HH, so the second core of the CPU
was not used. Full capacity of the utilized CPU was used
whereas RAM was not a limiting factor (≤ 3% were used).

Each weight vector is an element of {1, 2, . . . ,W}|E| so
the probability of generating a weight vector which induces
multiple shortest paths decreases with increasing W . Hence,
we set W to 100, a value higher than in [11]. The maximum
number N of consecutive unsuccessful iterations was set to
5000. The parameter C for the maximum cardinality of the set
E ′ ⊆ E of the links for which the weights are modified was set
to 5. The maximum change ∆w in a single link weight was
set to 5. Since we choose a weight vector w for initialization
of the process at random, we perform 20 runs with different
random seeds for all networks in Table I. The best result out
of 20 runs and the average time per run is shown in Table I.

Table I reveals that HH is capable of solving large networks
in a reasonable time. Nevertheless, the heuristic occasionally
is not able to solve SSPP faster than the exact approaches,
especially for small networks, because of the large number of
weight vectors that always have to be examined, the more that
some weight vectors are rejected due to multiple shortest paths.
Calculation times of HH could be reduced by decreasing N ,
but this would increase the probability that the heuristic gets
stuck in a local optimum. In contrast to the exact approaches,
the HH heuristic does not estimate the lower bound.

D. Discussion

The main merit of the comparison presented in Table I is
three-fold.

First, to our best knowledge, no such exhaustive numerical
comparison of different optimization approaches to SSPP has
been published so far.

Second, we compare two substantially different exact meth-
ods, B&C and CP (both based on B&B). As both methods are
aimed at exploring the entire solution space, they are usually
not able to find a (provable) optimum within a given 3-hour
time limit already for medium size networks. In fact, in many
cases the ultimately best solution is found quite early in the
resolution process, still the methods are not able to assess the
optimality in a reasonable time. Observe that within the 3-hour
time interval, B&C typically yields better results than CP.

Finally, we compare the exact approaches with a heuristic
(HH). Contrary to B&C and CP, HH delivers results of
seemingly good quality in a reasonable time, also for large
networks. For small networks the quality of the HH results
is validated through the exact methods. In general, there is
no guarantee for the optimality of the HH results (it does not
provide the gap, i.e., the difference between the best upper and
lower bound, either). Nevertheless, the HH results are usually
as good as, and frequently even better than, the upper bounds
achieved by the exact methods.

V. CONCLUSIONS

We have presented three methods for optimizing admin-
istrative link weights for intra-domain routing with single-
shortest paths (SSP), assuming minimization of the maximum
link utilization as the optimization objective. The SSP prob-
lem (SSPP) is NP-hard. It can be formulated as a mixed-
integer program (MIP). Branch-and-cut (B&C) and constraint
programming (CP) are applied to solve the MIP to yield exact
results through a systematic search through the solution space,
while the third investigated method HH (hill hopping) is a
heuristic that explores the solution space randomly.

The comparison of the three methods shows that B&C and
CP find, as they should, the same optimal results for small
networks. However, both methods are not able to complete
computation in the 3 hours time limit even for medium-
size networks. In the considered cases, B&C shows better
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performance than CP. The HH heuristic is fast and often
finds optimal solutions for small networks, i.e., in the cases
when exact algorithms are able to finish their computation
and the optimal solution is known. For medium-size networks,
solutions of HH are often as good as, and frequently even
better than, the upper bounds (i.e., the best feasible solutions
of SSPP) obtained with the exact methods.

The exact approaches can most likely be improved by
adding new upper-bound heuristics, valid inequalities, and
constraint propagation procedures, so their range in finding
optimal solutions can be extended. One such important im-
provement would be to use HH as the upper bound heuristic in
B&C (and in CP). Besides, the exact approaches can be used as
approximate methods, e.g., if solutions 10% off the optimum
are of interest. The HH heuristic is a promising approach,
still, it has to be validated for more examples. All these issues
will be investigated in our future research, which will also be
extended to resilient optimization of weight systems robust to
link failures and traffic fluctuations.
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