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Abstract—Churn of revenue-generating and dissatisfied users
has become a major point of concern for service providers
and network operators. As services rely on interconnecting
networks, service performance and thus user satisfaction de-
pend on network performance. Consequently, it is of outmost
importance to understand the relationships between user per-
ception, captured by quantitative Quality of Experience (QoE)
parameters, and network performance, described by Quality
of Service (QoS) parameters. This paper provides insights into
fundamental relationships between QoE and QoS, formulated
as partial differential equations describing changes in QoE with
respect to specific QoS parameters. A set of illustrating examples
is given. Furthermore, the different impacts of provisioning and
degree of success or failure of delivery on QoE are discussed,
leading to QoE provisioning-delivery hysteresis. This hysteresis
provides a striking motivation for employing elastic adaptation
mechanisms to available resources instead of suffering from
uncontrolled data loss.

I. I NTRODUCTION

In times of fierce competition, the users’ strong position in
the ever-growing market of services on one hand and limited
resources on the other hand keeps increasing providers’,
operators’ and researchers’ interest in performance issues.
The user has moved into the center of the interest, as she
is finally generating revenue for providers (and operators). If
user perception of a service is besmirched and a competing
serviced seems to offer better priceworthiness, the user churns,
which means loss of revenue for the overgiven provider.
The latter finds itself heckled between the users’ economic
power on the one hand and cost, capacity and environmental
limitations on the other hand. It is thus of outmost importance
to understand the relationship between user perception and
performance characteristics of the service provisioning through
networks. As services rely on interconnecting networks, ser-
vice performance and thus user satisfaction depend on network
performance [1]. Network performance is thus one of the
ultimate enablers or disablers of user perception and readiness
to pay for a service.

Originally, the concept ofQuality of Service(QoS) was to
characterise the “degree of satisfaction of a user of the service”
[2]. Later on, the provisioning of QoS became business
of the network, trying to integrate or differentiate between
traffic streams as integral part of services, typically targeting
to provide them with “better-than-best-effort” service. QoS

parameters nowadays relate to the network’s transport capa-
bilities. In the meantime, the notion ofQuality of Experience
(QoE) arised, which according to [3] may be defined as
“overall acceptability of an application or service as perceived
subjectively by the end-user”. The main difference between
QoE and QoS is the focus, namely user versus network.
However, end-to-end QoS is an important enabler for QoE.
This motivates the need for investigating relationships between
user-oriented QoE and network-oriented QoS parameters. In
particular, it is of interest to gain insight into the principle
ways in which QoS parameters affect the quantitative parts of
QoE, e.g. ratings on a linear scale given by user themselves
or on behalf of users by an algorithm.

Given this background, this paper presents a fundamental
and systematic investigation of relationships between QoEand
QoS. It builds upon recently discovered differential equations
[4]–[6] that motivate the frequently observed appearance of
“natural” functions, i.e. exponentials and logarithms [1], [4],
[7], [8]. So far, describing QoE by differential equations is
still in its infancy, and also, a systematic catalogisationof
so-far known differential equations is missing. This paper
aims at closing that gap. Doing so, it takes into account
different natures of QoE and QoS parameters. The quantitative
rating related to QoE considered in this paper can be related
to the degree of usersatisfaction[4], [8] of dissatisfaction
[7], while QoS can be given as measure forfailure [1],
[4], successor resources[7]. It will be shown that these
different interpretations of measures have a major impact on
the shape and understanding of the fundamental relationsips.
In particular, for elastic applications, the impact of resources
(such as link capacity) on QoE differs substantially from
the impact of success or failures in packet delivery (such
as losses). Our quantification of this difference helps to gain
a deepened understanding of the potential that elasticity of
network traffic has for users and providers, and in which way
this elasticity can be employed to find a good balance between
user satisfaction and network usage.

The remainder of the paper is structured as follows. Sec-
tion II introduces a set of key notions to be used throughout the
paper. Section III contains a catalogue of differential equations,
expressing fundamental relationships between QoE and QoS,
and Section IV illustrates these basic forms by published
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examples. Section V demonstrates the important difference
between the impacts of resources and failures on QoE for
elastic traffic. Section VI concludes the paper and presents
future work.

II. N OTIONS

In this section, we introduce a couple of notions of im-
portance for the remainder of the paper. Regarding the QoE
rating, we distinguish between

• Satisfaction ratingQoE that grows with the degree of
user satisfaction, e.g. mean opinion scores about the
overall quality of the web service [1];

• Dissatisfaction ratingQ̄oE that grows with the degree of
user dissatisfaction, e.g. the ratio of web browsing users
canceling a web session due to a bad overall quality [7].

Both QoE-related ratings are obtained either by observing or
asking the user (typically on a linear scale between 1 = worst
and 5 = best, cf. [1], [9]), by an algorithm on behalf of the
user (e.g. the Perceptual Evaluation of Speech Quality, PESQ
[10], subsequently transformed into Mean Opinion Scores,
MOS [9], [11]), or by measuring user reactions such as
e.g. abandonning sessions [7] or varying the session volume
[1].

Regarding the QoS measures, we distinguish
• Failure measureQ̄oSf that grows with degree of failures

or problems. Most QoS parameters are of this kind and
related to packet delivery problems. Prominent examples
areloss ratiosL, jitter measures and reordering ratios [5].
We will even include waiting times [1], [8];

• Success measureQoSs that grows with the degree of
success with using a resource. Examples are availability
measures – often given in the numbers of nines (e.g. four
nines means 99.99 % availability) [12], [13] – or the
packet success ratio

S = 1− L , (1)

which is a rather uncommon measure so far, but will be
helpful in our study;

• Resource measureQoSr that grows with the provided
resources, e.g. the provisioned or the yieldedgoodputor
throughput[1], [7].

The QoS measures are obtained from measurements, and the
need for their distinction is motivated by the different cases
contained in the next section.

III. B ASIC DIFFERENTIAL EQUATIONS

In this section, we review two kinds of differential equations
that are underlying exponential and logarithmic relationships
between QoE and QoS. The next section will contain some
illustrative examples. In order to express the fact that QoE
depends on many non- and technical parameters, partial dif-
ferentiations (∂) are used, and the parameter on which QoE
depends is explicitly given as an argument of the correspond-
ing function.

In the sequel, we assumeα ≥ 0, β ≥ 0 and γ ≥ 0;
although these coefficients are used in all formulae, they do

not necessarily have the same value(s). To limit theQoE-
result to the correct area, corresponding max/min operators
might need to be employed. DenoteQoE⋆ as the corrected
value reflecting satisfaction, we arrive at

QoE⋆ = min{max{QoE,QoEmin}, QoEmax}. (2)

A corresponding relationship applies for the dissatisfaction
rating (Q̄oE). For the sake of readability, we do not explicitly
mention the corrected valueQoE⋆ for the QoE–QoS relation-
ships in the remainder of the paper.

A. Exponential relationships

Consider the following relationship betweensatisfaction
rating andfailure measure[4], [6]:

∂QoE

∂Q̄oSf
= −γ(QoE − α) . (3)

Its solution is of the form

QoE(Q̄oSf) = α+ β exp(−γQ̄oSf) . (4)

It starts atα + β in the optimal case of no failure and tends
asymptotically towardsα as the disturbance grows.

Equation (3) communicates that the decline of the QoE
value with respect to QoS failure is a function of the current
level of QoE. This means that when the QoE is high, a certain
additional QoS disturbance has much more effect than if the
QoE is already quite low.

ReplacingQ̄oSf by QoSs ∼ −Q̄oSf leads to a relationship
betweensatisfaction ratingandsuccess measure:

QoE(QoSs) = α+ β exp(γQoSs) , (5)

which is the solution of
∂QoE

∂QoSs
= γ(QoE − α) . (6)

Here, we face a curve whose gradient is proportial to the
attained level of satisfaction.

A second type of relationships relatesdissatisfaction rating
and theresource measure[6]:

∂Q̄oE

∂QoSr
= −γ(Q̄oE − α) , (7)

which similarly to (6) yields

Q̄oE(QoSr) = α+ β exp(−γQoSr) , (8)

whereα denotes the asymptote for optimal conditions. Simi-
larly to (3), the dissatisfaction decresases with respect to the
QoS improvement due to increased resources in proportion to
the current rating.

ReplacingQ̄oE by QoE ∼ −Q̄oE leads to a relationship
between satisfaction rating and resource measure:

QoE(QoSr) = α− β exp(−γQoSr) , (9)

the solution to
∂QoE

∂QoSr
= −γ(α− Q̄oE) , (10)

The curve (9) is rising and approaches its asymptoteα as the
conditions get optimal.



B. Logarithmic relationships

Let us now consider a relationship betweensatisfaction
rating and failure measure[8] of the type

∂QoE

∂Q̄oSf
= − β

Q̄oSf
, (11)

which yields

QoE(Q̄oSf) = α− β
∣∣log(Q̄oSf)

∣∣ . (12)

The notation of (11) with absolute value bars has been chosen
to ensure the assumptionβ > 0 even forQ̄oSf < 1. Obviously,
the underlying differential equation (11) relates the change of
the satisfaction to the reciprocal QoS failure, e.g. a waiting
time [8]. Similarly to (4), the curve is falling, indicatinga
slower decrease of satisfaction as failures and discomfortgrow.

The other logarithmic relationship of interest quantifies
satisfaction ratingas a function of theresource measure. From

∂QoE

∂QoSr
=

β

QoSr
, (13)

we arrive at

QoE(QoSr) = α+ β |log(QoSr)| . (14)

Again, we observe that the growth of the rating is proportional
to the reciprocal value of the QoS parameter itself instead of
the QoE parameter as in the exponential cases described above.
This means that the better the QoS, the smaller the effects of
an additional improvement. The shape of the curve resembles
that of (9).

IV. EXAMPLES

This section illustrates some relationships between the user-
oriented QoE and the network-oriented QoS for two different
service types, Voice-over-IP (VoIP) and web browsing, which
are available in literature. In Section IV-A, the level of
satisfactionQoE of a VoIP user is formulated in dependence
of the level of disturbancēQoSf . In particular, we consider the
impact of random packet losses as well as the impact of re-
ordering on packets on the voice quality by means of the PESQ
algorithm whose results are mapped to mean opinion scores
according to [11]. In contrast to the UDP-based transport of
data, Section IV-B considers elastic web traffic transmitted
via HTTP/TCP and reconsiders the results from [1], [6]–[8]
under the view point of QoE and QoS. To be more precise,
the functional relationships between i)QoE (MOS) andQ̄oSf

(session time),̄QoSf (loss ratio), as well asQoSr (goodput);
and ii) Q̄oE (cancellation rate) andQoSr (bandwidth) are
depicted.

A. VoIP

For VoIP, exponential relationships are seen in [5], [6]. For
the quantification of the QoE, the Perceptual Evaluation of
Speech Quality (PESQ) method is used which is described in
ITU-T P.862 [10]. The resulting PESQ value is mapped into
a subjective MOS value according to ITU-T P.862.1 [11]. As
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measurement
exponential: R = 0.998
 f

exp
(x) = 3.010⋅exp(−4.473⋅x)+1.065

Fig. 1. Measurement results and obtained mapping function between packet
loss ratio and QoE for the iLBC codec.

’failure’ QoS parameter̄QoSf , the packet loss ratioL and the
typep reordered ratio are considered.

• packet loss ratiōQoSf = L:
QoE(L) = 1.065 + 3.010 exp(−4.473L/%);

• typep reordered ratioQ̄oSf = p:
QoE(p) = 1.411 + 2.482 exp(−10.453p/%).

The relationshipQoE(L) is illustrated in Figure 1, which
shows a good match (correlation coefficientR = 0.998)
between the measurement results and the exponential function
QoE(L). According to [14], the exponential functionQoE(p)
matches again well the measurement results with a correlation
coefficient ofR = 0.993.

B. Web browsing

Regarding interactive traffic, the functional relationship be-
tween QoE and QoS is examined for web browsing based on
three different examples. In the first example, the dependency
between mean opinion score (QoE) and weighted session
time (Q̄oSf ) is analysed. It turns out that both logarithmic
[8] and exponential [6] models are available for the same
dataset. The second example is the only one which considers
the dissatisfaction ratinḡQoE. In [7], the cancellation rate
of web browsing sessions in dependence of the bandwidth of
a user is modelled with a logarithmic function, while in [6]
an exponential relationship is derived using the same dataset.
The third example [1] investigates the impact of bandwidth
and loss ratio on the mean opinion scores of the users which
are described via a logarithmic function and an exponential
function, respectively.

1) Mean opinion scoresQoE vs. weighted session time
Q̄oSf : The ITU-T Rec. G.1030 [8] applies perceptual models
to gauge user satisfaction for web-browsing applications.As
QoS parameter response and download times were used which
were measured in the network or calculated from the HTTP
transaction times. In the laboratory experiments, the response
and download times were manipulated and the users were
asked to evaluate the perceived quality according to the five-
point MOS scale. The web session consisted of three steps,
reflecting a typical search-for-information situation involving
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logarithmic: R = 0.954
 f

log
(x) = −1.299⋅ln(x)+4.379

exponential: R = 0.966
 f

exp
(x) = 4.298⋅exp(−0.347⋅x)+1.390

Fig. 2. Measurement results for web browsing according to ITU-T Rec.
G.1030 [8] and comparison of logarithmic and exponential model.

(a) requesting a search page; (b) typing and submitting a
query; and (c) retrieving the results. As a result of [8], it
was found out that for some network settings, the coefficient
of correlation between session time and MOS is too low.
Therefore, the model was extended and the weighted session
time was used as̄QoSf parameter. The weighting factors of the
different request and response phases for (a)-(c) are calculated
such that correlation between the weighted session time and
the MOS is maximized.

In [8], the relationship between MOSQoE(T ) and
weighted session timēQoSf = T is described with a loga-
rithmic function, while in [6] an exponential relationshipis
identified on the same measurement results:

• logarithmic model [8]:
QoE(T ) = 4.379− 1.299 log(T/s);

• exponential model [6]:
QoE(T ) = 1.390 + 4.298 exp(−0.347T/s).

Both relationships are illustrated in Figure 2, where the expo-
nential relationship slightly outperforms the logarithmic one
wrt. correlation coefficientR. Each point in Figure 2 represents
the result of a single experiment which is the MOS for the
weighted session time observed in this experiment.

2) Cancellation rateQ̄oE vs. bandwidthQoSr: The second
example stems from [7] and considers the impact of bandwidth
QoS = R on the cancellation ratēQoE. A passive network-
attached sniffing device is used that collected packets traveling
across a specific network link. Afterwards, reverse engineering
to the captured packets is applied in order to get information
about the states of TCP connections and to extract details
of the application layer transactions. The data collector was
installed in a commercial ISP network with public Internet
access.

The cancellation rate of HTTP objects depending on the
delivery bandwidth of that object are analysed for low range
delivery bandwidth up to 120 kbps, since the majority of users
had dial-up connections at that time. In order to determine if
an object is canceled, the object size advertised by the server
and the actual size of the delivered object are compared. Both
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logarithmic: R = 0.938
 f

log
(x) = −0.017⋅ln(x)+0.130

exponential: R = 0.951
 f

exp
(x) = 0.059⋅exp(−0.048⋅x)+0.054

Fig. 3. Measurement results for web browsing taken from Khirman and
Henriksen [7] and comparison of logarithmic and exponential model.

logarithmic and exponential types of relationships between the
cancellation ratēQoE(R) and the delivery bandwidthQoSr =
R are available:

• logarithmic model [7]:
Q̄oE(R) = 0.130− 0.017 log(R/kbps);

• exponential model [6]:
Q̄oE(R) = 0.054 + 0.059 exp(−0.048R/kbps).

Every point in Figure 3 represents the average cancellationrate
for a bin of 7,461 objects with a similiar delivery bandwidth.
It can be seen again that the exponential relationship slightly
outperforms the logarithmic one.

3) Mean opinion scoresQoE vs. goodputQoSr and loss
ratio Q̄oSf respectively: A third example [1] considers the
impact of (a) the goodputQoSr = R which is defined
here as throughput on application layer and (b) the loss ratio
Q̄oSf = L. Thus, theQoE is modelled regarding a resource
measure and a failure measure, respectively. In the study [1],
experiments were performed in a laboratory environment in
which random packet losses were introduced into the network.
For the experiments, the actual loss ratio and the goodput on
application layer were measured. In addition, the users were
asked to provide their subjective responses abouth the service
on the MOS scale from 5 to 1. The following relationships
have been found:

• goodputQoSr = R on QoE:
QoE(R) = 1.15 + 1.50 ln(R/Mbps) ;

• loss ratioQ̄oSf = L on QoE:
QoE(L) = 5.50 exp(−0.2L/%) ,

according to [1]. Figure 4 illustrates the QoE in terms of
MOS for web traffic depending on the goodputR and the
loss ratioL, respectively. In particular, for any point(L,R),
the user rating is equal, i.e.QoE(L) = QoE(R), which is
indicated by the color of the curve. This allows to derive a
relationship between the loss ratio and the goodput which
lead to the same user experience, i.e. the same QoE value.
It holds R(L) = −5 ln

(
23
110 + 3

11 ln (L)
)
. These particular

relationships between QoE and QoS will be used in the next
section to discuss the QoE hysteresis.



1 2 3 4 5 6 7 8

2

4

6

8

10

12

packet loss ratio L [%]

ba
nd

w
id

th
 R

 [M
bp

s]

 

 

For any point (L,R),
the user rating is equal: QoE(L)=QoE(R).
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Fig. 4. QoE in terms of MOS for web traffic depending on goodputR and
loss ratioL according to [1], respectively.

V. QOE PROVISIONING-DELIVERY HYSTERESIS

In this section, we compare the impact of provisioning (14)
with the impact of problems (5) on QoE satisfaction rating. We
consider the case of an interactive service, namely HTTP/TCP-
based web surfing. TCP-based applications are said to be
elastic, as they can adapt to network congestion in two ways:
(a) via increased round-trip times (RTT), delaying the delivery
of acknowledgements; (b) via losses, causing TCP to reduce
the window size. Both measures reduce TCP’s sending rate
and thus decrease the application-perceived throughputR.
This increases the user-perceived response time, which in turn
decreases the satisfaction rating. However, while option (a)
allows for a potentially decent adaptation of the sending speed
to the capacity of a loss-free bottleneck, option (b) typically
results in a quite heavy impact when TCP starts reacting to
losses and reduces the window size so that response times
explode. Reference [1] provides a set of formulae quantifying
the impact of loss on response times and application-perceived
throughput, respectively.

Define the resource-related satisfaction rating function

QoEr(x) = αr + βr |ln(x)| (15)

according to (14), and the success-related satisfaction rating
function

QoEs(x) = αs + βs exp(γsx) (16)

according to (5). Choosing a common parameterx as com-
bined relative resource and success parametermakes both
QoE formulae comparable inx. We define the matching
betweenx and the actual QoS-parameter (throughputR for
QoEr and success rateS for QoEs) such thatQoEr(1) =
QoEs(1) ≡ QoEmax and thatx = 0 for R = 0 andS = 0,
which leads us to

x =





R exp
(

αr−QoEmax

βr

)
for QoEr

S
γs

ln
(

QoEmax−αs

βs

)
for QoEs



 . (17)

We observe that both functions rise monotonically inx,
whereQoE′

r(x) > 0; QoE′′
r (x) < 0; QoE′′′

r (x) > 0 (con-

cave) andQoE′
s(x) > 0; QoE′′

s (x) > 0; QoE′′′
s (x) > 0 (con-

vex). However, due to the above properties of the derivates,
we can conclude

QoEr(x) ≥ QoEs(x) for x ∈ [ε, 1] , (18)

where ε < 1 denotes the intersection pointQoEr(ε) =
QoEs(ε). Equation (18) expresses that, for sufficiently large
x, the resource-related satisfaction rating is found above the
success-related satisfaction rating, an effect which we hence-
forth call QoE provisioning-delivery hysteresis. It implies that
starting from optimal QoE conditions (x = 1), a reduction
of provisioning to a sharex < 1 means better QoE than a
reduction of success to the same valuex. In practice, this
means that it isbetter to reduce provisioning e.g. by 5 %, for
instance through traffic shaping or flow control, than to face
those 5 % throughput reduction as uncontrolled loss because
of overload.

We illustrate the QoE hysteresis in Figure 5 based on
the numerical example from section IV-B. After a variable
transformation ontox ∈ [0, 1] as described, the corresponding
formulae for resource-related and success-related satisfaction
rating functions read as follows:

QoE⋆
r(x) = min{5 + 1.5 ln(x), 5} ; (19)

QoE⋆
s(x) = max{1, 1.13 · 10−8 exp(19.91x)} , (20)

which are plotted in Figure 5. Starting from ideal conditions
(QoE = 5 for x = 1), we consider five procent of reduction
in either provisioning or success. The valueQoEr(0.95) =
4.92 communicates hardly any loss of perceived quality when
provisioning is reduced; however,QoEs(0.95) = 1.85 points
at quite bad perceived quality.

Obviously, the strength ofelastic traffic, protocols and
applications is to adapt throughput carefully to the conditions,
while still yielding quite high QoE most of the time. TCP is
actually offering this graceful degradation feature, as itadapts
to reduced capacities via delayed acknowledgements. But as
soon as significant loss appears, which is some kind of forced
network-level throughput reduction, TCP reacts and lowersthe
application-perceived throughput significantly. Thus, a small
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Fig. 5. Numerical example for the QoE hysteresis.



but uncontrolled change of the success parameterS might
entail a quite large change of user satisfaction. On the other
hand, if a graceful reduction of the provisioningR was
possible, it would help to still keep the QoE high as long
as losses can be avoided.

The latter insights also apply tostreamingservices. The
transport protocol UDP is not elastic by itself, and losses,
jitter and reordering have quite strong impacts on perceived
quality, cf. Section IV-A. Capacity mismatches in the sense
that the provisioned bandwidth drops below the bandwidth
required by the stream will make the QoE drop quickly in
a way that resembles to the lower hysteresis branchQoEs

in the example above. The solution to this dilemma is to
make the application’s generation of traffic elastic in the way
that application settings are changed (e.g., reducing colour
depth, number of frames per second, etc.), cf. [15], [16]. By
carefully adapting the application’s settings to the conditions
in the network, a behaviour qualitatively similar to that ofthe
upper hysteresis branchQoEr is expected. The quantification
of these considerations is planned for future work.

VI. CONCLUSIONS ANDOUTLOOK

Motivated by the need for insights into systematic rela-
tionships between quantitative QoE and QoS parameters, we
have presented a catalogue of partial differential equations,
relating (dis-)satisfaction QoE ratings with failure-, success-
and resource-related QoS measures. One set of differential
equations expresses the partial differentiation of a QoE param-
eter with respect to the QoS measure of interest as a function
of the current level of the QoE, which can be considered as a
user-centric approach and leads to an exponential relationship
between QoE and QoS. In contrary, the other set of differential
equations expresses that partial differentation as function of
the reciprocal QoS value, which can be considered as network-
centric approach and yields a logarithmic relationship between
QoE and QoS. Despite of the different approaches, similar
shapes of the resulting QoE curves as function of the QoS
can be observed. This is amongst others illustrated by a set of
examples, as found in the literature.

We finally turned our attention to the different impacts
of resources and success/failure of delivery on QoE. It was
quantified how an elastic application (such as TCP-based
surfing) makes the user react upon a reduction of capacity
by some percent on one hand, and upon some percent un-
controlled loss on the other hand. The difference between
two cases were found to be hair-raising in the sense that a
slight reduction of provisioning goes hardly unnoticed, while
loss in the same order of magnitude causes TCP throughput
to drop and thus response times to grow beyond feasibility.
Observation of this QoE hysteresis effect teaches us to try
to make applications as elastic as possible in order to avoid
delivery problems. It is definitely recommended to ride the
upper curve of the hysteresis in a controlled way than to get
cast onto the lower curve because of bad network conditions.
This strategy applies definitely even for streaming multimedia
traffic, which is currently also deployed successfully by video

portals (e.g. YouTube) in the Internet by means of TCP-based
progressive downloads instead of UDP-based streaming.

Future work will amongst other deepen the analysis of the
presented differential equations, which involves the investiga-
tion of the interpretability of their parametersα, β andγ. Also,
the joint dependencies of quantitative QoE parameters on a
whole set of QoS will need to be addressed beyond the so-far
studied partial differentiation with respect to one singleQoS
parameter at a time. Furthermore, links towards queuing theory
as well as to control theory will be established. In particular,
the found dependencies taking into account QoE hysteresis for
QoE control mechanisms for e.g. video streaming.
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