
Performance Evaluation of a Distributed Lookup
System for a Virtual Database Server

Simon Oechsner, Tobias Hoßfeld, Phuoc Tran-Gia
Chair of Distributed Systems, Department of Computer Science, University of Würzburg, Germany

Email: {oechsner|hossfeld|trangia}@informatik.uni-wuerzburg.de

Abstract—Services offered today rely on large amounts
of data that can be accessed fast and reliably. One
technical solution providing both acceptable speed and
high reliability are distributed databases, which can be ac-
cessed from an application as one virtual database server.
The virtualization here hides complexity introduced by
distributing the service to a set of machines. In this paper,
we will present a DHT-based architecture implementing
a lookup layer for such a database, which preserves
important features such as self-organization from its DHT
roots, but still offers a good performance for time-critical
applications. Additionally, first analytical results are given,
which show some of the basic mechanisms at work in such
systems.

I. INTRODUCTION

In todays services, large amounts of data, e.g., video and
audio content, subscriber management and accounting
data, have to be stored and made available to applica-
tions. One example area for this are mobile networks,
where user data is stored and accessed very often during
the time a user is booked in. The number of database
accesses is potentially very large and therefore poses
a challenge to the system, which has to show a high
availability and performance while being at the same
time resource-efficient and scalable.

Examples exist where the amount of data to be stored is
large enough to warrant the deployment of a distributed
database. This is the case, e.g., for mobile subscriber
databases such as the Home Location Register (HLR)
or a similar subscriber database of a large provider.
Distributing the database system however adds additional
complexity to the architecture. It means a basic searching
and routing mechanism has to be implemented to look up
single data sets. Also, the content should be partitioned
in a way that distributes the load on the nodes. Thus,
storage space consumption and the load on individual
nodes is reduced, which is traded off with longer access
times and a higher total load due to the forwarding.

In this paper, we will describe a component of such a
distributed database which was designed to offer good
performance while being resource-efficient. We have
implemented a prototype of this system and will present
a first analysis based on the mechanisms implemented
in this prototype.

The paper is structured as follows. Section II reviews re-
lated work. In Section III we will describe the considered
architecture, together with a discussion on the design
aspects of the system. Analytical results are presented in
Section IV. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

The system presented in this work is to be placed in
the context of a mobile subscriber database, such as the
HLR. Architectures like the IP Multimedia Subsystem
(IMS) include similar databases, so that more than one
possible application exists [1]. There are even activities
aiming at unifying and generalizing the storage of user
data for mobile networks. The Common Profile Store
(CPS) is an example for these efforts [2]. Here, one en-
capsulated database is used for a number of applications
or services, instead of several proprietary smaller ones.
This only emphasizes the need for a scalable system with
respect to the approach described here, since the size of
the system grows with the number of smaller, specialized
databases that are integrated.

The architecture evaluated here belongs to the class of
one-hop DHTs. This class of overlays has been inves-
tigated in a number of papers. For example, Gupta et
al. [3], [4] evaluate a fully meshed overlay architecture.
They show that the additional overhead needed to keep
the complete routing table in each node up-to-date can
be handled even for large overlays.

In [5], a different scheme based on tokens for maintain-
ing the global routing table in a one-hop overlay was
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presented and compared to the mechanism of Gupta et
al. Leong and Lik showed here that less bandwidth was
used in their architecture, resulting in a more efficient
system.

Another architecture and its analysis of a one-hop DHT
was presented in [6]. Again, it was shown that this kind
of system is indeed feasible in terms of message over-
head and response times to keep the complete routing
tables needed at each peer up-to-date.

A distributed database similar in spirit and with some of
the same design issues was published under the name of
Dynamo [7]. While our system implements the lookup
layer of a distributed database, Dynamo constitutes a
complete DB which is also based on a ring structure
and follows similar design principles. The architecture
differs in details because of the different applications.
For example, since Dynamo is used as a service for the
Amazon S3 business platform, it has to offer write access
at all times for the end user. In contrast, the system
presented here is allowed to block write requests in order
to protect the data integrity. Additionally, we provide
analytical results for such a system.

III. ARCHITECTURE DESCRIPTION

We consider a distributed database which stores user
information, such as the subscriber database in a mo-
bile network operator domain described earlier. Due
to the large amount of data stored, the database is
distributed among several dedicated database servers,
which form the back-end. To locate specific data entries
in the back-end, a front-end layer offers the necessary
lookup and forwarding functionality, i.e., the front-end
resolves queries to the database and forwards them to
the correct back-end server. This lookup layer basically
stores pointers to the entries in the back-end, one pointer
for each database key. These pointers take the form of
< key, value > pairs, with the key being a reference
to the database key queried and the value holding the
address of the back-end server where the associated
database entry is stored.

Applications, such as accounting, location management,
etc., issue queries to this database system, normally
searching for one entry at a time. These queries may be
LDAP messages or conform to other protocols suitable
for accessing a database. Application queries therefore
do only see one virtual database system, the internal
complexity is hidden. They are received by a front-end

server first, which then resolves the contained key to the
address of the back-end server holding the associated
entry, cf. Figure 1. Basic load distribution may be
conducted before forwarding queries to the individual
front-end servers, however, this work focuses on the
lookup layer itself.

Application clients

Virtual 
database system

front end/lookup layer

back end/data layer

Application query

Fig. 1. The basic system architecture considered in this paper.

Mobile subscriber databases have several requirements
which have to be taken into account when evaluating
a possible instantiation of this architecture. Queries to
such a database are frequently part of a longer process
involving a current action of the subscriber, such as
booking in, requesting a special service or changing the
access network (horizontal or vertical handover). In order
to keep the service quality experienced by the user high,
the response times of the provider system as a whole
and therefore also of the database have very tight timing
bounds. For the same reason, the availability must be as
high as possible.

Since the user data stored is critical for many services
such as accounting, reliability and correctness is also
required. This is prioritized sometimes even over avail-
ability. The system may even be unreachable or entries
may be write-locked for short times as long as the
correctness of the stored data can be guaranteed.

In order to facilitate a fast lookup process, the lookup
information is not stored on disk at the front-end nodes,
but is held in the memory of these nodes. Depending on
the size of the database tables stored at the back-end,
and on the number of searchable keys, this lookup table
as a whole can reach sizes of several dozen GB. The
simplest implementation of such a front-end system is to
install a number of fully redundant lookup servers, each
storing the full lookup table. Consequently, this means
the amount of installed memory needed on each machine



is in the range of the size of the lookup table. The number
of servers depends on the system load, i.e., the arrival
rate of the application queries.

In the following, we will describe a different, resource
saving and self organizing implementation of this front-
end system, based on the DHT principle.

A. Problem formulation

The application described above places several require-
ments on a lookup system that resolves queries for a
back-end database. Since the database query is only a
part of a larger process in the mobile environment which
has severe timing constraints, the lookup itself must be
kept as short as possible while being also highly reliable
and available. If the user database at the back-end is not
reachable, the experienced service quality for the user is
diminished. On the other hand, the system should be as
resource-efficent as possible. In this case, the enormous
amount of RAM needed to store the lookup data is one
of the highest cost factors when the data is stored fully
redundant on several nodes. Therefore, saving memory
consumption is a good approach to make the system
more cost-efficient. Scalability is another issue that has
to be addressed. The database size may grow over time,
necessitating an expansion also of the front-end system.
It should therefore be possible to add new servers and
to integrate them seamlessly into the system. As a last
consideration, the system should need only a minimal
amount of human control and intervention. This saves
costs, but also may lead to shorter response times in case
of certain events if the system can react automatically.

The problem with these requirements, especially with
speed and resource-efficiency, is that not all of these
objectives can be accomplished at the same time. There
is an implicit tradeoff between a fast search, where a
fully redundant storage of the lookup data would be
the best case, and a smaller lookup table per node,
which necessitates a time-consuming internal routing
process. This is complicated by the fact that lookup
data distribution is not efficient for all resources, since
internal traffic means more consumed bandwidth and a
higher query load that has to be processed on the servers.

Also, if the data is not stored fully redundant, it has to be
distributed in a way that still allows for load distribution.
Moreover, this balancing should be resilient to node
failures or to system expansions. At least, mechanisms
should be implemented that allow for a correction of

temporary imbalances.

B. Implementation

In order to fulfil these requirements, we have imple-
mented a one-hop DHT, based on the Chord DHT. The
interface of a DHT, namely the ability to store and
retrieve pairs of keys and values, is perfectly suited to
a lookup system. The original database search keys can
be hashed to serve as hash table keys, and the storage
locations of the associated data sets are the stored values.

Since short sojourn times are required, the routing paths
through the overlay introduced by the DHT have to be
as short as possible. On the other hand, if the memory
consumption is to be lowered in comparison with a fully
redundant system, the lookup table has to be partitioned
in some way among the nodes. This necessitates at least a
basic routing process. Combining these two requirements
leads us to a fully meshed overlay structure, where at
most one hop is necessary to locate a given entry in
the DHT. This means that each node participating in
the system has to know exactly what partition of the
content is stored on each of the other nodes. Since the
complexity of storing this information rises with the
number of nodes, this potentially does lead to scalability
problems. For our application however, we can assume
system sizes in the range of 100 nodes for the considered
application, where this can be handled easily. However,
as described in Section II, similar systems (known under
the term one-hop DHTs) have already been considered
also for larger system sizes, and shown to be feasible.

Another important consideration concerns the load dis-
tribution in the system. If the lookup data is distributed
unevenly among the nodes, and if we assume that in
general each entry is queried with the same frequency,
then the load distribution is also skewed. Moreover, the
nodes storing more lookup data have to provide more
memory. If it can not predicted how the load will be
distributed, all nodes have to be outfitted with enough
resources to handle the worst case, resulting in higher
costs than necessary. To circumvent this problem, the
random overlay ID assignment known from most DHTs
is replaced by a deterministic positioning of the nodes
in the overlay, assuring that each node is responsible for
the same amount of data (cf. Figure 2).

While the considered application normally warrants the
deployment of dedicated hardware with long mean time
between failures (MTBF) intervals, it is nevertheless
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Fig. 2. Equidistant placement of nodes on the identifier ring

possible that a node or one of its components fails
during normal operation. Node failures greatly upset
the even load distribution in the system, leading to
overload and/or congestion and should therefore be acted
upon immediately. In order to keep the need for manual
intervention low, an automatic reorganization algorithm
is used to reassign the IDs of the remaining nodes, thus
again placing them equidistantly on the identifier ring.
Since this also includes a change in the responsibility
ranges for each node, a redistribution of the lookup data
is necessary in this case. A simple heuristic is used to
keep the amount of data that has to be transmitted over
the network low. Starting from an anchor node, each
node is positioned in the correct distance (computed with
the new number of active nodes) in the same order as
before. Thus, there is a high probability that the old range
of a node has a large overlap with its new range, meaning
that the node already stores much of the data it needs in
the new situation (cf. Figure 3).

anchor 
node A

overlapping
range

failed 
node B

CD

E

E’

D’

C’

new inter-node
distance

anchor 
node A

overlapping
range

failed 
node B

CD

E

E’

D’

C’

new inter-node
distance

Fig. 3. Reorganization after one node failure

The same algorithm is used to add new nodes to the
system, enabling an easy expansion and scaling with
load. If more than one node is to be added at the same
time, the new nodes are inserted equally distributed into

the system, so that again the overlap between old and
new responsibility ranges is high for the ’old’ nodes.

To ensure that the probability for data loss is low even
in case of node failures, each entry of the lookup table is
stored on more than one node. Similar to the replication
group in Chord, it is copied on the R successor nodes
of the key of the entry, with the first successor being
the node primarily responsible for the entry. Here, R
is a tunable parameter that enables a tradeoff between
resource savings on one hand and system load and
availability on the other hand, as will also be shown
in Section IV.

With these mechanisms, the normal system operation is
as follows. An application issues a query to the database
of which the lookup system is part of. These queries
are distributed evenly among the lookup nodes, e.g., by
means of a simple round robin load distributor. When a
query reaches a lookup node A, this node first hashes
the database key of the query. It then checks whether it
stores the lookup entry associated with this key locally,
including the redundantly stored data. If this entry is
not stored locally, then the node determines which other
node is responsible for it via its routing table, and
requests the entry from that node. In either case, the
original query is then forwarded to the according back
end database server, whose address is the stored value
of the < key, value > pair of the lookup entry. The
response to this query can then again be forwarded to
the application.

In case of a remote lookup, the node with the lowest
ID higher than the hashed key searched for is always
selected as the responsible node. This eases the routing
process in case of node failures, and should still return
valid results as long as no data loss has occurred, which
is only possible if R consecutive nodes fail in a short
time interval. While the query load for one entry could
also be distributed among the R nodes storing that
entry, we assume that each entry is queried with the
same frequency, and therefore no additional gain can be
achieved by this measure.

IV. ANALYSIS

In this section, we present a first analysis of the described
system. This is based on a methodology presented in
[8], where we considered a more general system and the
parameters that influence its behaviour. We model the
front end servers as queuing systems, with the complete



network being a queueing network. Thus, we can analyze
system characteristics like the sojourn time.

Each node is modeled as a M/GI/1 waiting system. In
this first model, we make some simplyfying assumptions.
First, the processing times for queries are assumed to be
independently and identically distributed (iid), i.e., we
do not discern the processing of external queries, internal
queries or response forwarding. Second, we assume that
the popularity of each database entry is the same. To
conduct the analysis, we have to compute the arrival rate
at each node, which is a function of the number of nodes
and of the number of hops that are made internally.

A. Node load

Each node initially receives its fair share of the appli-
cation queries. If we define the total initial arrival rate
as λ0, and the system consists of N servers, this initial
load at a specific server corresponds to λ0

N , cf. Figure 4.
Of these queries, the server can only resolve a fraction
locally, depending on the partition of lookup data it
stores. Ideally, this fraction should be p = R

N , where
R is the redundancy factor. The rest of the queries has
to be resolved on a second server, and is consequently
forwarded. This outgoing query flow is equally split
among the N−1 remaining nodes. Due to the symmetry
of the traffic flows, the same amount of queries (with rate
p · λ0

N ) is received. This traffic is therefore added to the
external query flow.

All of the internal queries are answered, effectively
doubling the internal traffic. This is due to the fact
that the first node receiving the request is responsible
for resolving the complete query and forwarding the
response to the querying application. Some traffic could
be saved if the database virtualization allows for the
second node or even a back-end server to answer the
query instead of the first reached node. However, we
describe the most general and worst case here with
the least assumptions about the interface between the
external application and the virtual database system.

Finally, all application queries received by that server
are forwarded to the back end database, and the answers
are again forwarded to the first node to be forwarded to
the application. Therefore, the full rate of λ0

N is again
received from the back end and processed, leading to a
total arrival rate of λ∗ = (2 + 2p) · λ0

N .

Application clients

Back end database

0

N
λ

0

N
λ 02 p

N
λ

⋅ ⋅

Front end server

Application clients

Back end database

0

N
λ

0

N
λ 02 p

N
λ

⋅ ⋅

Front end server

Fig. 4. The traffic flows influencing the node arrival process

B. Sojourn time

Based on this model, we can compute important char-
acteristics like the mean sojourn time of queries or its
coefficient of variation. For the following results, we
assumed a service process with mean E[B] = 1ms
and a coefficient of variation of cB = 0.5. To model
the internal network transmission, i.e., query forwarding
from front-end server to front-end server, we use an
exponential distribution with mean 0.3ms. We do not
consider the querying of the back end database here, but
focus on the time a query spends in the lookup system
itself.

We will now present selected results from this analysis,
which provide some basic insights into the presented
system. One of the important parameters that influences
the system behaviour is the redundancy factor. It has a
direct influence on the probability that a query has to be
forwarded internally in the lookup layer, and therefore
on the total load a front end server experiences. Figure 5
shows the mean sojourn times of queries normalized
by E[B] for a system with 20 nodes and different
redundancy factors, ranging from R = 1 (no redundancy)
to R = 20 (full redundancy, no forwarding is required).

Due to the fact that the internal load is up to four
times larger than the external load (i.e., the query load
produced by the applications exclusively), only values up
to 0.25 are experienced for the externally seen utilization
ρ = λ0

N E[B] per front-end server.

The mean sojourn times increase for lower redundancy
factors, which is due to the higher fraction of queries that
have to be forwarded in the lookup layer, resulting in a
higher load at the nodes and therefore longer waiting
times. On the other hand, a higher redundancy also
means that more data has to be stored on each node.
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While this should be of no concern where cheap disk
space can be used, it is a tradeoff to be considered for
our application, as described earlier. In any case, the
redundancy factor can be used as a parameter to tune
the system to the needs of the operator.

C. System size

Another parameter influencing the system performance
is its size in terms of the number of front-end servers.
The larger the system is, the higher is the forwarding
probability and therefore the internal load. Figure 6
shows this by again comparing the mean sojourn times
for numbers of front end servers ranging from N = 5
to N = 30. The redundancy factor is set to R = 3.
Additionally, the hypothetical case where every query
is forwarded internally, i.e., p = 1 is represented as an
upper bound (dashed line).

Again, the mean sojourn times increase with a larger for-
warding probability. However, the load increase resulting
from more front end servers diminishes for already large
systems. This is due to the fact that the forwarding
probability p grows fast for smaller systems, but is soon
close to 1, e.g., p = 0.85 already for 20 nodes and R = 3.

D. Reorganization effort

An important aspect for the presented system design was
its ability to react to changes in the topology, especially
node failures. Since load distribution is a critical charac-
teristic for the efficiency of the described architecture, it
has to be restored as soon as possible after one or several
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Fig. 6. Mean sojourn time for different system sizes

node failures. The same is true for inserting additional
nodes into the system, however, we assume that an
expansion is executed in a more planned and controlled
manner. Apart from this, the reduction of servers also
increases the load on the remaining servers, even if an
equal load distribution can be achieved. Therefore, it is
a kind of worst case for the reorganization algorithm.

In order to conduct a first evaluation of the rather
straightforward method implemented in our prototype,
we conducted a Monte-Carlo simulation for different
node failure scenarios. We varied the number of nodes
that fail concurrently in a system consisting of 40 nodes.
For a given number f of node failures, we selected
a random subset S of the nodes with |S| = f . This
experiment was repeated 10,000 times for one value of
f , the shown intervals are for a confidence level of 99%.
We recorded the amount of data that had to be moved
during the reorganization phase in order to achieve equal
load distribution again, relative to the total amount of
data stored. We assumed here that the data is placed
with roughly equal density on the identifier ring. Also,
we neglected cases where enough successors of a failed
node also fail, which results in the loss of data. Since in
this case less data has to be transmitted over the network,
the presented results are an upper bound, even if data loss
is an undesirable event.

Figure 7 shows these results for different grades R
of replication, ranging from R = 2 to R = 4. The
amount of data that has to be transmitted increases for
higher replication grades and a larger number of node
failures. Also, the maximum amount of data moved in
the worst case equals R · 100%, meaning that more data



has to be moved than there is in the ring. This initially
counter-intuitive characteristic stems from the fact that
the responsibility areas of the reorganizing nodes may
overlap, meaning that several nodes have to retrieve the
same data sets if they have not stored them before the
reorganization.

Due to fact that each node is responsible for a single,
continuous range of the id space, the number of data
entries that have to be moved to a new node is not equally
distributed among all nodes. Especially the successors of
a failed node normally have to be moved a larger distance
in the identifier space than the following nodes. It is
to be expected that different schemes, such as the one
proposed in [7], might be able to reduce this unfairness,
lowering the amount of data that has to be moved, and
consequently also the time it takes to reorganize.
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Fig. 7. Relative amount of data that has to be moved during
reorganization

V. CONCLUSION

In this paper, we presented and evaluated an architecture
for a virtual mobile subscriber database based on a one-
hop DHT. The requirements and design issues influenc-
ing the system layout are described, and a basic overview
on the developed architecture is presented. It is shown
that the design caters to the necessities of the application.
It provides a trade-off between the system sojourn time
on one hand and resource consumption on individual
nodes on the other.

A performance evaluation model was presented, the
results derived from it giving some insights into the basic
workings of the lookup system. The underlying tradeoff
of less storage space per node against longer search

times and a higher load on the system is illustrated. As
future work, measurement results from an implemented
prototype will be used to verify the analysis, as well as
simulations. More emphasis will be placed on the system
behaviour during transient phases, e.g., reorganization
times.
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