
ITC-SS21/Copyright 2010 IEICE

Supporting Scalable Video Codecs in a P2P
Video-on-Demand Streaming System

Simon Oechsner, Thomas Zinner, Jochen Prokopetz, Tobias Hoßfeld
University of Würzburg, Institute of Computer Science, Germany

Email: {oechsner|zinner|prokopetz|hossfeld}@informatik.uni-wuerzburg.de

Abstract—There are currently two complementing and
concurrent trends in the Internet. The first is the rise of video
streaming and especially Video-on-Demand (VoD) as the most
popular application for end users, expressed by a continu-
ously increasing amount of video traffic. In this context, P2P
is seen as a promising technology for providing video content
efficiently to the users while reducing the cost for the content
providers. The second trend is the diversification of end user
devices used for watching these videos. This is reflected by the
Scalable Video Codec (SVC) extension to the state-of-the-art
H.264 video codec, which allows for a stream to be separated
into substreams of varying quality and size. In this paper,
we propose and evaluate a P2P VoD architecture based on
the Tribler application which is enhanced to support such a
SVC video. Thus, the proposed system is able to adapt the
video quality on-the-fly to the network situation and access
capabilities of the user devices.

I. INTRODUCTION

In recent studies on the traffic distribution in the In-
ternet, e.g., [1], video streaming and especially Video-on-
Demand (VoD) such as offered by YouTube are shown
to gain more and more popularity. The traffic share of
this application class grows accordingly. However, since
videos in high quality consume a large amount of upload
capacity for streaming, the resources needed to provide a
video service to many users are costly. This is especially
true when a client-server architecture is used to distribute
the content. This problem is shared with traditional content
distribution, i.e., file download. Here, an incorporation of
the end users into the distribution effort can be achieved by
the use of Peer-to-Peer (P2P) technology. Consequently,
P2P is a prime candidate also for efficiently streaming
video content. Clients like Tribler [2] already support
VoD services based on well-known mechanisms from
traditional file-sharing.

In parallel to this development, the number and vari-
ety of end user devices that can play back a video in
acceptable quality has grown. A video may be streamed
to a mobile device connected via UMTS, a laptop in a
WLAN or to a LCD TV with a broadband connection to
the Internet. Current hardware developments like mobile
Internet devices with specialized processors to enable a
fast and efficient decoding of HD videos foster this trend
[3]. However, due to their different capabilities and access
bandwidths, there is no single ideal video stream for all
devices. A mobile device typically has a smaller resolution
and a smaller download capacity, and thus would need a
video stream in a lower quality and with lower bandwidth
demands in comparison to a HDTV connected via DSL or
even FTTH.

To be able to support heterogeneous end user devices,

a content provider might offer the same video in different
levels of quality, resulting in one video stream per version.
A more efficient solution is the recent addition of Scalable
Video Codecs (SVC) [4] to the popular H.264 coding
standard [5]. This codec allows for a separation of a
single source video file into layers which can theoretically
be extracted from the stream with no additional coding
effort. Thus, a device with low access bandwidth can only
download the base layer that is necessary for a playback of
the video, while a device with a good connectivity might
also request enhancement layers for a better quality of the
video.

While approaches and implementations for P2P VoD
with Multi Description Coding (MDC) as well as SVC
live streaming exist, to our knowledge there is currently no
architecture combining SVC with P2P VoD. Therefore, we
propose and evaluate in this paper a P2P VoD system based
on Tribler that supports a SVC video. We consider one of
the scalability dimensions defined in the SVC standard,
namely temporal scalability, and focus on the adaptivity
of the mechanism to different network conditions. To this
end, we conduct a simulative performance evaluation and
observe the effect of different network load situations on
the efficiency of the system.

The rest of the paper is structured as follows. We will
give a short introduction into the background of P2P
VoD systems as well as the SVC standard and review
related work in Section II. In Section III, we will describe
the modifications we made to the Tribler architecture
in order to support a SVC video stream. The model
used for the simulative performance evaluation is covered
in Section IV, while the results of that evaluation are
presented in Section V. Finally, we conclude the paper
in Section VI.

II. BACKGROUND AND RELATED WORK

We will first shortly give an overview on the two major
topics we consider in this paper, namely the H.264/SVC
video codec extension and P2P VoD streaming. Then, we
will review other work done in this field.

A. Background

H.264/SVC The video codec H.264/SVC [6] [4] is
based on H.264/AVC, a video codec used widely in the
Internet, for instance by video platforms (e.g., YouTube,
GoogleVideo) or video streaming applications (e.g., Zat-
too). H.264/AVC is a so called single-layer codec, which
means that different video files have to be provided to
support different end user devices. The Scalable Video

c ©
2
0
1
0

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u
se

s,
in

a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
i-

ti
v
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

2
1
th

IT
C

S
p

ec
ia

li
st

S
em

in
a
r

o
n

M
u

lt
im

ed
ia

A
p

p
li
ca

ti
o
n

s
-

T
ra

ffi
c,

P
er

fo
rm

a
n

ce
a
n

d
Q

o
E

,
2
0
1
0
.

ITC-SS21/Copyright 2010 IEICE

��������	
 � ���� � � �

����������
	

�����
 ����
	

�����
 ����
	

 � �������
	

 � ��
 ����
	

 � ��
 ����
	

�� �������
	

�� ��
 ����
	

�� ��
 ����
	

����� �
 ��� �
 ���

 ��� ��
 � ���� � � �

���

 �

��

Fig. 1. SVC Cube, illustrating the possible scalability dimensions for
a video file

Coding (SVC) extension of H.264/AVC enables the en-
coding of a video file at different qualities within the
same layered bit stream. This includes besides different
resolutions also different frequencies (frames displayed per
second) and different qualities w.r.t. Signal-to-Noise Ratio
(SNR). These can be considered as a special case of spatial
scalability with identical picture size for base and enhance-
ment layers. These three dimensions of enhancements are
denoted as spatial, temporal and quality scalability.

Figure 1 gives an example of different possible scal-
abilities for a video file. The scalable video file can be
watched in three different temporal resolutions (15Hz,
30Hz, 60Hz), three different spatial resolutions (CIF, SD,
HD) and three different quality resolutions (Q0, Q1, Q2).
The left bottom “subcube”, CIF resolution with 15 Hz and
quality Q0, is the base layer which is necessary to play the
video file. Based on this layer different enhancement layers
permit a better video experience with a higher resolution,
better SNR or higher frame rate, respectively. The more
subcubes along any of the three axes are available the
higher the quality in this respect is. If all subcubes are
available the video can be played back in highest overall
quality. If all subcubes within quality Q0 are available, the
video can be played back in HD-resolution with 60 HZ,
but only with a low SNR quality.

P2P VoD Some work exists on mesh-based P2P
overlays utilized for distributing single-layer video content
in an on-demand fashion. In [7], a server-based VoD
streaming system is assisted by BitTorrent clients to reduce
the load on the servers and improve the scalability of the
architecture. The authors of [8] considered the playout
deadline of chunks in the piece selection, enabling a
BitTorrent client to show the video while downloading it.
This was enhanced in Tribler [2], which also uses priority
sets for the chunks that are based on their playback time.
Additionally, Tribler introduced the Give-to-Get (G2G)
peer selection strategy in the unchoking process [9], which
addressed the problem of the missing reciprocity in data
exchange that appears in VoD overlays.

B. Related Work

Since the advent of the SVC extension to the
H.264/AVC codec, some work has been conducted to
include this in a streaming overlay. A live streaming
architecture based on a multicast tree is presented in [10].
It utilizes the substreams of SVC to adapt the content

that is forwarded along the tree to the capacities of the
recipients. In [11], this is extended to an overlay span-
ning a long-haul network and featuring user devices with
different content demands. A number of other works for
scalable P2P streaming exists, which we cannot describe
due to space limitations. However, all of these approaches
implement a live streaming architecture, i.e., a system
where the same content is viewed at roughly the same time
by the consumers. In contrast, we consider a VoD system
here, where peers watch the video at different points in
time. This means that the distribution of the complete
file and therefore the chunk selection are of much greater
importance than in a live streaming system. Also, many
live streaming systems rely on a tree topology, in contrast
to the mesh-based topology considered here.

An approach that is more similar to our system utilizes
Multi-Description Coding (MDC) techniques to allow for
a scaling of the video quality [12]. The authors neglect
the redundancy normally introduced by MDC in order
to achieve efficient streaming. They argue that due to
the dependencies in a layered approach such as SVC the
received quality is always lower than in a MDC approach
without these dependencies. However, in their evaluation,
they neglect the effects of stalling as well as seeding
times on the system, which have a large impact on the
availability of especially the base layer in our approach.
Also, a centrally managed system is assumed, which is not
realistic for a large-scale P2P system. Moreover, it is not
fully clear how the content is distributed in the simulated
overlays, since there is no description of the according
mechanisms. In contrast, the system presented here is
based on a deployed and therefore realistic application,
namely Tribler.

III. ARCHITECTURE DESCRIPTION

The P2P VoD architecture we evaluate is based on
Tribler, which in turn is a video streaming BitTorrent
adaptation. We will first give an overview on the key
mechanisms of Tribler before describing the modifications
we introduced in order to support the streaming of a SVC
video.

A. Tribler

The VoD client of Tribler adapts the two most important
mechanisms of BitTorrent, which are the peer selection
strategy in the unchoking process and the piece or chunk
selection strategy. Details on these mechanisms can be
found in [13]. Since we adapt the chunk selection strategy
for our approach, we will shortly describe its implemen-
tation in Tribler.

The main difference between a download functionality
as offered by BitTorrent and a VoD service as offered by
Tribler is that a user of the latter watches the video while
downloading it. Thus, the timing for downloading the parts
of the complete video file becomes critical, while chunks
can be downloaded in any order in a file-sharing network.
In particular, chunks in Tribler need to be downloaded
roughly in order so that a continuous playback of the video
can be ensured.

To this end, the rarest-first chunk selection of BitTorrent
is replaced by a strategy based on priority sets. From

ITC-SS21/Copyright 2010 IEICE

I

B

B B

P

B

B B

B

B B

P P

B

B

layer 0

layer 1

layer 2

forward
reference

movie playout time

GoP

ba ckw
a rd

refere nce

B

I

B

B B

P

Fig. 2. Frame structure of a video with temporal scalability

the current playback position, all chunks until the end of
the movie are separated into three sets. The high-priority
set contains all chunks with frames from the playback
position until 10 seconds after it, while the mid-priority
set contains the following 40 seconds of the movie. The
remainder comprises the low-priority set. Chunks are first
downloaded from the high-priority set, following an in-
order strategy within that set. Afterwards, the chunks in
the mid-priority set are downloaded, and finally the chunks
of the lowest priority, both according to the BitTorrent
rarest-first mechanism.

B. Adaptation for a SVC Video

In order to be able to support a SVC video with temporal
scalability, we changed the format of the file that is
exchanged in the Tribler swarm, as well as the chunk
selection strategy. We will describe these changes in the
following.

Format of a Video with Temporal Scalability In
this work, we only consider the temporal scalability of a
video in SVC. Basically, this means that the frames of
the complete video are separated into layers, with each
additional layer doubling the frame rate of the video (cf.
Figure 2). Since the enhancement layers are referencing all
layers below them, they cannot be played out without these
layers. Only the base layer contains frames that exclusively
reference frames in the same layer, meaning that this layer
can be played out by itself.

In this work, we limit our evaluation to a video with
3 layers, the base layer and two enhancement layers.
However, the approach and results are applicable to a
video with an arbitrary number of layers.

Because the layers are provided via different sub
streams, these streams have to be synchronized in order
to play the movie back correctly. This can be done, for
instance, by appending some bytes indicating the frame
number for each frame. This is only necessary for the
temporal dimension since different spatial or quality layers
can be derived from the according NAL extension header.
Thus, an additional amount of a few bytes is sufficient for
synchronizing the different sub streams. This overhead is
neglected in our simulation study.

Adaptation of the Shared Video File In BT and
Tribler, one file is shared per swarm, which is separated
into chunks and blocks. In order to be able to discern
between different quality layers of the SVC video, we
share a number of files in the same swarm, one for each
layer. Each of these files, which contains either the base
layer or an enhancement layer, comprises its own set of
chunks and blocks, just like if it were a single file to be
shared.

1
high-priority

window

current playback
position

video
start

mid-priority window

2
3
4

video
end

low-priority window

5

7
6

Fig. 3. Adapted chunk selection priority sets

Accordingly, the information in the torrent-file has to be
structured to reflect this format and to allow peers to derive
the number of chunks to download per layer. Thus, each
layer has an ID that together with the chunk ID within a
layer allows to identify all chunks of the complete movie
file.

Adaptation of the chunk selection Our aim is to
download chunks so that a video quality is attained that
can be supported by the network capacity. Therefore, we
prioritize lower layers over higher ones, while still keeping
the set separation and rough in-order download strategy
of Tribler (cf. Fig. 3). In the high-priority set, we only
download the base layer of the video to make sure we
can always play back the video and to avoid stalling
times. This means we never download the enhancement
layers from the beginning of the video, which is a minor
limitation of our architecture and could be circumvented
by a longer buffering time. Beginning with the second set,
we first download chunks of the base layer according to
rarest first. If all of these are already downloaded or no
chunk from that layer can be selected, we start download-
ing chunks from enhancement layer 1, also choosing the
rarest chunk first. In general, we only download chunks
from a higher enhancement layer if all chunks of the lower
layers are locally available or cannot be selected, with one
exception that is described below.

Finally, we have the same selection process in the low-
priority set, which is only considered if all chunks from
the other two sets are downloaded or unavailable from
other peers. We also adapted the sizes of the priority sets
to 180sec and 360sec for the first and the second priority
set, respectively.

During our evaluation, we found that due to the strict
prioritization of the base-layer chunks, the content from
the enhancement layers was distributed much less, which
led to a lower overall quality of the video at the peers.
In order to utilize seeders better, we introduce a check
whether a local peer is unchoked by a seeder or not. By
default, the local peer prefers enhancement layer chunks if
it is unchoked by a seeder, if it cannot download a chunk
from the high-priority set. It will still download base layer
chunks in the mid- and low-priority sets from seeders
if no enhancement layer chunks are eligible. We will
compare the strategies with and without seeder distinction
in Section V.

Adaptation of the playback strategy In Tribler, the
video playback is stalled whenever frames are not available
in time for their playback. Since we want to exploit the
properties of a scalable video file, we adapt this strategy
to only stall the video if frames from the base layer
are missing. In case frames from enhancement layers are
missing, we play out the video with the highest number of
layers attainable with the locally existing blocks. As a con-

ITC-SS21/Copyright 2010 IEICE

sequence, a peer that has watched the complete movie does
not necessarily have downloaded the complete video file,
since it might have missed some chunks from enhancement
layers. By default, no chunks are requested that cannot
be played out. Thus, a peer might never become a seed.
We therefore use the expression serving time instead of
seeding time for the interval a peer has finished watching
the movie but is still online and providing its completed
chunks to the swarm.

Additionally, we buffer the video for 60s before starting
to play it back. Since we do not consider a constant bit-
rate video (CBR), but dimension the system according to
the mean bit rate, we aim at having enough data available
so that the varying data rate of the video does not lead
to a buffer underrun during playout. On the other hand, a
waiting time of one minute should still be tolerable for end
users. Still, a more thorough investigation of this parameter
is part of our ongoing work.

IV. SIMULATION MODEL

In our performance study, we simulate one Tribler
swarm that shares a SVC video file with temporal scalabil-
ity. We use a self-written Java simulator that includes all of
the important mechanisms of Tribler and our adaptations
of that system. If not stated otherwise, we have two
classes of peers with different upload bandwidths. These
are based on realistic upload access speeds for DSL1000
and DSL2000 connections, and are set to 128kbps and
192kbps, respectively. We model the uplink of the peers as
the only network bottleneck and use a flow-based underlay
model to simulate the data transfer of blocks. Thus, the
underlay topology apart from the access speeds does not
affect the results, since we do not consider additional
bottlenecks in the core network. Each data flow, i.e., each
block transmission, has an initial delay of 10ms to model
the TCP handshake. Concurrent flows share the bottleneck
bandwidth fairly.

The shared video is based on an episode of a popular TV
show and has a length of 22min. The file has a total size
of 55.5MB and a total bit rate of 336kbps. It is separated
into three layers using the Joint Multi-View Video Model
(JMVM) [14], using a GoP size of 16 embedded frames
to achieve temporal scalability. Table I gives a detailed
overview on the characteristics of the individual layers.

The peer arrival process is a Poisson process with a
mean inter arrival time of 5s. The peers are distributed
among the classes according to a pre-defined share, by
default half of the peers per class. Peers stay online until
they have finished watching the video plus an exponen-
tially distributed serving time with a default mean of
10min. Adding the buffering time of 60s before starting
the playback and the video length of 22min, we thus get

TABLE I
MOVIE LAYER INFORMATION

layer mean bit mean frame cumulative mean size
index rate (kbps) rate (fps) frame rate (fps) (MB)

0 229 5.994 5.994 37.8
1 48 5.994 11.988 8.0
2 59 11.988 23.976 9.7

a mean number of concurrently online peers of ca. 400,
neglecting stalling times.

Additionally to the peers, we have a number of servers
in the network that act like normal peers but have the
complete video from the start and do not go offline during
the simulation. A single server has an upload capacity of
512kbps, allowing us to scale the total server capacity by
adjusting the number of servers. A high number of servers
reflects the fact that a high capacity is provided by the
content distributor to support the network. By default, we
install a number of 40 of these servers.

Our main performance indicator for the evaluation is the
end user Quality of Experience (QoE) when watching the
video. As QoE indicators, we use two values we measure
for each user. The first is the average number of layers
played out over time. This allows us to see how many
layers could be downloaded in time for playout. Since we
use stalling for the base layer only, this value is always
above 1 and below 3. The second performance indicator
is the average stalling time of the peers. This value tells
us how long blocks from the base layer were unavailable
for playback, which we consider worse than playing back
the video in a lower quality.

V. NUMERICAL RESULTS

In this section, we present the results from the simula-
tion experiments we conducted. All values shown are mean
values per run averaged again over several simulation runs.
They are shown with their 95% confidence intervals. Each
run simulated a swarm in the steady state for 5 hours.

We tested the proposed architecture for different net-
work load conditions, with load being defined as the down-
load demand in comparison to the total upload capacity of
the swarm. Also, we varied the composition of the peer
set and tested alternative download and chunk selection
strategies.

A. Influence of Network Load

First, we take a look at the relation between network
resources and the achieved QoE. Additionally, we want
to find out how hybrid a P2P VoD system needs to be,
i.e., how many servers are needed, to provide a good
quality to the end user. To this end, we vary the number
of servers from 1 to 80, which directly translates to the
resources a content provider would offer to support the
distribution effort. The resulting QoE indicators for the
two peer classes are depicted in Fig. 4 and 5.

The first effect that can be observed is that a larger
number of servers leads to a better quality played out at
the peers, i.e., more peers can play out more layers on
average. This is to be expected, since more servers simply
mean a higher upload capacity in the network without
adding download demand. Thus, the load in the system
is reduced. However, this also shows that our adapted
chunk selection can make use of the offered additional
capacity by adapting the number of enhancement layers
downloaded in time for playback. With 60 or more servers,
i.e., 30Mbps base upload rate, the quality of the video
is good or nearly perfect for all peers. In relation to the
roughly 90Mbps total bandwidth demand by the clients,

ITC-SS21/Copyright 2010 IEICE

this shows that the overlay can handle a large part of the
traffic load.

 1 10 20 40 60 80
0

0.5

1

1.5

2

2.5

3

m
ea

n
nu

m
be

r o
f l

ay
er

s
pl

ay
ed

 o
ut

number of servers

DSL 2000 peers

DSL 1000 peers

Fig. 4. Mean number of layers
played out for different number of
servers

 1 10 20 40 60 80
0

10

20

30

40

50

60

70

m
ea

n
st

al
lin

g
tim

e
(s

ec
)

number of servers

DSL 1000 peers

DSL 2000 peers

DSL 1000 peers

DSL 2000 peers

Fig. 5. Mean stalling times for
different number of servers

Another interesting aspect of the architecture is that the
average number of layers played out is higher for the set of
DSL2000 peers. Also, these peers experience no stalling
time, whereas the peers with less upload capacity show a
high mean stalling time for a low number of servers. This
can be explained with the G2G mechanism implemented in
Tribler in the unchoking process. This mechanism prefers
overlay neighbors with a good upload behavior in the
unchoking, i.e., uploading, process of a local peer. Since
peers with more capacity can upload more chunks, they
get a better G2G rating and are therefore preferred in
the unchoking process. For the P2P VoD application, this
means that peers can actually influence the quality they
get by adapting the upload capacity they allocate to the
application, in case they do not utilize their full upload
capacity. This is a good incentive for peers to contribute
to the overlay.

B. Peer Heterogeneity and Server Breakdown

Next, we consider scenarios where we do not only
vary the load by changing the share of the different peer
classes, but we also let half of the default 40 servers fail
simultaneously after half of the steady-state simulation
time. Thus, we want to see how the chunk selection
process reacts to the different load conditions, without
any parameters being changed. Fig. 6 and 7 show the
results. The x-axis denotes the share of DSL1000 peers
to DSL2000 peers as, e.g., 10/90 if 10% of the peers are
DSL1000 peers and the rest DSL2000 peers.

We see again that the peers with a higher upload capac-
ity have a better QoE on average than their counterparts
with less capacity. They can play out more layers more
often, and experience a much shorter mean stalling time.
We also can observe the effect of changing the peer set
composition to include a higher share of peers with less
upload capacity. Since this effectively means reducing the
total upload capacity available to the system while keeping
the download demand constant, a reduction in the QoE is
to be expected and can be observed.

However, the DSL1000 peers suffer much more from
this reduction of resources than the DSL2000 peers. While
the DSL2000 peers experience a slight decrease in quality
only, the average number of layers played out drops
noticeably for the DSL1000 peers. Also, the mean stalling
times increase drastically. This effect is exacerbated after
half of the servers have failed, since then even less upload
capacity is available in the network.

0/100 10/90 50/50 90/10 100/0
0

0.5

1

1.5

2

2.5

3

m
ea

n
nu

m
be

r o
f l

ay
er

s
pl

ay
ed

 o
ut

ratio DSL1000 peers/DSL2000 peers

DSL 2000
 before
 after
 breakdown DSL 1000

 before
 after
 breakdown

Fig. 6. Mean number of lay-
ers played out for different peer
set compositions, before and after
server breakdown

0/100 10/90 50/50 90/10 100/0
0

10

20

30

40

50

60

70

ratio DSL1000 peers/DSL2000 peers

av
er

ag
e

st
al

lin
g

tim
e

(s
ec

)

DSL 1000
after breakdown

DSL 1000
before
breakdown

DSL 2000
 before
 after
 breakdown

Fig. 7. Mean stalling times for dif-
ferent peer set compositions, before
and after breakdown

In general, however, the chunk selection strategy
adapted for SVC copes with the node failures and accord-
ing load increase during the swarm lifetime without any
parameters needed to be adapted to the new situation.

C. Influence of Download Strategy

The variants of the download strategy we want to
compare in this experiment is the default strategy to stop
downloading chunks when the client has finished playing
out the movie, and a strategy where the peer continues
to download the complete movie in any case. This means
that a client consumes upload capacity of the swarm even
after it does not profit from it, while other peers might put
this capacity to better use since they are still watching the
movie. The peer continuing to download may however be
able to provide more content after it completes the movie
file.

The results depicted in Fig. 8 and 9 show that this
consideration does not pay off for the default setting
of the serving time (10min). If the peers continue to
download after they have finished watching the movie, all
peers on average play out less layers, and the DSL1000
peers have a much higher stalling time. With this setting,
the upload capacity consumption of the still downloading
peers offsets the gain by having more sources for the
complete video file. This should change with much larger
serving times, however, which will be evaluated in future
work.

0/100 10/90 50/50 90/10 100/0
0

0.5

1

1.5

2

2.5

3

m
ea

n
nu

m
be

r o
f l

ay
er

s
pl

ay
ed

 o
ut

ratio DSL1000 peers/DSL2000 peers

DSL 1000 peers

continue downloading

DSL 2000
peers

Fig. 8. Mean number of layers
played out for different download
strategies

0/100 10/90 50/50 90/10 100/0
0

50

100

150

200

250

300

ratio DSL1000 peers/DSL2000 peers

m
ea

n
st

al
lin

g
tim

e
(s

ec
)

DSL 1000 peers

DSL 2000 peers

continue
downloading

Fig. 9. Mean stalling times for
different download strategies

D. Influence of Serving Times and Chunk Selection Strat-
egy

In this experiment, we influence the serving time of the
peers. Similar to the seeding time, a longer serving time
leads to a higher available upload capacity and therefore
less load. We vary the serving times from 5 to 30min.
Additionally, we also want to compare variants of the
chunk selection strategy with this experiment. For the
chunk selection, we have the default implementation that

ITC-SS21/Copyright 2010 IEICE

prioritizes chunks from enhancement layers when being
unchoked by a seeder. We compare this with a naive
implementation that does not discern between seeders and
leechers to see whether this mechanism has an effect.

The results (cf. Fig. 10 and 11) show that the naive
chunk selection generally leads to a lower average number
of layers played out for both classes of peers. However,
this difference diminishes if the load in the network
decreases with longer serving times.

05 10 15 20 30
0

0.5

1

1.5

2

2.5

3

m
ea

n
nu

m
be

r o
f l

ay
er

s
pl

ay
ed

 o
ut

serving time after watching the movie (min)

naive chunk selection

DSL 2000 peers

DSL 1000 peers

Fig. 10. Mean number of layers
played out for different chunk se-
lection strategies

05 10 15 20 30
0

10

20

30

40

serving time after watching the movie (min)

av
er

ag
e

st
al

lin
g

tim
e

(s
ec

)

DSL 1000 peers

naive chunk selection

DSL 2000 peers

Fig. 11. Mean stalling times for
different chunk selection strategies

On the other hand, the stalling times for the DSL1000
peers are higher with the more sophisticated chunk se-
lection strategy in the scenarios with a short serving time.
This can be attributed to the fact that base layer chunks are
shared more with the naive chunk selection, and therefore
are missing less often when they are required for playback.
Thus, in a swarm with a high load, it does not necessarily
pay off for all peers to prefer to download enhancement
layers, even if the opportunity to do so appears seldom.

VI. CONCLUSION

In this work, we presented a P2P VoD architecture
based on Tribler that supports streaming a SVC video. We
extended the chunk selection strategy in a straightforward
way to accommodate the layered structure of the video
file. Since Tribler is a deployed and used application, this
means our approach is realistic and can be implemented
in a live P2P VoD system.

Our performance evaluation showed that the proposed
strategy is able to adapt to the system load and peer
access capabilities without having to measure network
conditions or relying on feedback from the video player
software. Additionally, it conserves and even reinforces
incentives generated by the G2G peer selection to provide
resources to the overlay. We compared different variants
of the algorithms, providing an insight into the different
situations where they are of advantage.

Interesting aspects that require future work are the addi-
tion of the two remaining scalability dimensions, creating
a ’multi-dimensional’ chunk selection. This more complex
strategy then also needs to prioritize the type of quality

that may be improved by downloading more layers from
one of the scalability dimensions. Also, we want to take a
closer look at the continuity of the quality that is received
by the peers, since frequent changes in quality are not
desirable for a good end user QoE.

ACKNOWLEDGMENTS

This work has been conducted in the project G-Lab,
funded by the German Ministry of Educations and Re-
search (Förderkennzeichen 01 BK 0800, G-Lab). The
authors alone are responsible for the content of the paper.

REFERENCES

[1] Ipoque - Internet Study 2008/2009, “http://www.ipoque.com/,”
2009.

[2] Garbacki P. Wang J. Bakker A. Yang J. Iosup A. Epema D. Reinders
M. Van Steen M. Pouwelse, J. and H. Sips, “Tribler: A social-
based peer-to-peer system,” in In The 5th International Workshop
on Peer-to-Peer Systems (IPTPS’06), 2006, pp. 1–6.

[3] Engagdet, “Nvidia unveils tegra devices,”
http://www.engadget.com/2009/06/02/nvidia-unveils-12-tegra-
powered-devices-claims-the-mobile-comp/, 2009.

[4] ITU-T Rec. & ISO/IEC 14496-10 AVC, , “Advanced Video Coding
for Generic Audiovisual Services,” 2007.

[5] Marpe, D. and Wiegand, T. and Sullivan, GJ, “The H. 264/MPEG4
advanced video coding standard and its applications,” IEEE
Communications Magazine, vol. 44, no. 8, pp. 134–143, 2006.

[6] Marpe D. Wiegand T. Schwarz, H., “Overview of the scalable video
coding extension of the h.264/avc standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 17, no. 9, pp.
1103–1129, 2007.

[7] Dana, C. and Li, D. and Harrison, D. and Chuah, C.N., “BASS:
BitTorrent assisted streaming system for video-on-demand,” in Pro-
ceedings of IEEE 7th Workshop on Multimedia Signal Processing,
2005, pp. 1–4.

[8] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for supporting streaming applications,” in INFOCOM
2006. 25th IEEE International Conference on Computer Commu-
nications. Proceedings, 2006, pp. 1–6.

[9] Mol, J., Pouwelse, J., Meulpolder, M., Epema, D., and Sips, H.,
“Give-to-Get: free-riding resilient video-on-demand in P2P systems
[6818-03],” in PROCEEDINGS-SPIE THE INTERNATIONAL SO-
CIETY FOR OPTICAL ENGINEERING. International Society for
Optical Engineering; 1999, 2008, vol. 6818, p. 6818.

[10] Baccichet, P., Schierl, T., Wiegand, T., and Girod, B., “Low-delay
peer-to-peer streaming using scalable video coding,” Packet Video
2007, pp. 173–181, November 2007.

[11] Zao J.K. Peng W. Hu C. Lin, C., H. Chen, and C. Yang,
“Bandwidth Efficient Video Streaming Based Upon Multipath SVC
Multicasting,” in Wireless Communications and Mobile Computing
Conference, August 2008, vol. 08. International Volume, pp. 406–
412.

[12] Shen Y. Panwar S. Ross K. Liu, Z. and Y. Wang, “Efficient
substream encoding and transmission for P2P video on demand,”
Packet Video 2007, pp. 143–152, 2007.

[13] Arnaud Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first
and choke algorithms are enough,” in IMC ’06: Proceedings of the
6th ACM SIGCOMM conference on Internet measurement, New
York, NY, USA, 2006, pp. 203–216, ACM.

[14] Joint Video Team (JVT) , “JMVM (Joint Multiview Video Model)
software for the Multiview Video Coding (MVC) project of the
Joint Video Team (JVT) of the ISO/IEC Moving Pictures Experts
Group (MPEG) and the ITU-T Video Coding Experts Group
(VCEG),” 2009.

