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ABSTRACT
Wireless Mesh Networks (WMNs) are gaining an increasingly im-
portant role in next generation last mile access. They offer more
flexibility compared to traditional networks but on the expense of
a complex structure. Thus, planning and optimization of WMNs is
a challenge. In this paper we focus on routing and channel assign-
ment in WMNs for throughput maximization using genetic algo-
rithms. Genetic algorithms provide a good solution for large-scale
WMNs in relatively small computation time. The results prove the
effectiveness of the genetic operators and show the advantages of
a genetic optimization. However, these operators have to be con-
figured carefully to avoid local optima. We will show the influence
of the selection principles as well as evaluation functions on the
optimization.

Categories and Subject Descriptors
C.2.1 [COMPUTER-COMMUNICATION NETWORKS ]: Net-
work Architecture and Design—Wireless communication

; G.1.6 [NUMERICAL ANALYSIS ]: General—Optimization

General Terms
Algorithms, Performance

Keywords
Wireless Mesh Networks, Planning, Optimization, Routing, Ge-
netic Algorithms

1. INTRODUCTION
Wireless Mesh Networks (WMNs) are a promising technology

to provide broadband wireless connectivity for the end user. Com-
pared to traditional wireless networks, WMN planning and opti-
mization is more challenging because several wireless hops are
needed to connect a node to the Internet. A suitable solution for the
planning and optimization of such WMNs are Genetic Algorithms
(GAs) due to their ability to solve complex problems in relatively
small computation time.
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Genetic algorithms are based on the idea of natural evolution and
are used to solve optimization problems by simulating the biologi-
cal cross of genes. They refer to a theory investigated by John Hol-
land and his students at the University of Michigan in the 1970s [6].
Multiple variations of genetic algorithms exist nowadays but most
of them are based on the model introduced by Holland.

A randomly created population of individuals represents the set
of candidate solutions for a specific problem. The genetic algo-
rithm applies a fitness function on each individual to evaluate its
performance and to decide whether to keep it in the following gen-
eration. Using only the selection without any other operation will
result in a local optima. Therefore, two operators, crossover and
mutation, are used to create new individuals, called progenies.

In this paper we evaluate the influence of different genetic op-
erators for routing and channel allocation in WMNs. Optimizing
these operators helps us to minimize the time for the evaluation.
In contrast to applying exact optimization techniques on this prob-
lem, genetic algorithms scale well so that we are able to optimize
even large WMNs. Thereby, we want to increase the throughput
of the complete WMN while sharing the resources fairly among
the nodes. This is achieved by applying a max-min fair share al-
gorithm presented in [11] and by tuning the genetic parameters. A
solution is max-min fair if no rate can be increased without decreas-
ing another rate to a smaller value [2]. In contrast to our previous
work [10] where we evaluated the influence of the genetic opera-
tors crossover and mutation on the solution, we are evaluating the
parameters fitness function, number of generations, and elite set
size.

The remainder of this work is organized as follows. In Section 2
the work related to wireless network planning is reviewed. This is
followed by Section 3 presenting our algorithm for WMN through-
put maximization. In Section 4 the influence of the fitness function,
the number of generations, and the elite set size are evaluated. Fi-
nally, Section 5 concludes this paper.

2. RELATED WORK
Genetic algorithms have been used for radio network planning

for years [1, 3–5, 7, 9, 12]. Calégari et al. [3] applied a genetic
algorithm for UMTS base station placement in order to obtain a
maximum coverage. They claimed that the performance of the GA
strongly depends on the fitness function. Another paper on UMTS
optimization with genetic algorithms was published by Ghosh et
al. [5] in 2005. Genetic algorithms are used to minimize the costs
and to maximize the link availability of a UMTS network with op-
tical wireless links to the radio network controllers.

Besides cellular network planning, genetic algorithms are used
for the optimization of Mobile Ad hoc NETworks (MANETs) and
Wireless Sensor Networks (WSNs). More problems occur in these
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networks due to a huge parameter space for which genetic algo-
rithms may outperform manual tuning. Montana and Redi [9] stud-
ied how optimal parameters for a reactive routing protocol in an
ad hoc network with multiple antennas can be found using a GA.
The fitness of a given parameter set is evaluated by a weighted sum
of packet drops and transmission delays obtained from simulation.
The results demonstrate that the automated parameter tuning us-
ing a genetic algorithm leads to better results than manually chosen
parameter combinations. In WSNs it is under some conditions ben-
eficial to establish a cluster hierarchy, where selected nodes act as
cluster heads and aggregate and transmit their children node’s data
to the base station. Hussain et al. [7] propose a GA for demonstrat-
ing that their solution is suitable for maximizing the network life-
time. Ferentinos et al. [4] developed a genetic algorithm to deter-
mine which sensor nodes should be active, to choose cluster-heads
and radio ranges.

Badia et al. [1] use genetic algorithms for a joint routing and link
scheduling for WMNs. The packet delivery ratio is optimized in
dependency of the frame length. It was shown that genetic algo-
rithms solve the studied problems reasonably well, and also scale,
whereas exact optimization techniques are unable to find solutions
for larger topologies. The performance of the genetic algorithm is
shown for a single-rate, single-channel, single-radio WMN.

Vanhatupa et al. [12] apply a genetic algorithm for the WMN
channel assignment. Capacity, AP fairness, and coverage metrics
were used with equal significance to optimize the network. The
routing was fixed, using either shortest path routing or expected
transmission times. Using a channel assignment optimization, a
mean capacity increase of 131 % was shown.

In contrast to the papers from Badia [1] and Vanhatupa [12],
we are evaluating the performance of a multi-channel, multi-radio,
multi-rate WMN using both channel and route assignment. Our ge-
netic algorithm optimizes the throughput while still maintaining a
max-min fairness between the nodes.

3. WMN PLANNING USING GENETIC AL-
GORITHMS

The objective of this paper is to support the WMN planning pro-
cess by optimizing the performance of a WMN. With the help of
genetic algorithms, near optimal solutions can be achieved in rela-
tively small computation time. In this section, we show the param-
eters which we have to consider and to evaluate in order to achieve
a near optimal WMN solution, meaning that the throughput in the
WMN is max-min fair.

Fig. 1 clarifies the complete procedure of the genetic algorithm
for the planning and optimization of WMNs. First, a random pop-
ulation is created with a predefined number of individuals. The
fitness of each individual is evaluated using the fitness function and
the individuals are ordered according to the fitness value. The best
individuals, the elite set, is kept for the new population. After-
wards, the crossover and mutation operator are used to create the
remaining number of individuals for the new population. The pro-
cedure is repeated until a sufficient solution is achieved. In the
next subsection we explain the steps of our WMN optimization ap-
proach in more detail.

3.1 Problem Formulation
We define a mesh network as a set ofN nodesn1, ..., nN and

a set of linksL connecting the nodes. A subsetG ⊆ N contains
the gateway nodes which are connected to the Internet. Each node
ni ∈ N \ G has a fixed path and gateway to the Internet. The path
is denoted asPi and consists of a set of links,Pi ⊆ L. Thus, a
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Figure 1: Functionality of genetic algorithms.

set of paths form a tree with a gateway as root and the complete
network forms a forest.

A link (i, j) between nodesi andj exists, if a communication
between these nodes is possible. Letri,j be the data rate of the
link (i, j). The goal is now to optimize the paths from each node
ni ∈ N \ G to the gateway so that the throughput in the WMN is
max-min fair.

3.2 Encoding
In order to optimize the throughput using genetic algorithms, the

WMN trees have to be encoded. Our simple representation includes
only one link per user and is easy to handle and evaluate. This link
denotes the next hop which the traffic of the considered node has to
take in order to reach the gateway. Thus, we always imply only one
possible path towards a gateway for the packets of each node. The
routing information is coded in the individuals structure and does
not need extra verification. Besides the routing information, the
channel allocation is also included in the list representation. Fig. 2
illustrates an example for the routing and channel encoding.

g1

n1 n2

ch1

n5

n8

n4

n7

n3

n6

ch1 ch1

ch1 ch1

ch2

ch2

ch2

(a) Example network

n5

n2

ch1

node

next hop

channel

n1

g1

ch1

n2

g1

ch2

n3

n1

ch1

n4

n1

ch2

n6

n3

ch2

n7

n4

ch1

n8

n4

ch1

(b) List representation

Figure 2: Example network and its list representation.

3.3 Fitness Function
The evaluation part of the optimization is the heart of the genetic

algorithm. Based on the fitness value, the GA decides which indi-
viduals should be kept in the new population. Hence, it rates the
performance of the genes and allows only the best to be replicated.

The fitness of the WMN is estimated using the allocated through-
puts of each flow. The fitness functionf(N ) of the evaluation rep-
resents the user satisfaction and the fairness of the resource allo-
cation. In Section 4 we evaluate the influence of different fitness
functions on the evolution of the population.

In order to determine the throughput of each link in the WMN,
we have to define the collision domain of each link(i, j). The col-
lision domainDi,j of a link (i, j) corresponds to the set of all links
(s, t) which can not be used in parallel to link(i, j) because the in-
terference from a transmission on link(s, t) alone is strong enough
to disturb a parallel transmission on link(i, j) [8]. The nominal
load of such a collision domain is the number of transmissions tak-
ing place in the collision domain. A transmissiontk,i,j corresponds
to the hop from nodei to nodej taken by the flow towards nodek,
i.e. (i, j) ∈ Pk. The number of transmissionsλi,j on link (i, j)



corresponds to the number of end-to-end flows crossing it:

λi,j =
∣∣∣{k|(i, j) ∈ Pk}

∣∣∣. (1)

Fig. 3 shows an example for determining the link loads. Each node
on the way to the gateway produces traffic resulting in a traffic load
of 5 on the link betweenn2 andn1.

n6 n4 n2 n1

n5

 5,4=1

n3

 6,4=1  4,2=3  2,1=5

 3,2=1

Figure 3: Link load calculation depending on the carried num-
ber of flows.

Correspondingly, the number of transmissions in collision do-
mainDi,j is

mi,j =
∑

(s,t)∈Di,j

λs,t. (2)

In order to fairly supply all network users, we share the time
resources among all transmissions taking place within the collision
domains of the corresponding links. Thereby, we take the ratesri,j
and the loadsλi,j into account. The throughputti,j of link ℓi,j is
then defined as:

ti,j =
1

∑
(s,t)∈Di,j

λs,t

rs,t

. (3)

Now, we follow the principle of max-min fairness and fix the
resources for the link with the smallest throughput. We call it the
bottleneck of the network and denote it withℓu,v. The time re-
sources occupied onl(i, j) by ℓu,v for supplying itsλu,v flows can
now be calculated as

ρu,v (ℓi,j) = λu,v · tu,v
ri,j

. (4)

They differ depending on the link for which they are calculated.
Such links can be byℓu,v bottlenecked connections or parent-links
on the path towards the gateway.

Having computed the occupied resources and having fixed the
bottlenecked connections, we have to consider that a part of the
time is now reserved. Hence, we must take this into account in a
new calculation of the link throughputs. Moreover, we need to up-
dateλi,j by subtracting the flows supplied through the bottleneck.
When all network resources are refreshed, we fix the next link with
the smallest throughput. This way, we calculate the throughput
of each flow which is needed to evaluate the fitness of the WMN.
More information about this algorithm can be found in [11].

3.4 Selection Principle
After the evaluation of a population, we select a set of solutions,

which have the highest fitness of all and keep them in the new gen-
eration. This set is called the elite set. In Section 4 we vary the
size of the elite set in order to see the influence on the solution.
In addition to the elite set, the rest of the population is created by
crossing and mutating the genes. Thereby, the number of progenies
per individual is proportional to its fitness. It is a function of the
selection probability of this solution and the number of needed new
individuals. Letn be the size of the population,m be the number
of best ancestors to be kept in the next generation, ands(x) the
selection probability for the individualx. The number of progenies
of x is then given by

g (x) = ‖(n−m) · s (x)‖ . (5)

The selection probability of the individualx is described by the re-
lation between the fitness of this solution and the sum of the fitness
values of all individuals from its population:

s (x) =
f (x)∑n
j=1 f (j)

(6)

This fitness dependent selection results in higher reproduction of
genes from solutions with better performance.

3.5 Crossover Types
The list representation helps us to apply the genetic operators.

For the cross of genes, we use the 2-Point Crossover which is
generally applied for genetic optimization [6] and another variant
which we especially created for the planning of WMNs, the Subtree
Crossover.

3.5.1 2-Point Crossover
The 2-Point Crossover is the simplest realization of the genetic

cross. It is a common exchange of gene subsets, which are ran-
domly chosen sublists of the individuals genotype. The start and
end intersection points denoting the range of the sublist are chosen
every time when the operator is applied.

Fig. 4 shows an example of a 2-Point Crossover between two net-
work solutions. The intersection points are at the second and fifth
position in the individuals code and enclose the sublist of genes for
the nodesn2 ton5. These denote the area which will be exchanged
during the crossover. The resulting progenies of the individuals
show one characteristic of this reproduction approach. It creates
solutions, which contain user locations with no connection to any
gateway. This happens due to the unregulated and absolutely arbi-
trary selection of the gene subset which is meant to be exchanged.
In Fig. 4 we can observe how the cross of two genotypes contain-
ing subgraphs with no gateway connection results in a reasonable
solution, which is the progeny of individual 1 or in an unconnected
solution shown in progeny of individual 2.
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Figure 4: 2-Point Crossover between two individuals.

Since the 2-Point Crossover may lead to unconnected solutions,
we have to be careful when evaluating the fitness of the resulting
solutions. Thus, we adapt the fitness function to

f̃(N ) = f(N )− conless (RN ) . (7)

which includes now theconless (RN ) term denoting the number
of nodes with no connection to any gateway. Hence, the throughput
contained inf(N ) presents the positive costs of the network while
conless (RN ) stands for the penalty costs.



3.5.2 Subtree Crossover
The Subtree Crossover exchanges connectivity components with

respect to the network structure. The crossover operator chooses a
random position of the individuals code and exchanges the entire
subtree with the node at the chosen position as root. Thereby, the
channel allocation is exchanged together with the routing informa-
tion.

Fig. 5 shows an example for the Subtree Crossover with two po-
sitions whose corresponding subtrees are meant to be exchanged.
The gray nodes denote the subtrees which are going to be crossed.
In the example, the crossover results on the one hand in a solution
with good routing genes (progeny of individual 1) and on the other
hand in an offspring with medium routing performance and still ex-
istent potential for further reproduction (progeny of individual 2).

crossover

individual 1 individual 2

progeny of individual 1 progeny of individual 2

Figure 5: Subtree Crossover between two network solutions.

3.6 Mutation
The mutation, i.e. the arbitrary modification of genes, is a very

important part of the evolution process. The mutation operator sub-
stitutes some randomly chosen positions of the routing and channel
allocation code with new information taken from a set of legal en-
tries. These entries are selected from a list of potential neighbors
which would not cause the creation of cycles and would not harm
the tree structure of the solution. The number of mutations is cho-
sen based on the scenario size. For our WMN optimization, we use
two mutation operators; the mutation of the routing and the muta-
tion of the channel allocation. Both mutation operators are applied
independently from each other. The number of mutations is chosen
in dependence on the scenario size.

4. PERFORMANCE EVALUATION
The performance of a genetic algorithm for WMN planning re-

flects the quality of the genetic operators, the effectiveness of the
fitness function, and the interaction of some other parameters af-
fecting the evolution. In this section we evaluate the influence of
the fitness function, the number of generations, as well as the elite
set size.

4.1 Simulation Settings
To test the performance of the GA and its parameters, we use

two scenarios introduced in Table 1. Both scenarios consist of 2
gateways and 71 users distributed over an area of 2 km to 1.2 km.
Thereby, the minimal distance between the users is 60 m and be-
tween the two gateways 700 m.

Besides the parameters for the genetic algorithm, the table also
lists the fixed parameters which affect only the characteristics of
the network connections. Based on these parameters, the pathloss

and the resulting Signal to Interference Ratio (SIR) are calculated
for all links. An appropriate data rate is chosen according to the
SIR. Thus, these parameters do not affect the effectiveness of the
genetic algorithm itself. Therefore, we do not consider their impact
on the resulting solutions.

Table 1: Parameters for the Genetic Algorithm.
GA Parameters Scenario S1 Scenario S2
population size 150
elite set size 50 5,...,125
number of generations 400

2-Point COcrossover type Subtree CO
Subtree CO

number of crossed subtrees rand(0,7)
number of mutations rand(0,20)
fitness function f1(N ), ...f8(N ) f1(N )

WMN Parameters
Transmission Technology WiMAX
carrier frequency 3500 MHz
channel bandwidth 20 MHz
maximum throughput 67.2 Mbps
available channels 3500 MHz; 3510 MHz
antenna power 25 dBm
pathloss model WiMAX urban macrocell model

4.2 Influence of the Fitness Function
The fitness function of our genetic algorithm is responsible for

the max-min fairness of the resulting solution. Some fitness func-
tions might lead to complete unfair resource distributions in the
WMN. Therefore, we evaluate different fitness functions in this
section. We use several combinations of the functionsmin(RN ),
median(RN ), mean(RN ), andvar(RN ), which we apply on
all routing links of a network solutionN . The functionmin (RN )
calculates for example the minimum throughput of all links used in
routing schemeRN . We define the following eight different fitness
functions:

f1(N ) = min(RN ) = minimum throughput(RN )

f2(N ) = median(RN ) = median throughput(RN )

f3(N ) = mean(RN ) = mean throughput(RN )

f4(N ) = min(RN ) +
median(RN )

p

f5(N ) = mean(RN )− var(RN )

f6(N ) = min(RN ) +
median(RN )

p
+

mean(RN )

|L|

f7(N ) =

|T̃ |−1∑

i=0

(
∣∣∣T̃

∣∣∣− i) · T̃ (i)

f8(N ) =

|T̃ |−1∑

i=0

k|T̃ |−i · T̃ (i)

The last two functions weight the link throughputs with a fac-
tor depending on the corresponding throughput value. Therewith,
we aim to achieve a kind of max-min fairness not only with the
throughput allocation made by the evaluating algorithm but also
with the fitness value from a reasonable fitness function. For this
purpose, an ascendingly sorted listT̃ of the throughputs of all rout-
ing links in the solutionN is used. Each throughput value from̃T
is weighted with a factor depending on its place in the list, giving



more weight to lower positions. This should result in a fitness value
with which mainly the smaller link throughputs are optimized at the
expense of the higher ones. The parameterk of functionf8(N ) is
a constant which we set to 1.5 andp is set to 8 for the experiments.

Fig. 6 shows a comparison of the throughput allocation of the
best individual after 400 generations for different fitness functions.
For the sake of readability, the curves of the eight functions are
shown in two separate figures. The y-axes lists the throughput in
Mbps of the flows, whose IDs are represented by normalized values
on the x-axes.

The throughput values are ascendingly sorted for easier readabil-
ity. A curve completely parallel to the x-axis would mean a perfect
fairness between all flows and a curve whose minimum throughput
is abovef1(N ) would mean that the solution is max-min fair. This
allows to see that the unfairest resource distributions are achieved
with the fitness functionsf2(N ) andf3(N ).

Optimizing only the median withf2(N ), we do not pay atten-
tion to the rest of the throughput allocation. This is why the left part
of thef2(N ) curve stays very low. The throughputs at the highest
ID positions can even accidentally be much higher than the others.
This is due to the fitness function which does not control their be-
havior. Thef3(N ) function optimizing only the mean throughput
also results in a very unfair solution, as the number of hops towards
the gateway are minimized in order to get some nodes with very
high throughput which boost the mean value.

All other fitness functions result in a max-min fair resource dis-
tribution with a maximized minimum throughput. In the resulting
solutions off1(N ), f6(N ), andf8(N ), some flows have a very
high throughput but not on the costs of other flows. The fairest
solutions is achieved with fitness functionf7(N ) where all flows
have a similar throughput about 0.7 Mbps.
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Figure 6: Throughput allocation of the best individual.

4.3 Population Evolution
The evolution speed is an important factor needed to demonstrate

the effectiveness of the genetic algorithm. The growth of the fit-
ness of the new generations must be observable in order to prove
the correct functionality of the GA. Thereby, different genetic op-
erators can affect the evolution by more or less stimulating it but
none of them should disturb it.

Fig. 7 shows the minimal throughput growth during the evolu-
tion. For generating the results of Fig. 7, we used Scenario S2
from Table 1 and set the elite set size to 50. The x-axes show the
individuals sorted by fitness while the y-axes present the minimal
flow throughput of the solutions. The figures illustrate the evolu-
tion of the generations 1 to 400. We have to mention that the fitness
values in this investigation are not comparable, due to the penalty
costs used for the 2-Point Crossover. Hence, we consider only the
minimal throughputs which present the positive costs only. This
is also the reason for the strongly varying curves on the left side
of Fig. 7(b). The individuals have a large minimal throughput but
there are a lot of unconnected nodes which results in a lot of penalty
costs and thus in lower fitness.

From the figure we can observe how the minimal throughput of
the elite set, grows with every next generation. This is due to the
selection principle which keeps the best ancestors of the prior gen-
eration in the next one. The elite selection approach creates new
populations with an elite set that is definitely better than the previ-
ous one.

The higher the generation number, the smaller the fitness growth.
The slowdown of the evolution is caused by two reasons. The first
one is the similarity of the individuals due to the reproduction of
similar or equal genes leading to better fitness. The second reason
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is the need of small and intelligent changes to improve the solutions
fitness, which is hard to achieve accidentally. Though, the speed of
the evolution depends also on the topology structure in combina-
tion with a suitable crossover principle. However, after about 400
generations, both crossover types show only a small fitness growth
with every new generation.

4.4 Influence of the Elite Set Size
In this subsection, we examine the impact of the elite set size

on the progress of the evolution using again Scenario S2. Fig. 8(a)
shows the results averaged over 15 different initial populations. It
presents the fitness progress of the best individual for three differ-
ent elite set sizes using the Subtree Crossover. As we can observe,
the best results are achieved with the smallest elite set size of 10
individuals. The bigger the elite set, the larger the number of indi-
viduals containing bad genes which are kept in the next generation.
Furthermore, a size of 125 means that we create only 25 progenies
(due to the population size of 150) and the probability of building
new unexplored gene combinations decreases. This leads to a slow-
down of the evolution and achieves solutions which definitely have
lower fitness than the ones from the 10-curve. This means that sce-
narios with larger elite set sizes could also get to the best solution
but they would need a larger number of generations. In Fig. 8(b)
we consider the influence of six different elite set sizes with a single
seed. We can see the same behavior as in Fig. 8(a). Smaller elite
sets cause faster evolution and lead to better solutions. However, a
too small elite set size is also bad as the figure shows for an elite
set size of 5.
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Figure 8: Comparison of different elite set sizes.

5. CONCLUSION
In this paper we optimized the routing and channel assignment in

WMNs using genetic algorithms. We use GAs because the number
of nodes in the network are too high to apply linear programming.

We evaluated the influence of the fitness function, the number
of generations, and the elite set size on the resulting network fit-
ness. The results show that the fitness function should be chosen
with care because some functions lead to an unfair share of the re-
sources. Using a fitness value built on weighted throughputs of all
network flows results in the best solutions.

In addition to choosing a good fitness function, we illustrated
that the elite set size should be chosen according to the population
size. A small population with a large elite set size often results in a
local optimum. The elite set size is also responsible for the required
number of generations to get a good solution. We showed that with
an elite set size of one third of the population size, a near optimal
solution is achieved in our scenario after 400 generations.

Our GA can be used for WMN network planning to optimize the
routes and channel assignment to achieve a max-min fair through-
put allocation. In future work, we will extend our genetic algorithm
to optimize the number of gateways and their location.
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