
Modeling of Modern Router Architectures
Supporting Network Virtualization

Tobias Hossfeld
University of Würzburg

Department of Distributed Systems
Am Hubland

97074 Würzburg, Germany
hossfeld@informatik.uni-wuerzburg.de

Kenji Leibnitz
Osaka University, Graduate School of
Information Science and Technology

1-5 Yamadaoka, Suita, Osaka
565-0871, Japan

leibnitz@ist.osaka-u.ac.jp

Akihiro Nakao
The University of Tokyo, Interfaculty

Initiative in Information Studies
7-3-1 Hongo, Bunkyo-ku, Tokyo

113-0033, Japan
nakao@iii.u-tokyo.ac.jp

Abstract—For the emerging concept of network virtualization
where a multitude of virtual networks (VNs) coexist, the main
challenge is to isolate and control the resources allocated for
individual virtual networks. Realizing such resource allocation
requires deliberate design of the router enhanced specifically for
handling a large number of virtual network flows. This paper
discusses fundamental challenges on modeling the architecture
of modern routers for the support of the virtual networks. Our
intention is to discuss strategies for scheduling the traffic on
each isolated VN and to provide an elementary framework for
evaluating the performance of the router extended to classify
incoming VN traffic. Furthermore, we also present simulation
results and discuss challenges and future directions encountered
in the implementation and deployment of VNs.

I. INTRODUCTION

The challenges that are envisioned for future Internet ser-
vices are leading to a paradigm shift in the design and opera-
tion of router technology with greater emphasis on individual
services and their perceived end-to-end quality. Recently, there
have been a growing number of new application-oriented
overlay networks, which are logically constructed above the
current IP infrastructure to provide services in a highly-
distributed way, such as peer-to-peer (P2P) file sharing, or
directory lookup with distributed hash tables (DHT). Since IP
(Internet Protocol) layer routing is rather limited in its current
form to simple forwarding of packets, the complex operation
of the system lies here on application layer.

Network virtualization appears to be a promising approach
to alleviating this problem by segregating the provisioning of
services and applications from the physical infrastructure. The
introduction of Virtual Networks (VNs) leads to an entirely
new scenario, where more complex routers are required that
can only provide mere lookup of destination addresses and
forward packets to a designated output port. Instead, they con-
sist of self-contained virtual machines on high-performance
routers, which can provide many programmable and config-
urable options. Thus, network virtualization provides a means
to shift the complexity from application layer to network
layer, facilitating the easier and faster deployment from the
viewpoint of the service providers, as well as providing the
opportunities for new business models for services.

In order to support VNs, a redesign of the current router

architecture is required to support much more complex func-
tionalities [1]–[4]. These include for example new routing
schemes like energy-efficient or semantic routing, packet fil-
tering, address translation, brokering quality of service (QoS)
or quality of experience (QoE) reservations or negotiating
and policing service level agreements (SLAs). Each of these
functionalities is expected to be fully configurable by the
service provider directly at the router in accordance to the
type of offered service. However, different services may also
require different physical resources. For instance, filtering and
address translation require CPU time, whereas delay-sensitive
or quality-sensitive applications (e.g. multicast support for
IPTV, VoIP) require an efficient scheduling of the flows to
maintain bandwidth and delay constraints. Although the main
idea behind VNs is to ideally completely isolate each network,
they nevertheless must share the same common resources. This
can introduce delays and jitter due to sharing CPU time or the
waiting times in queues and processing times at the line cards.

In this paper our goal is to introduce a model for the
scheduling and operation of a VN-supporting router from the
viewpoint of its performance. We begin with a simplified
router model as used in the conventional Internet infrastruc-
ture, which we then extend to incorporate also novel technol-
ogy trends in router technology, such as multi-core processors.
Due to the high complexity of such a VN-supporting router,
we must provide simplified assumptions, which nevertheless
yield the essential characterizes and key features in order to
provide a framework for more sophisticated future studies.

The rest of this paper is organized as follows. Section II
discusses some of the key issues on the concept of network
virtualization. Section III presents an approximative model
for a VN-supporting router, exhibits the key characteristics
of handling multiple VNs and illustrates the need for the
sophisticated router architecture. Further numerical examples
comparing different scheduling strategies for exemplary cases
of VNs with different requirements are provided in Section IV.
The objective of this paper is not to provide exact quantitative
values, but to rather show the qualitative tendencies that can be
seen in the application of such technology. Finally, Section V
concludes this paper with a summary of our study.

1

©c
2
0
0
9

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
it

iv
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

2
n

d
F

u
tu

re
N

et
in

co
n

ju
n

ct
io

n
w

it
h

IE
E

E
G

L
O

B
E

C
O

M
2
0
0
9
,
2
0
0
9

1
0
.1

1
0
9
\/

g
lo

co
m

w
.2

0
0
9
.5

3
6
0
7
5
3
.



II. CONCEPT OF NETWORK VIRTUALIZATION

With the advances in microprocessor technology, virtualiza-
tion has evolved into a viable option for managing, controlling,
and isolating several virtual entities on a common shared phys-
ical resource. This concept is now increasingly also entering
the field of networking, where virtual networks are formed
that are composed of interconnected virtual devices sharing
the same physical substrate network. Naturally the operation of
such networks imposes much more sophisticated management
routines for the access to the common resources, as the
internal tasks of processing flows in routers becomes much
more complicated than in conventional best-effort provisioning
found in today’s Internet.

Users perceive each virtual network as tunnel and are free to
choose their topology that suits best to their demands, whereas
also infrastructure providers benefit from such concept by not
having to be forced to deploy all new functionalities to support
certain services at each node. This task can be shifted to the
service providers to manage and reprogram their network ar-
chitectures offering the end users a service-specific end-to-end
quality. An end user can therefore connect to multiple service
providers, which offer exactly their custom-made services,
without any interaction with the actual infrastructure. Thus,
beside the technological benefits, the introduction of virtual
networks would lead to entire different business and pricing
models from economical viewpoint.

Virtual Networks are currently a much discussed topic in
the research community for simultaneously operating new
testbed protocols and services in an isolated environment.
In this context, PlanetLab [5] is one of the most prominent
examples. It was established in 2002 and as of January 2009
is currently consisting of 943 nodes at 466 sites worldwide [6].
Nodes in the PlanetLab network are usually Linux-driven PCs
isolating services and applications in slivers, which are VMs
running on the node, and which compose a slice for the entire
virtual network. In order to maintain the integrity and stability
among the slivers, an additional administrative mechanism is
implemented: a resource container (based on Linux VServer)
implements and isolates the virtual execution environment on
the Linux kernel, whereas the task of the node manager and
local administration are to manage the resources of all VMs
and enforce the policies.

Among the major challenges we address in this work for the
design and operation of VNs is the allocation and scheduling
of the common substrate resources, especially focusing on
isolation of resources allocated to each virtual network. Further
key issues on VNs are summarized in [7]. Since each VN
may have different requirements depending on the service it
is offering, bandwidth management and queue scheduling are
of essential importance. These involve scheduling mechanisms
for CPU, memory, disk, network interface in each of VMs run-
ning on the host machine. An adaptive and dynamic resource
allocation framework is proposed as DaVinci [8], where each
substrate link periodically reassigns bandwidth shares between
virtual links.

B B

3 3

S

line cards

A A

C C

S

line cards

Multiple Virtual 
Output Queues (VOQ)

S

line card A

X-bar switching
fabric with VOQ

S

line card B

S

line card C

incoming packets outgoing packets

Fig. 1. A store-and-forward router implementing Virtual Output Queues

III. MODELING A SINGLE VN-SUPPORTING ROUTER

In order to keep our following discussion tractable, we
consider in this work a simple scenario consisting of n = 3
different virtual networks, which are each dedicated to certain
applications like video, voice, or web traffic. The traffic profile
of each application i is characterized by the size Si of IP
packets and their average bandwidth requirements Ri. The
average number of users within VN i is denoted as Ni. The
arrival of IP packets in VN i is modelled as a Poisson process
caused by the superposition of the flows from several users.
We use the parameter θ to adapt the system load and refer to
it as the normalized system load. Then, the arrival rate of the
Poisson process follows as λi = θNiRi/Si.

We now consider packets arriving at a certain router. Fol-
lowing the discussion in [9], we assume the popular store-and-
forward router architecture with Virtual Output Queues (VOQ)
at the input links, see Fig. 1. The essential components of the
router are the line cards and a switching fabric controlled by a
centralized scheduler. Each line card controls an input link and
an output link. In the VOQ strategy each input link maintains
a separate queue for each output link.

When a packet arrives at a router, i.e., at the input link of a
line card, its destination address is looked up in the forwarding
table. To be more specific, the packet completely leaves the
input link and is first stored in the corresponding output queue
of the line card’s memory. Due to the VOQ concept, each input
link has a separate FIFO queue dedicated to each output link.
When the packet gets served in the output queue, it is passed to
its output interface by the switching fabric and handed to the
output link scheduler. Here, the packet may be queued before
being forwarded to the output link. The speed of processing
corresponds to the bandwidth of the output link.

A. Simple Router Model

Hohn et al. [9] propose in their paper a simple model
for such a store-and-forward router and validate its accuracy
and applicability using measurements of traffic at a gateway
router of the Sprint IP backbone network. Based on their



VN 2VN 2

VN 3VN 3

packet arrivals

d0

VN 1VN 1

B d1

input 
delay

blocking

output queue

packet forwarding
router bottleneck

Fig. 2. Simple model with minimum delay due to input buffer at router

observations, they propose a two-stage model. First, each
packet experiences a minimum delay d0(s) which depends
on the size s of the packet and reflects the store-part of the
router. Then, the packets enter the FIFO output queue and are
processed with the capacity of the output link when they reach
the head of the queue.

In this two-stage model, the order of packet arrivals at the
input link is preserved. The output link is assumed to be the
bottleneck of the router, as in practice the switching fabric is
generally overprovisioned and therefore very little queueing is
expected at the input queues. If a packet enters the system and
has to wait for longer than d0(s) in the output queue, then the
effect of this minimum delay can be simply neglected.

For the sake of completeness, the equations of the two-stage
system model is reviewed briefly according to [9]. Let U(t)
be the amount of unfinished work at time t, which is the time
it would take until the system is completely empty, given that
there are no further packet arrivals. When a packet j of size
sj arrives at time tj , then it is immediately inserted at the end
of the FIFO queue, if the unfinished work U(tj) is larger than
the initial delay d0(sj), i.e., U(tj) > d0(sj).

Then, the amount of unfinished work is increased imme-
diately after queueing the packet at time t+j by the amount
d1(sj) = sj/c1 corresponding to the time it takes to process
the packet with the capacity c1 of the output link. Formally,
this can be described as

U(tj) > d0(sj)⇒ U(t+j ) = U(tj) + d1(sj).

The sojourn time Tj of the packet is then simply the sum
of its waiting time, i.e., the amount of unfinished work at
time tj , and its processing time is U(tj) > d0(sj) ⇒ Tj =
U(t+j ). If the remaining unfinished work is larger than the
delay d0(sj+1) of the next incoming packet j + 1, we obtain

U(tj+1) > d0(sj+1)⇒ Tj+1 = Tj − (tj+1 − tj) + d0(sj+1)

since the unfinished work is reduced by the amount tj+1− tj ,
i.e., U(tj+1) = U(t+j )− (tj+1 − tj).

If however a packet k arrives at time tk with a delay d0(sk)
larger than the unfinished work, the sojourn time for this
packet satisfies U(tk) ≤ d0(sk) ⇒ Tk = d0(sk) + d1(sk)
and the unfinished work accordingly can be derived as

U(tk) ≤ d0(sk)⇒ U(t+k ) = d0(sk) + d1(sk).

VN 2VN 2

VN 3VN 3

packet arrivals

d0

VN 1VN 1

classifier:
VNs and flows
(router input 

queue)

d2

d2

d2

S d1

VN 1: (video), EDF

VN 2: (voice), EDF

VN 3: (web), FIFO scheduler:
(router output queue)

output queue

packet forwarding
router bottleneckinternal VN scheduling 

to optimize E2E flows

Fig. 3. Model of a complex router supporting various VNs

Figure 2 shows the simple model with the minimal delay
d0 due to the input buffer at the router. Note that in practical
routers there is a limited buffer capacity B, however, usually
the buffers are well dimensioned and in fact actually overpro-
visioned [10]. Therefore, the approximation of using infinite
buffer sizes can be safely assumed as suggested by [9].

B. Complex VN-Supporting Router

In the previous section we considered the model of a simple
router as found in the contemporary Internet infrastructure.
However, recent trends from router vendors have shown that
high-performance routers with multi-core processors are being
developed that are capable of operating well in an environment
supporting VNs [11], [12]. Furthermore, sophisticated schedul-
ing and management techniques are studied to improve the
performance of off-the-shelf hardware to act as sophisticated
routers [13], as in the OpenFlow project [14]. Let us now
extend the previously discussed simple router model to provide
a generalized framework for modeling more complex multi-
core routers. We follow in general the structure as proposed
by the VERA architecture [1], however, with our focus more
on the general modeling aspects rather than on specific details
of flow or packet classification or implementations.

We now consider an extension of the model we have
discussed in the previous section and which is shown in
Fig. 2. Again, the router receives packets on its input line
cards which may originate from traffic of different VNs having
different traffic characteristics. While, in the simple model the
minimal delay d0 only corresponds to the processing time of
the incoming packets at the line cards, we also include now in
the extended model that d0 contains the delay from the packet
classifier, which separates the packets from individual flows to
its corresponding VNs. Since classification can be performed
at a very high processing speed due to the CPU capabilities,
it can be included in the approximation within the d0 delay.

Figure 3 shows for example 3 VNs, which operate each in
an isolated environment and each VN has an input and output
buffer, as well as VN-specific processing delay d2. This delay
may be different depending on the functionality of processing
required at each VN as previously discussed. Depending on
the application-specific requirements, each VN may also work
with different packet sizes and scheduling disciplines, see
Fig. 3, where the VNs for video and voice traffic use EDF
(earliest deadline first) scheduling, and the best-effort web



traffic uses FIFO. Note, however, that these are only arbitrary
examples shown here and many further combinations with
different processing times d2 may be possible.

In the ideal case of having a complete separation of VNs,
each output port could be switched over an own optical wave-
length, providing perfect isolation among the VNs. However,
in the currently predominant case of using electrical line cards,
the traffic must be again multiplexed to use the common
output port. This is performed by a scheduler that inserts the
packets into the router output queue. We assume here also
that the delay due to this scheduler can be neglected due to its
computational speed. Finally, the bottleneck lies again at the
output queue of the router, where we have in analogy to the
model in Section III-A the delay at the output line card of d1.

IV. NUMERICAL RESULTS FOR EXAMPLE SCENARIOS

We now discuss simulation results from example scenarios
with n = 3 different VNs, each dedicated to video, voice, and
web traffic, respectively. First we consider the simple router
model and illustrate the influence of the delays on the sojourn
time of packets by approximations using M/G/1/∞ queues.
Then, we discuss simulation results of the simple model and
our proposed model in the presence of the different traffic
types from each VN to illustrate the general behavior of each
system and characterize their performance.

A. Lower and Upper Bounds of Packet Sojourn Time

We compare the simple router model with an M/G/1/∞
queueing model to find lower and upper bounds on the sojourn
time. For the lower bound, we ignore the delays of the packets
before being queued due to the input line cards. Thus, we only
consider the processing time of packets in the output queue.
The average service time E [H] of a packet is the ratio of the
average packet size E [S] and the processing capacity c1.

E [H] = E [S/c1] =

n∑

i=1

λi∑n
j=1 λj

E [Si/c1] (1)

The average waiting time E [W ] of a packet takes into account
the second-order moment E

[
H2
]

of the service time which is
computed in a similar way to Eqn. (1). It is given as

E [W ] =
λE
[
H2
]

2 (1− ρ) (2)

with the system load ρ = λE [H] of the M/G/1/∞ system.
The mean packet sojourn time E [D] simply follows as

E [D] = E [W ] + E [H] . (3)

For the upper bound of the sojourn time, we consider a
M/G/1/∞ waiting queue with service time H = d0(S) +
d1(S). The formal derivation of the upper bound of the mean
sojourn times follows similar to Eqns. (1-3).

Figure 4 shows the average sojourn times of packets through
the router for different normalized load factors θ and compared
to the upper and lower bound values. It can be seen that the
lower bounded system significantly underestimates the current
sojourn time of packets, since the additional delay before a

1 2 3 4 5 6 7
10−2

10−1

100

101

normalized system load

m
ea

n 
so

jo
ur

n 
tim

e 
[m

s]

 

 
M / G(d0+d1) / 1
simple router model
M / G(d1) / 1

for higher load
system is unstable

Fig. 4. Estimating of the mean packet sojourn time in simple router model

TABLE I
SIMULATION SETTINGS FOR THE SIMPLE ROUTER MODEL

VN 1 VN 2 VN 3
type of traffic video voice best effort

number of users Ni 10 50 100
packet size Si [kb] 12 0.9 6.16

bandwidth per user Ri [kbps] 1000 30 1

packet is queued heavily influences the system’s behavior. On
the other hand, the upper bounded model overestimates heavily
the actual model in higher load scenarios, as the influence of
the additional delay d0 of packets diminishes when the packets
are waiting for longer than d0 in the output queue of the router.

B. Performance of the Simple Model with Multiple VNs

We now investigate the performance of both router models
as discussed in Section III. In particular, we consider the case
of having n = 3 VNs, which are each dedicated to applications
with different traffic characteristics. The following results only
serve the purpose of investigating the basic behavior of each
system and should be therefore regarded as toy model, since
we are only considering a single router. In order to fully
evaluate the performance of the VN architecture, we need to
consider end-to-end flows with several interconnected routers.

The traffic profile of the considered VNs is shown in
Table I. Each application i has different number of users
Ni, packet sizes Si, and bandwith Ri required per user. The
arrival rates λi are computed over the number of users and
capacity per user, i.e., λi = θ NiRi/Si for i = 1, 2, 3, with
the normalized load factor θ. The input delays d0 are set
depending on the packet size for each class as d0,i = Si/c0,
where c0 = 300Mbps is the processing capacity at the input
links and the delays at the output buffer are d1,i = Si/c1 with
c1 = 150Mbps. The total buffer size is set as B = 3.75Mbit.
We performed 10 simulation runs with 104 packets generated
per simulation, and averaged over the mean values, coefficient
of variation, and skewness of the packet delay distribution.

Figure 5 shows the results from the simulation runs for
each VN in terms of the statistics of the packet sojourn time
distribution as function of the system load. In Fig. 5(a), the
mean sojourn time is plotted over the normalized system load
θ. We can see that all curves show a similar behavior. When
the system is only lightly loaded, the mean sojourn time is



1 2 3 4 5 6 7
10

−2

10
−1

10
0

normalized system load

m
ea

n 
so

jo
ur

n 
tim

e 
[m

s]

 

 

video traffic

voice traffic

web traffic

(a) Mean sojourn time

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

normalized system load

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

 

 

video traffic

web traffic

voice traffic

(b) Coefficient of variation

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

normalized system load

sk
ew

ne
ss

 

 

video traffic

voice
traffic

web traffic

(c) Skewness

Fig. 5. Influence of system load on packet sojourn time for simple model

mostly influenced by the packet size of each traffic type with
voice traffic having a shorter sojourn time than video or best
effort traffic. However, once the load increases, the system will
become less able to handle all traffic and the average sojourn
time increases exponentially. Under highly loaded conditions
(θ > 5) the sojourn time of the different traffic classes is nearly
same. It should be noted that for the considered scenarios with
θ ≤ 7, the system is not overloaded. In particular, no packets
get lost due to the limited buffer size B.

In Fig. 5(b), we show the coefficient of variation for all
three traffic types and can see that video traffic has the lowest
variance and voice traffic the highest value due to their packet
sizes. As the load increases, the coefficient of variation of
the packet sojourn time distribution becomes the same for
all traffic types and is actually reduced since now all packets
must wait in the queue. Figure 5(c) indicates always a positive
skewness. In the case of best effort web traffic there is almost
no skewness in the sojourn time distribution, whereas the other
traffic classes have initially a much higher skewness in lightly
loaded systems. Once the system has to carry more high load,
however, all traffic classes show nearly the same skewness.

In summary, Fig. 5 illustrates the need for isolation when we
are dealing with multiple different traffic types competing for
the same resources. As load increases, the influence from the
individual characteristics of each traffic type diminishes and
jitter is reduced since all packets, even small ones, are queued.
This results in an exponential increase in packet delays.

C. Complex Multi-Core Router to Support VNs

In order to provide a fair comparison between the multi-
core and simple router model, we need to consider both
systems under nearly equal conditions. Since we now have
the processing delay d′1 at the output queue in the simple
model split up into 2 parts (d1 and d2) in the new model,
the parameter settings for comparing the packet delays in both
systems must be set accordingly.

For the Equal Service Time (EST) settings, we assume the
same overall delays for the simple router and the complex
router case. In both scenarios, we keep the same d0, however,
we now have d′1 = d1 + d2, where d′1 refers to the values we
used for the simple router. The overall delays introduced by the

processing within the system, with the exception of queuing
delays, remain the same. On the other hand, for the Equal
Capacity (ECP) settings, we again consider that the input
delays d0 remain the same, however, the processing capacity
at the output queue is being chosen appropriately. For c′1
corresponding to the processing capacity of the simple router
model, we now have d1 = 1/c′1 = 1/c1 + 1/(n c2). Thus, the
overall processing capacity at the output buffer remains same.

The scheduler operates with a prioritization ratio of 3:2:1
between video, voice, and web traffic, however, further exper-
iments not included in this paper indicated also a very similar
behavior in the case of equal prioritization. The same number
of simulation runs and packets per simulation were performed
as in Section IV-B.

1) Mean Sojourn Time of Packets: We first investigate the
mean sojourn time of packets by comparing each traffic class
independently for both parameter settings EST and ECP with
the results for the simple router. Figure 6 shows the results
for video, voice, and web traffic, respectively. The isolation of
each traffic type and the inclusion of scheduling results in a
drastic reduction of the mean sojourn time for both parameter
settings EST and ECP compared to the simple router case.
The EST parameters result always in a smaller mean packet
delay than ECP, but both curves do not show the exponential
increase that can be observed in the simple router case. This is
mainly caused through an implicit prioritization by scheduling.
The graphs in Fig. 6 show that by separating the processing
and scheduling of the different traffic classes, it is possible
to achieve significantly smaller packet delays than the model
with only a single processing unit, especially at high load.

2) Standard Deviation of Packet Delays: Since the mean
values of the packet sojourn time remain very small, the jitter
in the packet delays can be better observed in the standard
deviation than in the coefficient of variation, as we did in
the case of simple router. In Fig. 7, the standard deviation of
the packet delays for all traffic types and parameter settings
EST and ECP are shown together with the corresponding
curve for the simple router model. Again we can see that the
complex router model with isolation significantly outperforms
the simple router model and the complex router model is more
robust when dealing with high load scenarios.



1 2 3 4 5 6 7
10

−1

10
0

normalized system load

m
ea

n 
so

jo
ur

n 
tim

e 
[m

s]

 

 

simple router

VN router (ECP)

VN router (EST)

simple router

VN router (ECP)

VN router (EST)

(a) Video traffic

1 2 3 4 5 6 7
10

−2

10
−1

10
0

normalized system load

m
ea

n 
so

jo
ur

n 
tim

e 
[m

s]

 

 

simple router

VN router (ECP)

VN router (EST)

(b) Voice traffic

1 2 3 4 5 6 7

10
−1

10
0

normalized system load

m
ea

n 
so

jo
ur

n 
tim

e 
[m

s]

 

 

simple router

VN router (ECP)

VN router (EST)

(c) Web traffic

Fig. 6. Mean sojourn time of packets in complex router model

1 2 3 4 5 6 7
10

−2

10
−1

10
0

normalized system load

st
an

da
rd

 d
ev

ia
tio

n 
[m

s]

 

 
VN router (EST)
VN router (ECP)
simple router

video, VN

voice, VN

web, VN
webvoice

video

Fig. 7. Standard deviation for simple router and VN router

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we provided a queuing theoretical framework
for modeling and evaluating the performance of a multi-
core VN router. We compared our model through simulations
with a monolithic router without dedicated support for Virtual
Networks and showed basic characteristics for scenarios with
3 different VNs accommodating different traffic types. In
general, the isolation of VNs provides benefits by reducing
delay and jitter.

The concept of network virtualization has emerged in test-
bed research such as PlanetLab, VINI [15], G-Lab [16], and
GENI [17] to design, develop, and deploy innovative network
services where each experiment is conducted in an execution
environment built on top of a virtual network with both
computational and network resources isolated from those of
the others. However, just as ARPANET started as a test-
bed decades ago has grown into the current Internet, an
indispensable social communication infrastructure, we foresee
that test-beds of today may eventually form a foundation of
a future network architecture. For example, the concept of
network virtualization developed in the test-beds may allow us
to embed a role of test-beds inside the network architecture.
We could experimentally run our newly invented disruptive
technologies on the resources completely isolated from those
for the production network. This would free us from the
ossification of the Internet reported in [18] and facilitate

building a continuously evolvable network architecture, where
multiple independent architectures coexist in isolated virtual
networks. One could migrate to any successful architecture
from outdated or defective ones if such a concept becomes
the norm.

REFERENCES

[1] S. Karlin and L. Peterson, “VERA: an extensible router architecture,”
Computer Networks, vol. 38, February 2002.

[2] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and T. Schoo-
ley, “Evaluating Xen for router virtualization,” in Proc. of ICCCN’07,
pp. 1256–1261, 2007.

[3] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Fairness issues in software virtual routers,” in Proc. of ACM PRESTO
’08, (New York, NY, USA), pp. 33–38, ACM, 2008.

[4] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Towards high performance virtual routers on commodity hardware,” in
Proc. of ACM CoNEXT ’08, 2008.

[5] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming
the internet impasse through virtualization,” IEEE Computer, vol. 38,
pp. 34–41, April 2005.

[6] PlanetLab Consortium, “http://www.planet-lab.org/.”
[7] N. Chowdhury and R. Boutaba, “Network virtualization: State of the art

and research challenges,” IEEE Communications Magazine, April 2009.
[8] J. He, R. Zhang-Shen, Y. Li, C.-Y. Lee, J. Rexford, and M. Chiang,

“DaVinci: Dynamically adaptive virtual networks for a customized
internet,” in Proc. of ACM CoNEXT ’08, (Madrid, Spain), Dec. 2008.

[9] N. Hohn, D. Veitch, K. Papagiannaki, and C. Diot, “Bridging router
performance and queuing theory,” ACM SIGMETRICS Perf. Eval. Rev.,
vol. 32, pp. 355–366, June 2004.

[10] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
ACM SIGCOMM Comp. Commun. Rev., vol. 34, pp. 281–292, Oct. 2004.

[11] G. Liao, D. Guo, L. Bhuyan, and S. R. King, “Software techniques to
improve virtualized I/O performance on multi-core systems,” in Proc.
of ACM/IEEE ANCS’08, (San Jose, CA), November 2008.

[12] Y. Qi, Z. Zhou, B. Yang, F. He, Y. Xue, and J. Li, “Towards effective
network algorithms on multi-core network processors,” in Proc. of
ACM/IEEE ANCS’08, (San Jose, CA), November 2008.

[13] Q. Ye and M. H. MacGregor, “Adaptive scheduling to maximize nic
throughput in a cots router,” in Proc. of ACM/IEEE ANCS’08, (San
Jose, CA), November 2008.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” whitepaper, OpenFlow Consortium, 2008.

[15] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In vini
veritas: realistic and controlled network experimentation,” in Proc. of
ACM SIGCOMM ’06, (New York, NY, USA), pp. 3–14, ACM, 2006.

[16] German Lab Project, “http://www.german-lab.org.”
[17] GENI, “http://www.geni.net/.”
[18] National Research Council, “Looking over the frence at networks: A

neighbor’s view of networking research.” National Academy Press, 2001.
Washington DC.


