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Abstract—Today’s Internet provides access to a large variety
of services, which require high data rates and stable data flows
for satisfactory service quality. New interactive services have
high Quality of Service (QoS) requirements to the network.
Packet loss, jitter, delay and effectively available bandwidth
are parameters that heavily influence the Quality of Experience
(QoE) of a user. The current architecture of the Internet cannot
support these QoS requirements on a global scale, as solutions
of one Internet Service Provider (ISP) do not necessarily work
across borders of ISP domains. In order to provide QoS on
a global level, the Internet of the future might offer virtual
networks as data delivery services that can guarantee all the
requirements of an application or service. We therefore propose
a service oriented network framework. Within this framework
different virtual network connections with the corresponding
pricing schemes that satisfy a given request will be offered to
the customer.

In this paper we (1) introduce the architecture concept,
(2) show how the QoS of a network path can be concluded from
QoS description of its parts and (3) perform a measurement study
to evaluate a measurement approach, which classifies the QoS
of a network connection between two routers based on active
measurements performed by the routers themselves.

I. INTRODUCTION

The Internet of today is used as a general communication
medium. It works great for delivering web pages, text mes-
sages, files, and all other types of content which have no
need for real time delivery or high interactivity. It is shown
in [1], [2] that the Quality of Experience (QoE) perceived by
the user for the classic services like web site delivery and
ftp is mainly dependent on accessible bandwidth. With the
increasing availability of broadband access these services can
satisfy the users needs with the current architecture of the
Internet.

However, in the last years more and more services are
provided within the Internet, which need real time traffic
delivery as e.g. streaming services for music or video. For
these services it is no longer sufficient to guarantee the
availability of high bandwidth in order to satisfy the user. For
these kinds of applications it is also necessary to provide and
guarantee Quality of Service (QoS) in the network. As shown
in [3], [4] the QoE of streaming services is effected by jitter
and loss in the network. A network, that supports streaming
services in a good quality, has to assure that streaming data is
neither lost nor delayed in an irregular pattern.

Interactive services like VoIP, video conferences and online
gaming demand also for low latency connections, as long de-
lays between the interaction partners worsen the user perceived
QoE [5], [6].

The Internet of today can support services like streaming,
conferencing and gaming, but is not designed to be adapted
to the specific needs of individual applications or services in
general. It might be possible to get a QoS assured connection,
if the service and the client both connect to the same Internet
service provider (ISP). But users of a global service will most
probably connect from different ISPs and the data may also
traverse some intermediate autonomous systems (AS) in order
to be transferred between the application service provider and
the user. Hence, it is very hard to practically impossible to get
a guaranteed QoS on the data connection of a service on the
global level. This fact does not only affect the users, but also
the Internet providers. The impossibility of making global QoS
guarantees prevents the option of selling high quality network
services, which could be charged additionally to basic network
connectivity. The willingness of users to pay for those QoS
improvements is shown by the fact that many users pay for
enabling “fast path” on their ADSL connection. This means
that the provider just disables interleaving on the last mile.

Lately, several approaches emerge, for instance [7], which
propose to build virtual networks on top of already existing
network topologies. The idea is to overcome the problems
described above and other problems emerging from the current
architecture of the Internet. From our point of view there is a
need for an abstraction layer that hides the complete network
implementation. Thus, we propose a service-oriented architec-
ture, where the application or the service on application layer
requests a data transfer service from the network describing
the needs of the data transfer in terms of reliability and QoS.
This abstraction separates the application and the network
completely. It is therefore possible to modify the complete
network stack and also to use virtual networks without the
need of deploying new products to the customer. The network
just offers different services with the corresponding pricing
schemes. After the network service is chosen, the network
provides a data stream assuring the quality of the data transfer.
The application has neither to deal with transfer protocols nor
access technologies nor reliability issues. This solves most
of the problems of users, network providers and application
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service providers, as the user will get improved quality, the
network provider will get additional billing options and the
service provider no longer has to care about quality degrada-
tions caused by the Internet.

As global QoS is the main target of our virtual network
service architecture, network management plays an important
role. In order to deliver the promised QoS, the network has to
be monitored in detail. Even small changes in some parts of
the network might effect the global QoS so that the assured
parameters are no longer valid. In this case it would be
necessary to reconfigure the underling virtual network in order
to keep the service level agreement for this network service.
Additionally, a reliable measurement of the QoS perceived
by the user will increase the customer’s fidelity and his
satisfaction in the service. Therefore we will discuss options
to measure the QoS of a virtual network service.

In the following we consider related work in section II.
Section III describes the service oriented architecture (SOA)
based network framework. We discuss the aspects of connect-
ing different network parts together and predicting the QoS for
the network in section IV. Furthermore we study the option of
using active measurements in order to hedge QoS guarantees
in sectionV. Finally, Section VI concludes this work and gives
some outlook on future directions.

II. RELATED WORK

QoS enabled networks have been studied for quite a while
now. Thus, several options for guaranteeing QoS for network
connections have been implemented in the traditional IP
architecture and for future networks not relying on IP anymore.

A part of the solutions concentrate on the prioritization of
traffic in the routers queue. One of the most straight forward
approaches is IntServ [8]. Using IntServ each data flow, which
needs QoS guarantees has to provide a description of the traffic
that will be sent using a bucket model. Each router on the
path between source and destination is queried, if it is able to
support the QoS requested for the flow. If all routers agree, the
connection is established and QoS is guaranteed. Otherwise the
flow is rejected. Unfortunately, this algorithm does not scale
with increasing network size and can only be used in very
small networks.

A more practical approach to QoS assured connection
using traffic prioritization is DiffServ [9]. Using DiffServ, a
router analyses traversing packets. Each packet is classified
into priority classes, which are used to schedule the packet
delivery in the router. Routers that see a classified package may
adopt their behavior accordingly or change the classification.
However, as there is no general rule or specification how these
classes have to be handled, QoS can not be guaranteed on
network paths traversing more than one administrative domain.

Another strategy to support QoS is to adopt the routing,
i.e. to modify the topology of the network. Constraint based
routing (CBR) [10] selects different network paths from one
source to a destination for different kind of flows. Depending
on the concrete framework routes are previously defined or
set up in an ad hoc manner. It has to be noted that CBR does

neither reserve bandwidth nor prioritize any traffic classes by
default. It simply sets up different routes. The topology is
optimized, e.g. for low latency, but it is not guaranteed that
congestion does not affect the QoS enabled flows. Hence, CBR
is often combined with DiffServ or fixed rate MPLS aggregates
in order to protect the QoS enabled flows against congestion
in the network.

Beside these classic approaches, which try to improve the
old IP architecture of the Internet, there are new approaches,
which combine different network services, use non layered
protocols, or replace the complete protocol stack in order
to build the Internet of the future. However, if they want
to compete against classic approaches, they need to provide
better QoE to the customer. Otherwise the customer will not
be interested in the deployment.

In [11] an architecture called SILO is proposed which uses
blocks of fine grained functionality, a way to combine them
together, and control elements to make them interact smoothly.
Each block might be implemented in a different way and
there might also be different implementations for the same
block. The application works synergistically with the network
in order to build up a system that satisfies the needs of the
application. The framework is open to integrate features like
security and may use techniques to improve the performance
even if deployed in hardware.

In [12], a network architecture is proposed, which com-
pletely renounce the layered approach of network design and
proposes a non-layered paradigm, which is called role-based
design. Each role is a function description, which is used for
processing and forwarding the encapsulated data. Instead of
having a fixed order, which the composition of roles has to
follow, each transmission can set up its own heap in which
the roles can be ordered in any suitable way. As this proposal
is not compatible with the current network hardware, it would
need a complete change of technology or virtual networks in
order to be deployed.

The advantages of using multipath packet dispersion and
reordering near the destination are analyzed in [13]. It is
shown that if paths with nearly the same latency are used,
the throughput and the resilience to link failures is improved.
Furthermore the paper discusses the problems of out of order
delivery if TCP is used. In addition, it shows that using this
technique may lead to large bulk arrivals of TCP packets,
which might result into other problems.

Although these three papers differ in the way the authors try
to improve the data transfer, they share one common aspect.
They all have to face the problem that the traditional IP
based Internet is not going to support this approaches without
deploying changes to the customer or in the network. Anderson
et al. [7] describe a way how to test those new approaches in a
virtualized network test bed. It is considered how the existing
internet architecture can be tricked in order to get real traffic
into this test bed and that it is a problem to achieve absolute
QoS in a virtualized system. After successfully testing a new
technology, customers might get attracted and the technology
can be deployed. But the authors also discuss the problem that
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+ini'ateServiceChain(ServiceChain: list of ServiceIDs):boolean if service 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descrip'on 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<<Interface>>  
DataStream 

+getDataStream(): data stream 

<<Interface>> 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+getProtocolStack(Service:ID): protocol stack 
+receiveEncodedData(service:ID, 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array) 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ServiceConnector 

<<Interface>>  
ServiceConnector 

+ServiceRequest(Service:ID) 
     :DataStream 

Applica'onService 

Fig. 1. SOA architecture interfaces

customers might not want to change their equipment any time
a new technology advents. As an outcome they postulate the
need of a coherent framework in which all the new ideas can
be integrated.

In [14], the authors describe an architecture, in which a
network node is able to choose and multiplex different network
architectures at runtime. They propose a solution in which the
network node selects, controls and optimizes all connections
based on the requirements of the application and some user
provided policies. They state that a abstraction between the
network and the application is needed, but do not propose an
appropriate interface.

In this paper we consider the problem identified by [7], [15]
and propose a simple interface as an abstraction of a network
service based on the service oriented architecture approach. In
contrast to [15] we do not integrate the selection of a proper
network realization in the functionality of the network. We
assume that a user wants to decide by himself, which quality
of network he wants to use for which price, especially as we
consider charging different prices for different QoS. Thus we
assigned this task to the user side of the interface. We also
discuss how to integrate QoS guarantees for different parts
of one consecutive network connection and investigate one
possible option to measure the QoS provided by a such a
service.

III. SERVICE ORIENTED NETWORK FRAMEWORK

Network virtualization can be seen as a way to build
networks that hide the underlying network topology. But it can
do much more in order to improve the network service and
open existing architectures for future technologies. In order to
fully separate all kind of network services from the application
logic, we propose the following architecture. We use the SOA
approach and define the complete network transmission of the
data as a service, which can be adapted to the needs of the
application. The implementation of this service is completely

up to the network. On the one hand this releases the service
developer from the need to take care of things that might
happen in the network. On the other hand the network side is
free to transfer the data in any suitable way, which enables the
option of using an already known protocol stack like TCP/IP
or to transfer the data over any other protocol, which might
come up in the future.

Figure 1 shows the service and interface definitions in
UML notation. A simple application exposes no interface
to the network but uses the NetServiceProvider
and DataStream interface of the network. The
NetServiceProvider interface contains all functionality
which is needed by the application to request and initiate
a data transfer. The requestNetService method is
accessed by the application to get services offered for a
data transfer to the target with the specified QoS level and
reliability. It is possible to specify hard limits for the QoS
parameters, e.g. maximum delay of 150 ms, maximal jitter
of 20 ms, maximal loss of 0.001, and minimal bandwidth of
15 kbps, or to specify it less specific, e.g. a low delay and so
on. Specifying a QoS parameter as the maximal value for the
specific version or ’none’ in the less specific version means
that there is no restriction on this parameter. The reliability
parameter specifies if it is necessary to transfer all the data.
If this parameter is set to false, the network might drop data
as long as the drop ratio threshold is kept. If this parameter
is set to true, this data has to arrive in the same order it
was sent and without loss. For example a file transfer would
therefore ask for a high bandwidth and reliability connection
in order to achieve a high throughput.

A network receiving such a request would search for paths
to the specified target and calculate the supportable QoS levels
and the prices for these connections. If the target is not in the
same AS, this cannot be done directly. Hence, the network will
request a network service from the possible next networks on
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the way to the destination. These networks will perform the
same procedure until the destination is reached.

Finally the network to which the user is connected
offers all services satisfying the QoS requirements to
the user. The user or a user agent decides which one
to use and requests the complete network service chain
(requestServiceChain) in order to establish the con-
nection (initiateServiceChain) and store it locally for
reuse later on. If no connection can be found, the network will
offer a basic service without QoS guarantees. The user than
has to decide if he wants to start a new request with lower
QoS requirements or uses the basic service.

However, the service provider might want to offer some
predefined services, e.g. for VoIP or gaming, which will
satisfy most users’ needs for cheaper prices than connections
with specific QoS guarantees. Or maybe a service provider
has a cooperation agreement with several network service
providers in order to offer the users an easy way to access a
sufficient network connection to access the service with high
QoE. These services can be requested by the user with the
getPredefinedServices method and instantiated like
the other services.

Another functionality the framework provides is to register
an application service. This is only used by service providers
running an ApplicationService. After the registration
the service is made available and advertised in the network.
Users can use the service ID as target for their network
service requests. A possible option for this ID would be the
use of URIs, as they are already well known to the users.
However, it is only possible to register an application service,
if the ServiceConnector interface is supported, which
enables the network to establish a data stream and initiate an
application service request from a user.

In Figure 1 there is another interface defined for a
network service - the NetworkConnector. In theory
the functionality characterized above would be enough to
run a network service. However for practical reasons the
NetworkConnector is used to peer networks tighter to-
gether. This is done by the getProtocolStack method
which enables network services to exchange specifics of the
underlying implementation of a network service. If both net-
works use the same protocol stack, e.g. TCP/IP, it is possible to
exchange data directly on network layer and save the overhead
and delay of unboxing the data to application level and than
again boxing it for the transfer in the next network segment.

AS 1  AS 2  AS 3 

Applica,on 
Applica,on‐ 
Service 

Network  Network  Network 

DataStream 

NetServiceProvider NetServiceProvider NetServiceProvider ServiceConnector Setup 

DataStream transfer 
example DataStream NetworkConnector 

Fig. 2. Example of interface usage during the setup and data transfer of a
network service composed of several virtual network connections

An example for this is given in Figure 2. A user on the
left has connected to an application service on the right. The
data transfer traverses three AS. As it is shown in Figure 2 the
data exchange between the user and AS1 and the application
service and AS3 is done on application level using data
streams provided by the DataStream interface. AS1 and
AS2 have exchanged information about their services through
the NetworkConnector interface and found out they use
the same technology and network stack. To keep it simple
we assume both use TCP and IPv4. Thus, there is no need to
unbox the data and then repack it into the same format. Instead
the packets can be copied directly. Against this, AS3 uses a
different protocol stack. Therefore the data is unboxed at the
peering between AS2 and AS3 and handed over on application
level. If there is no bridging device between the different
autonomous systems the data stream has to be exchanged in
any format both ASes have defined in their peering agreement.

At this point we are able to connect two endpoints, e.g. a
user and a service, with each other. How the QoS of such
a composition can be composed is not a trivial problem
and will therefore be discussed in the next section. Against
this, charging is much easier to implement. The costs of a
connection are defined by the sum of the charging schemes
for each part of the composition. In theory any forms of
charging, e.g. volume, time, or flat rate based pricing schemes,
can be used. Unfortunately a connection which costs x cents
per megabyte + y cents per minute + z cents for setup are
very hard to understand for the customer. But we assume that
a customer will stick to the composition, where he can easily
calculate the costs. Hence the choice of the customer on a free
market will force providers to agree on some standard pricing
schemes or offer different kinds of charging.

IV. CALCULATING QOS FOR PATCHED NETWORK PATHS

The estimation of the QoS parameters along an end-to-end
path through n network segments, which could be routers or
networks themselves, combines the measurements Qi of the
QoS parameter Q through all network segments 1 ≤ i ≤ n.
Let Q+

i denote the combined measurements through the first
i network segments. After the next network segment i+1, the
QoS parameter Q is observed as

Q+
i+1 = Q+

i ◦Qi+1 = Q1 ◦Q2 ◦ . . . ◦Qi ◦Qi+1 , (1)

whereby the operator ◦ describes how the measurements are
combined. The concrete definition of the operator depends
on the actual QoS parameter. Without loss of generality it
is sufficient to explain the combination of two QoS param-
eters due to the recursive description in Eqn. (1). This is
in particular the way the measurements are combined within
the service oriented network virtualization framework, since
the requestNetService method for getting information
about the QoS of an end-to-end path is also recursively
implemented.

In the following, we show how to calculate the QoS for
patched network paths. To be more precise, the calculation of
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Fig. 3. Example for the estimation of throughput of two individual network
segments

bandwidth, packet loss, as well as delay and jitter is presented
for two measurements Qi and Qj .

A. Bandwidth

We consider two network segments i and j with throughput
Ci and Cj , respectively. Then, the available throughput C
along i and j is simply the minimum of both, i.e.

C = min (Ci, Cj) . (2)

When the available bandwidth at a network segment is
measured for a certain time period ∆t, the throughput Ci
and Cj is described as random variables. Assuming that the
throughput on the network links is independent, i.e. Ci and Cj
are statistically independent random variables, the cumulative
distribution function (CDF) of the throughput C is given as

C(x) = P [C ≤ x] = 1− (1− Ci(x)) (1− Cj(x)) . (3)

Figure 3 shows exemplary the CDF of the throughput C
for two measured CDFs of Ci and Cj . For Ci, we assume the
sum of a minimum available bandwidth c0i = 100 kbps and a
normal distributed random variable with mean µ = 10 kbps
and standard deviation σ = 3 kbps. For Cj , we assume
the sum of a minimum bandwidth c0j = 100 kbps and a
negative exponentially distributed random variable with mean
µ = 10 kbps. Then, the obtained bandwidth along i and j is
computed according to Eqn. (3) and plotted as black solid line
in Figure 3.

B. Packet loss

The observed packet loss probabilities in the two network
segments i and j are pi and pj , respectively. Since packets
first traverse network i and then j, the resulting packet loss
probability p follows as

p = pi + (1− pi)pj . (4)
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Fig. 4. Contour plot of the resulting packet loss passing along network
segment i and then network segment j

Figure 4 depicts a contour plot of the resulting packet
loss p and prints its value according to Eqn. (4) on the
corresponding contour lines, while the packet loss probability
of network segment i and j are given on the x-axis and y-axis,
respectively.

C. Delay and Jitter

Let Ti and Tj denote the delay through the i-th and j-
th network segment. If the delays are independent, the joint
distribution of the component delays can be formed using
convolution. Thus, the total delay T observed along the path
through i and j is

T = Ti + Tj , (5)

while the probability density function (PDF) t(x) as first
derivation of the CDF T (x), i.e. d

dxT (x) = d
dxP [T <= x],

is calculated as

t(x) =

∫ x

τ=0

ti(x)tj(x− τ)dτ (6)

with the PDFs ti(x) and tj(x) of the corresponding delays.
Figure 5 shows the PDF of the delays Ti and Tj , as well

as their sum T . We assume that Ti follows a lognormal
distribution with mean µ = 12.18 ms and standard deviation
σ = 255.02 ms plus a minimum delay t0i = 10 ms. For Tj , we
assume the sum of a minimum delay t0j = 20 ms and a pareto
random variable with parameter K = 0.3 and σ = 4. The
PDF of T is calculated according to Eqn. (6) and depicted as
black solid line in Figure 5.

Although the PDF of T allows to easily derive the average
delay and the jitter, e.g. as standard deviation of the delay
T , its calculation faces two problems. First, the computa-
tion is too time-consuming and raises therefore challenges
in practical implementation of the Networking framework.
Second, independence of the delays Ti and Tj is assumed,
which might not be valid in practice. The same concerns
may also arise for more complex bandwidth or packet loss
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processes. Nevertheless, in literature several approaches exist
which approximate appropriate key performance measures.
For example, [16] presents a simple approximation of delay-
variation distributions, which is convolution and transform-free
method and allows for an accurate and less time-consuming
estimation of jitter.

Furthermore this calculation does not consider the delay
which is caused by the handover of data between two con-
secutive networks. In some cases this might be just some
additional fixed time span, but might also depend on the
data volume and how it is transfered in the different virtual
networks. A implementation of the delay distribution therefore
also has to consider the handover. However, we will show in
the following section that delay is a QoS parameter, which is
rather easy to measure. Thus, for practical reasons it might be
more efficient to estimate the end-to-end delay of a network
service and measure it for compositions, which hardly meet
the requirements, instead of calculating it precisely for each
connection.

V. MEASURING QOS

In practice, the system often does not exactly behave like ex-
pected from theory. This is especially the case for systems that
use virtualization and where many virtual systems are run on
the same hardware and interact with each other. As explained
in [7] absolute QoS is therefore hard to maintain, also relative
QoS might be achievable. Hence, for a SOA supporting QoS
over virtual networks it is necessary to implement features,
which can measure the current QoS of a network service.

There are different options, which can be considered for
measuring the QoS of a network service. A possible method
is a passive measurement, which means that at some point of
the network data is collected and analyzed. The big advantage
of this methodology is that the system is only observed but not
affected by the measurement. However, with a passive mea-
surement many QoS parameters are hard to assess. Although

bandwidth can be computed easily, the estimation of round trip
times and packet loss is only possible with protocols in which
corresponding messages are sent in both directions. E.g. TCP
is a protocol that can be used to estimate loss and round trip
time with a passive measurement. However parameters like
jitter are only accessible with deep knowledge of the timing
aspects of a protocol. Against this, active measurements,
which introduce traffic to probe the network, are a rather
easy method to estimate the QoS of a network service at the
moment of the measurement. All QoS parameters, i.e. one-
way delay, jitter, packet loss and bandwidth, can be quantified
by an appropriate active measurement. The big disadvantage
is that the measurement directly influences the system and it
is therefore not possible to estimate the QoS of the system
without the additional measurement data. In our case this
’disadvantage’ can also be used to analyze the effects of a
new network flow on the network, if the traffic characteristic
of the flow is known and emulated by the measurement.
Other measurement strategies combine passive measurements
at different points of the network and exchange the data. The
advantage of these methods is that, although the exchanged
data has only a small influence on the system, the same QoS
parameters can be examined as with an active measurement.
However, the exchange and correlation of corresponding data
is complex and the system is not easy to maintain.

A. Measuring QoS with Cisco IP SLA Tests

In the following we focus on an active measurement, which
can be done between two routers. The advantage is that a
network provider does not have to deploy special measurement
hardware. We examined the measurement quality of the Cisco
IP SLA UPD Jitter Test. The IP SLA framework, which was
formerly known as response time reporter (RTR), supports
many test from simple ping up to response time measurements
for server requests. However we focus on the UDP jitter
test, as it measures all interesting QoS parameters with a
single configurable bulk data transmission. The UDP Jitter
measurement has the additional advantage that the two routers,
which are used for a measurement, can be configured to
prioritize the measurement packets. Therefore it is possible to
measure the network between the routers as a black box, and
the measured QoS parameters are not affected by the load on
the routers performing the measurement. Furthermore, if both

control links 

wire tap 

dump traffic 

control PC 

2801 2601 

traffic recorder 1 traffic recorder 2 

wire tap 

Fig. 6. Testbed setup for IP SLA measurements
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customer edge routers are able to perform these kind of tests,
they can be used to characterize the global QoS of a network
service. The prediction for a specific network service might
additionally be improved by emulating the data transfer of the
service. However, we used a default option, which sends out
1000 packets of size 214 bytes with a intersent time of 20 ms.

In order to verify the quality of the Cisco IP SLA UDP
Jitter test we installed a NetEM network emulator between
two Cisco routers, cf. Figure 6. The router performing the
measurement test was a Cisco 2801 router with Cisco IOS
12.4(9)T. As remote station we used a Cisco 2601 router with
Cisco IOS 12.3(20). The IOS version of the Cisco 2601 is
only supporting RTR, which is the former name of the IP
SLA Tests, but it can be used on a remote host for the IP
SLA measurements. In order to compare the results of the
router measurement with the exact values produced by the
network emulation, we installed a wire tap on both sides of the
network emulator and dumped all packets exchanged between
the routers. The measurements are fully automated by a control
PC machine, which (1) starts tests on the router with EXPECT
scripts, (2) collects test results using SNMP, (3) modifies the
network emulator over ssh, (4) controls the PCs dumping data
and (5) provided a stratum 2 NTP clock for the complete
test bed. This enabled us to measure each combination of a
network delay of 0 ms to 250 ms in steps of 25 ms and ten
packet loss values between 0% and 2.1%. Each measurement
scenario was repeated thirty times. We furthermore measured
the influence of jitter between 0 ms and 80 ms for a delay of
200 ms and repeated the test twenty times. Correlated jitter
and packet loss are evaluated in cases of 75%, 90%, 99%,
and 99,9% correlation and repeated seven and twenty times,
respectively.

B. Quality of Delay Measurement Results

As a result of the IP SLA test, round trip times are reported.
If both routers are synchronized with a timeserver, it is also
possible to measure one-way delays. Therefore we set up some
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Fig. 7. Maximal error of the delay measurement

additional test series, in which we adjusted the delays for
both directions in the network emulator differently. From these
measurements we can confirm, that the one-way delays work
independent from each other and expose the same quality of
results, which we measured in the other experiments described
above.

For each measurement the IP SLA test reports the minimum,
the mean and the maximal delay during the measurement. In
Figure 7 we show the maximal error of the maximal delays
reported by the test in absolute values. It can be seen that
the results of the router do not overestimate the maximal
delay more than 6 ms in all tested cases. The accuracy for
the mean delay and the minimal delay results are even better.
The difference between the delay emulated and the reported
by IP SLA is 1.42 ms on average. It has to be noted that none
of the test results underestimated the delay realized by the
network emulator more than 2 ms. Hence, the IP SLA results
have a high precision at estimating the network delay in each
direction.

C. Quality of Jitter Measurements

In order to study the quality of the jitter results, we first
considered jitter values between 0 ms and 80 ms with a step
width of 10 ms using a one way delays of 200 ms. Figure 8
depicts the absolute error between the reported jitter values
and our accurately observed jitter values. The red line in the
middle of each box visualizes median, whereas the upper and
lower bound of the box show the inter quartile range. The
minimal and maximal reported differences are marked by the
end of the vertical line. Differences more than three times the
inter quartile range away from the median are considered as
outliers and marked by a ’+’. The measurement quality for
jitter beneath 40 ms is quite good. For higher jitter values,
the absolute error range increases and the relative error also
increases up to about 10%. However, in practice the jitter
values are mostly beneath 30 ms. If the reported jitter is higher,
we can use the value as a worst-case approximation, as the
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reported values very rarely underestimate the jitter of the
system in these cases.

In practice, another phenomenon is quite often observed.
Jitter is rarely spread evenly. Sometimes there are periods
of higher traffic and congestion in the network, which addi-
tionally delays the transmission to some extend. Sometimes
there are periods in which the network is less loaded and
the transmission delay is only slightly increased. In order to
simulate such a scenario, we adjusted the NetEm PC in order
to emulate correlated jitter. We consider correlation values of
75%, 90%, 99%, and 99.9% for jitter values of 5 ms, 10 ms
and 20 ms. We also consider average transmission delays of
50 ms, 75 ms, 100 ms, and 150 ms.

Figure 9 depicts the influence of jitter correlation to the error
of jitter results of the IP SLA test for an average transmission
delay of 75 ms. The connected points for each plot depict the
mean error between the jitter values, which we calculated from
the time stamps recorded in the dump file for the transmitted
test packets and the results the router reported. For each
measurement point, the vertical line depicts the maximal and
minimal difference between these values. Again, we see that
the mean error increases for higher jitter values. However, the
range is rather small and correlation of jitter does not effect
the quality of the measurement. Hence, we can use the results
of the UDP Jitter test to estimate this QoS parameter in the
network.

D. Quality of Loss Measurements

Packet loss in the network influences the sending behavior
of congestion aware protocols, e.g. TCP, which will adopt
the transmission rate accordingly. Thus, it is hard to estimate
packet loss correctly with active measurements, as TCP based
connections might lower their bandwidth and therefore free
bandwidth which lowers the measured loss on the link as
described in [17]. This general problem of active testing packet
loss has to be considered, if measurements are done in a real
network.
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Figure 10 depicts the packet loss reported by the UDP
Jitter test for emulated packet loss values of 0.3%,1.5%, and
2.1%. The plot shows the mean values, the minimum and the
maximum of reported loss by IP SLA. The number of packets
that did not make their way to the foreign router and back is
always correct. However, the deviation of the minimum and
maximum reported packet loss value to the actual emulated
packet loss value is quite large. This is a general problem,
which occurs due to the actual packet loss pattern. One active
measurement over a lossy link can be considered as a sample
of a random process. It is therefore rather unlikely to estimate
the loss probability exactly, but only within a certain range
around the real value. The quality of the estimation can only
be improved by increasing the number of packets sent within
the test.

This basic statistical problem gets harder if we consider
bulky loss patterns. As described in [17], packet loss in the
Internet often occurs in short loss periods. Within such periods,
a high number of packets are dropped by the routers because
of congestion. Between two loss periods the router are able
to deliver all packets and packets might be delayed but no
packets are lost. In order to reproduce this behavior we created
correlated loss patterns with our network emulator. Figure 11
visualizes the maximum of packet loss measured during our
test with correlated packet loss. For a correlation of 75%
and above, nearly all measurements did not detect any packet
loss. Therefore the mean values are also nearly zero. It is
evident that even tests with thousand packets are not enough
to differentiate between 1.5% or 0.3% packet loss. Under these
circumstances the measured loss only depends on how much
packets are lost in such a period. However the duration and
the frequency of those loss periods can not be estimated in this
way. Hence, it is not feasible to estimate the packet loss by a
single measurement sending one bulk of packets in practice.

For packet loss measurements relying on active bulk prob-
ing, there is a general trade-off between costs, i.e. the number
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of packets, and reliability. If a single measurement has to
provide a good estimation of packet loss, there has to be
a high number of packets transmitted in the test. But there
is also another solution. The mean loss values of many
consecutive measurements can be used to estimate the mean
loss value during the measurement time. This is correct as
for each test the outcome is binomially distributed with the
same parameters and therefore it is possible to sum them up.
Furthermore, it is reasonable to design active tests in such a
way, that the quality of the other estimated QoS parameters
is sufficient, and to repeat these measurements in order to
update these values over time and to better estimate the mean
loss during a longer time span.

VI. CONCLUSION AND OUTLOOK

In this paper we proposed a simple interface based on a
service oriented architecture approach to provide an abstract
view of the network to the application respectively the user.
The approach considers QoS as the network functionality the
user is mainly interested in and includes charging. We have
shown how QoS guarantees for several parts of one connection
can be consolidated into a QoS description for the complete
service. Furthermore we discussed options to measure the
QoS and presented measurements exposing the quality of an
available active measurement tool, Cisco IP SLA.

In future work we want to implement a prototype to run
in the G-lab (www.german-lab.org) and in PlanetLab. Hereby
we will first focus on an implementation of a UDP and TCP
based network service and improve the integration between the
normal Internet architecture and our service approach over the
NetworkConnector interface. With this test implementa-
tion we want to show that the delay introduced by peering data
between networks on the application level is small and justified
by the freedom of choosing any network implementation.
Furthermore we want to get a realistic performance rating for
the time needed to combine several network services to end-
to-end connections and calculate the QoS guarantees.
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