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Abstract—Quality of Experience (QoE) has gained enormous
attention during the recent years. So far, most of the existing QoE
research has focused on audio and video streaming applications,
although HTTP traffic carries the majority of traffic in the
residential broadband Internet. However, existing QoE models
for this domain do not consider temporal dynamics or historical
experiences of the user’s satisfaction while consuming a certain
service. This psychological influence factor of past experience
is referred to as the memory effect. The first contribution of
this paper is the identification of the memory effect as a key
influence factor for Web QoE modeling based on subjective
user studies. As second contribution, three different QoE models
are proposed which consider the implications of the memory
effect and imply the required extensions of the basic models.
The proposed Web QoE models are described with a) support
vector machines, b) iterative exponential regressions, and c) two-
dimensional hidden Markov models.

I. INTRODUCTION

User satisfaction with application and service performance
in communication networks has attracted increased attention
during the recent years. Parts of this growth of interest in
Quality of Experience (QoE) issues can be explained by
increased competition amongst providers and operators, and
by the risk that users churn as they become dissatisfied [1].
Users do not like to wait unnecessarily; they might consider a
slow interactive service as worthless [2], but find it worthwhile
to tell other users about bad experiences [1]. As the risk
for anger, gossip and churn grows with the time a user is
dissatisfied, it becomes important to develop the understanding
of the dynamics of user perception in form of a QoE model.

After years of dominance of peer-to-peer traffic, interactive
HTTP traffic again took the pole position in residential broad-
band Internet traffic with a share of more than 50% as found by
a recent study [3]. One might well imagine millions of people
sitting in front of their browsers and waiting for their YouTube
videos and social networking tasks to be executed. Many
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users face volatile network conditions due to signal-to-noise
ratio problems on wireless or DSL links or temporary over-
utilization of shared network resources. So far, the reactions
of users to waiting times on the web are well-researched and
well-described in QoE models [4]–[6]. Still, we do not know
about transitions of user experience as waiting times change.
Classical QoE models lack such dynamical components.

Most work in the context of QoE modeling is done for
multimedia applications like voice or video services. Here,
the majority of QoE models focus on the current stimuli, i.e.
the actual service environment and conditions, and do not
consider the temporal dynamics or historical experiences of
the users’ satisfaction while consuming a certain service. This
psychological influence factor of past experience is referred
to as the memory effect. Therefore, the goal of this paper is
to derive a specific QoE model for web traffic considering
temporal dynamics and the memory effect and henceforth
called Web QoE model.

In order to derive a Web QoE model, three steps are pro-
posed. Firstly, subjective user studies are conducted in which
influence factors on the user perceived quality are varied. The
network conditions are emulated such that users experience a
page load time (PLT) that varies slightly around a predefined
value. Secondly, the key influence factors (KIFs) are identified
by means of statistical analysis and machine learning methods.
As a result of this paper, the PLT as well as the memory effect
are recognized as KIFs. Finally, three different QoE models
are proposed which extend basic models due to the memory
effect: a) support vector machines, b) iterative exponential
regressions, and c) two-dimensional hidden Markov models.

The remainder of this paper is structured as follows.
Section II gives an overview of related work. We focus
on literature quantifying QoE for web traffic, as well as
on interdisciplinary research studies from human-computer
interaction about remembered user experience. The design
of the subjective user studies and the measurement setup
are explained in Section III, before we present the statistical
analysis of selected KIFs in Section IV. The derived Web
QoE models are introduced in Section V. Finally, Section VI
concludes this paper with the main finding and gives an
outlook on our next steps for Web QoE modeling.

c ©
2
0
1
1

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
i-

ti
v
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

2
3
rd

In
te

rn
a
ti

o
n

a
l

T
el

et
ra

ffi
c

C
o
n

g
re

ss
(I

T
C

2
0
1
1
),

2
0
1
1
.



II. RELATED WORK

This section discusses existing work in the domain of
QoE Modeling for the web as well as related work on QoE
modeling for temporal phenomena such as the memory effect.

A. Web QoE Modeling

In this paper we define Web QoE as Quality of Experience
of interactive services that are based on the HTTP protocol
and accessed via a browser. The most prominent examples
for applications of this category are surfing the web and
downloading files, e.g. mp3 songs. In the context of web
browsing it has been widely recognized that in contrast to the
domains of audio and video quality, where psycho-acoustic
and psycho-visual phenomena are dominant, end-user waiting
time is the key determinant of QoE: the longer users have to
wait for content to arrive or transactions to complete, the more
dissatisfied they become with the service [7], [8]. Accordingly,
user frustration significantly increases when waiting times
without feedback exceed 8–10 seconds [2], [9]. Consequently,
a number of studies have been conducted with the goal to
quantify the relationships between Web QoE, application-level
metrics (such as response and download times) and the QoS
of the underlying network.

On the application level, ITU-T Recommendation G.1030
[4] discusses the results of user experiments that relate QoE
ratings in terms of MOS (Mean Opinion Score, cf. [10]) of test
subjects to different session times (i.e., aggregated response
times) in the context of a simple web search task. The resulting
model approximates Web QoE as logarithm of the normalised
session time. G.1030 was validated by [11] who conducted
extended versions of aforementioned experiments that address
contemporary network speeds and changing user expectations.
A logarithmic relationship between download time and QoE
was also identified in [5] and explained by fundamental laws of
psychophysics. Other studies have quantified the links between
network QoS and Web QoE using similar methods. For exam-
ple in [6] and [12], results from network-level measurements
in the context of web user experiments were correlated with
subjective quality ratings in order to model the impact of QoS
parameters such as packet loss and delivery bandwidth on
QoE.

What aforementioned Web QoE studies have in common is
that they directly relate current system conditions (such as load
time, bandwidth, packet loss) to MOS scores using mapping
functions of the form MOS = a+ b · f(QoS). Consequently,
the resulting models all exhibit the same shortcoming: they are
stateless since they only take current system and environment
conditions into account without considering the impact of past
conditions and experiences on the subjects’ quality judgement.
However, as discussed in the following subsection, such influ-
ences in the form of memory effects have been shown to exert
significant influence on end-user quality perception and also
have been already successfully integrated in QoE models for
audio and video services.

B. QoE Modeling Considering Experience over Time

Due to the increased importance of packet switched net-
works for media delivery and the resulting temporal fluc-
tuations of media transmission quality, the time-dynamics
of experience has become a central topic in audio-visual
quality research during the last decade. As regards multimedia
QoE, typical temporal fluctuations of media quality take place
within time spans (between 15sec up to several minutes
[13], [14]) that are primarily covered by short-term memory
(STM) and working memory, which is based on the interplay
between STM and controlled attention, respectively [15], [16].
Research on the STM [17] has revealed the influence of
primacy and recency effects of stimulus presentation on the
human ability to memorize certain stimuli. These memory
effects have also been studied in the context of audio [13],
[18] and video QoE [19], resulting in their quantification as
time constants of changes in perceived QoE caused by media
quality improvement or degradation. These results have been
successfully integrated in objective QoE prediction models
such as [20], [21] where peak impairments and aforementioned
time constants were used to model exponential decay or rise of
the user perceived quality as reaction to media quality drops or
rises. In the field of audio quality, a filter for recency modeling
has been approved as standard by ITU-R [22].

As mentioned previously, current Web QoE modeling ap-
proaches only consider temporality in form of waiting times.
They do not take into account memory effects such as recency
effects. Similar to the approaches in audio and video QoE, it
is necessary to conduct studies to identify a) the impact of
the memory effect and b) determine memory time constants
suitable of Web QoE tasks. These studies are necessary since
the nature of the experience of interactive web applications
differs strongly from pure audio and video quality experiences
in media consumption. Based on these dedicated studies’
results, memory effects could then be incorporated in Web
QoE models in order to enhance their prediction accuracy.

III. DESIGN OF USER TESTS AND MEASUREMENT SETUP

In this section, we introduce the general categories of
influence factors on Web QoE and how they relate to the
design of our subjective user tests. Furthermore, we discuss
the measurement setup and instrumentation of the three user
experiments we conducted.

A. QoE Influence Factors and Design of User Tests

Since existing Web QoE studies did not consider temporal
influence factors such as the memory effect, dedicated sub-
jective user experiments had to be designed and conducted in
order to identify the relevant influence factors, quantify their
impact on the QoE and develop appropriate models. In general,
a variety QoE influence factors exists on different levels:
a) technical level, e.g. network delivery bandwidth, page load

time, packet loss, browser type,
b) psychological level, e.g. expectations regarding quality

levels, type of user, or memory effects,



c) content level, e.g. type of website, design or implementa-
tion of websites,

d) context level, e.g. physical location or social context.
In our experiments, we focused on the technical and the

psychological level since the primary goal was to investi-
gate whether the experiencing subject’s internal state (i.e.,
the psychological level) can be as influential as the current
technical conditions and thus also needs to be considered in
QoE modeling.

On the technical level, we subsumed the influences of
network, application, etc. under a single variable: the page
load time (PLT), defined as the time from issuing the request
until the page is fully loaded and displayed. For simple
web pages this aggregation is valid, since the most relevant
technical influence factors on the transmission of web traffic
(such as packet delay, packet loss, throughput) directly affect
the transfer times of HTTP objects, which in turn determine
the overall PLT. This way, the test parameter space was
significantly reduced as necessitated by the generally limited
number of test conditions that can be covered in a user test
session. In order to further reduce the number of test cases
required, we did not vary influence factors on content level or
compare between different test designs. For the content, we
used a simple photo webpage displaying a single image in
order to avoid any content specific influences on user quality
perception and rating behavior.

On the psychological level, we tested for the memory
effect on behalf of the following test design: each test user
encountered a series of web pages. After the download of each
web page, the user was prompted for his or her opinion about
the overall QoE on a given rating scale. Thus, the participant
rated the QoE multiple times during a web session on the
same server. In order to investigate the memory effect, all
participants experience the same defined sequences of PLTs
in the online tests. Such identical sequences are in contrast
to typical ITU-T recommendations, which suggest the usage
of randomized sequences in order to cancel out unwanted
interferences between subsequent test conditions (cf., [23]–
[25]). However, since we exactly wanted to investigate such
interferences, i.e. the memory effect, identical PLT sequences
were required.

For quantifying the QoE we used Absolute Category Rating
(ACR), a common test method used in quality tests and stan-
dardized in ITU-T Recommendation P.910 [24]. According to
this method, a single test condition (in our case the download
of a website with a preset PLT) was presented to the test user
who then issue a quality rating on an ACR scale. To this end,
we used a 5-point MOS scale [10] as described in Table I.

B. User Test Setup and Implementation

We implemented two different measurement setups: a local
testbed as well as an online test. Both measurement setups
allowed to preset a constant page load time, the independent
variable, for each web site. Furthermore, the user ratings were
stored in a database as well as the traffic traces in TCP dump
files. The general advantage of a local testbed is that test users

TABLE I
ITU-T 5-POINT SCALE FOR ABSOLUTE CATEGORY RATING [10]

Grading Value Estimated Quality Perceived Impairment
5 excellent imperceptible
4 good perceptible but not annoying
3 fair slightly annoying
2 poor annoying
1 bad very annoying

can be observed during the test run, in order to e.g. manually
identify the behavioral category the participant belongs to.
However, this lab-based approach is very time consuming and
resource intensive, thus only a relatively small number of users
can be covered. In contrast, online tests allow for a much
larger number of participants. However, no direct observation
of users and their reactions is possible.

During a lab test session using the local testbed, a single
user was sitting in front of a personal computer and sequen-
tially downloaded web pages. Each web page contained a
randomly chosen image downloaded within the predefined
PLT. In the local testbed, the PLT was adjusted by using the
NistNET traffic shaper [26] which added a defined amount
of delay to the passing IP packets requested. For the online
test, the participant interacted with a Java applet that already
contained the contents of the websites. The applet simulated
the download of various web pages with predefined PLTs.
The web page also contained MOS rating buttons from 1
to 5 according to Table I which were used by the test user
to give his current personal satisfaction rating during the
browsing session. In particular, subjects were asked to answer
the question “Are you satisfied with this download speed?”.
Finally, the user ratings issued were stored in a central MySql
database.

C. Conducted Experiments

In the remainder of this paper, we will analyze the results
from three different experiments, referred to as local test being
conducted in the local testbed and two online tests referred
to as online test #1 and online test #2. The three experiments
differ in the sequence of instrumented PLTs for the web pages
as depicted in Figure 1. It has to be noted that each PLT was
applied to at least four web pages in a row in order to allow for
detection of the influence of the memory effect and when the
effect diminishes. Since we used a traffic shaper to determine
the PLT, we captured the network traffic in order to measure
the real download time. In the online test, the preset PLTs did
not deviate from the real download time, since the applet was
executed on the test participant’s local machine.

The local test comprised of 93 web pages and was con-
ducted by 29 users. During the online tests, a user viewed 40
web pages. There were 72 and 26 users completing the online
test #1 and #2, respectively. In the local test, we used PLTs up
to 8 s, while in the online tests the maximum PLT was only
1.2 s in order not to scare the online users away due to long
waiting times and an accordingly frustrating user experience.
Details of the three tests can be found in Table II.
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Fig. 1. Local and online user tests in which the page load times of the
consecutively downloaded web pages were varied.

TABLE II
TEST DESIGN AND QOS SETTINGS IN TERMS OF PAGE LOAD TIME FOR

THE DIFFERENT USER STUDIES

experiment #users #pages min max mean CoV
local 29 93 0.35 s 8.00 s 2.57 s 0.88

online #1 72 40 0.24 s 1.20 s 0.66 s 0.51
online #2 26 40 0.24 s 0.96 s 0.60 s 0.42

IV. STATISTICAL ANALYSIS OF SELECTED INFLUENCE
FACTORS

In this section, we statistically analyze the impact of se-
lected influence factors on Web QoE in order to identify the
KIFs for deriving appropriate web QoE models. In particular,
we consider the page load time and the memory effect as
discussed in the design of user tests in the previous section.
It has to be noted that due to space limitations we do not
present the analysis of additional KIFs like the type of user
or the content of a website.

A. Page Load Time (PLT)

As already discussed in the previous two sections, the PLT
well aggregates the influences of network transmission on
Web QoE, directly relating to end-user waiting time. Figure 2
illustrates this influence by showing the results of online test
#1. The sequence of the 40 web pages downloaded by the test
user is plotted along the x-Axis. On the left y-axis, the share
of users rating the QoE in each category OS1 (bad) to OS5

(excellent) of the 5-point ACR scale is illustrated as stacked
bar plot. Thus, the bars represent the relative distribution of
participants’ opinion scores for each page of the test sequence.

In addition, Figure 2 displays the MOS per web page, which
is the average over all user ratings for this web page, as well
as the instrumented PLT in seconds (as scaled on the right y-
axis). Overlaying both curves reveals the inverse relationship
between the PLT and Web QoE: the higher the PLT set for a
webpage, the lower the resulting MOS score. For online test
#1, Pearson’s correlation coefficient between PLT and MOS
is −0,957, thus PLT and QoE are indeed tightly coupled.

As next step, we model the impact of the PLT on the
MOS. In [5], the logarithmic nature of QoE for a given QoS
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Fig. 2. Cumulative distribution function of user ratings for online test #1.

parameter like the PLT is discussed because of the underlying
Weber-Fechner Law (WFL) from psychophysics. The WFL
is used to describe the relation between the magnitude of a
physical stimulus and its perceived intensity with the human
sensory system. It assumes the differential perception dP to
be directly proportional to the differential change dS

S , i.e.
dP ∼ dS

S , which can be solved as logarithmic relationship

P = k ln
S

S0
(1)

with S0 as threshold of the stimulus below which it is not
perceived at all.

In the context of Web QoE, the stimulus S is the PLT
and the perceived intensity P is the QoE. The applicability
of the WFL for the user experiments conducted in this work
is validated in Figure 3 which shows the MOS (averaged over
all users) for each web page in dependence of the PLT for
the three experiments. The x-axis is scaled logarithmically,
such that each instance of WFL-based model appears as
solid straight line in Figure 3. The parameters k and S0 of
each model instance are determined using nonlinear regression
by minimizing the least-squared errors between the model
function in Equation (1) and the MOS of the user ratings
depending on the PLT. It can be seen that there is a good match
between the logarithmic approximation and the measurement
results, with coefficients of determination D being 0.85 and
higher. Particularly the results for the online tests lead to
very similar model instances, i.e. overlapping lines, since the
instrumented PLTs are in the same order of magnitude.

The deviations of the MOS test data from our logarithmic
models in Figure 3 can be explained by the fact that, the
Weber-Fechner law does not consider temporal dynamics, but
only the current stimulus. Thus, the QoE experienced in the
past is not taken into account by our WFL-based models,
similar to the other models currently used in the Web QoE
domain.

From these observations we conclude that additional, time-
related influences such as the memory effect might impact on
the QoE as strongly as technical influences (as represented
here by the PLT). Consequently, we will further investigate
the memory effect in the following section.
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B. Memory Effect

As potential key influence factor on Web QoE, the memory
effect itself is going to be analyzed. As we have already seen
in Section IV-A the current PLT alone is not sufficient for
predicting the resulting MOS, which suggests the presence of
the memory effect. However, the question remains whether the
memory effect is relevant and significant enough to justify its
integration in Web QoE modeling.

The answer to this question is provided by analyzing the
time series of average user ratings. Figure 4 shows the MOS
over all users for the 40 web pages of the test sequence of
online test #2. In addition, the PLT is depicted on the right
y-axis. In the figure, pages downloaded with identical PLTs
use the same marker. The stars and the diamonds represent
the MOSs for web pages with a PLT of 240 ms and 480 ms
respectively. Since the PLT value was always held constant for
groups of four web pages in a row in online test #2 to allow for
investigating the influence of the memory effect, we have ten
different sections Ai of four consecutively downloaded pages.
The average MOS µi for each group of pages with identical
PLT is additionally printed below the marker symbol of the
respective section.

The memory effect manifests itself in two ways: transient
effects and different average MOS levels for different page
groups (sections) featuring the same QoS (PLT). Firstly, we
consider transient effects by analyzing the evolution of the
MOS over the four consecutive pages within a single sec-
tion Ai. If there is a decrease of the service quality, i.e.
PLT(Ai) > PLT(Ai−1), then, the MOS strongly decays and
this decay continues for the other web pages in this section Ai.
We assume here an exponential decay similar to [20], which
can be clearly identified for some sections, e.g. A8 or A9.
This observation is taken into account later for the iterative
exponential regression QoE model in Section V-B.

Secondly, we compare two different sections Ai and Aj

with the same PLT. For example, the PLT in section A1 and
A5 is set to 480 ms. However, the average µi over the MOS
values of the four consecutively downloaded web pages differs
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Fig. 4. Memory effect for average user ratings for online test #2.

significantly in section A1 and A5 with µ1 = 3.3 and µ5 = 3.8
respectively. The difference of the ratings lies in the 95 %
confidence interval [0.26; 0.76]. The reason for this difference
is the memory effect, as the perception of the current QoS level
is strongly biased by the preceding quality levels experienced.
The PLT in A0 is 240 ms and then the users experience a worse
quality in A1 with a PLT of 480 ms. In A4, the PLT is 720 ms
and then quality is increased in A5 with a PLT of 480 ms.
Thus, the users assume that quality has actually improved and
thus give a better rating in A5 than for the same QoS in A1.

It has to be noted that the impact of the memory effect
differs for the various sections with same PLTs. E.g., in section
A2 and A4 the average of the MOS ratings per section µ2 and
µ4 differ only about 0.11. We still have to show statistically
that the memory effect is relevant and a true KIF. This will
be done in Section V-A where support vector machines are
used as QoE model and as a side effect the memory effect is
identified as KIF in a statistically robust way.

V. QUALITY OF EXPERIENCE MODELS

Three different Web QoE models are presented in the
following that are A. Support Vector Machine (SVM), B. Iter-
ative Exponential Regression Model (IERMo), and C. Hidden
Memory Markov Model (HMMM). The SVM is used for
classification into QoE categories based on the identified KIFs.
It predicts into which QoE category a new example, i.e. a set of
KIFs, falls. The IERMo allows to directly calculate a MOS for
a given sequence of PLTs. The HMMM describes the evolution
of hidden system states and the observed emission from such
a hidden state is the QoE grading value of an individual user.
We highlight the implications of the memory effect on the QoE
models, i.e., how to include the memory effect in the models
and discuss the structural changes of the basic models.

A. Support Vector Machines

Support Vector Machines are one choice to make a model
for classification with identified KIFs. One advantage is that
every variable gets a weight from the model indicating as
weight of importance, if there are not differently dependent,
correlating and independent variables mixed. The disadvantage
is that SVMs are acting on two-class-problems. For this we
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take the categories 1 to 3 of the ACR scale to class −1 and the
categories 4 to 5 to class 1. For practical reasons we choose
the implementation of SMO (Sequential Minimal Optimization
[27]) in WEKA [28] for analysis.

As input variables for the SMO, we use the current page
load time PLT and the past values of the user rating OS .
Thus, the previous user rating is considered by OS1, the user
rating one step more in the past OS2 and so on. With m users
conducting a test run consiting of n websites, we arrive at m·n
input samples for the SMO.

As a result, we got the OSx weigths of the SMO models
for the user online tests #1 and #2 in Figure 5. We see that
OS1 has a strong weight, i.e., the last user perceived quality
strongly influences the current user ratings. In particular, the
memory effect is as important as the current PLT, as the
weights are in the same order. Thus, the memory effect exists
and is relevant for Web QoE modeling. We see that further
steps into the past, i.e. OSj for j > 1 are not relevant and we
only have to take into account the last user rating.

The class C ∈ {−1, 1} of the user rating can be predicted
using these weights of all input variables V . Class −1 means
that the user is dissatisfied corresponding to fair, poor, or bad
quality, while class 1 means a satisfied user corresponding to
good or excellent quality: C = sign

(∑
{variables V } wV · V

)
,

where wV is the corresponding normalized weight of the
SVM.

The evaluation of the SVM model is done using 10-fold
cross validation of the measurement data for the two online
tests with the OSx past series of user ratings. For online
test #1, the true prediction rate is 86.8 % at a lower limit of
62.2 %. Thus, the SVM model correctly predicts 86.8 % of the
user ratings, which significantly improves the lower limit as
retrieved by selecting always the more frequent class C. For
online test #2, we observe a true prediction rate of 82.3 % at
a lower limit of 50 %. The cross validation with the respective
other test gives similar values. Thus, the results of the SVM
models relying on OSx are consistent for both tests.

The main finding of the SVM model is that the memory
effects exists, but only the user perceived quality of the last
downloaded web page has to be taken into account.

B. Iterative Exponential Regression QoE Model

The Iterative Exponential Regression Model (IERMo) re-
ceives the PLTi for a sequence of i web pages as input param-

eter and estimates the mean opinion score MOSi for a specific
user group. As a result of the SVM models, we consider
only the short-term memory effect, i.e. for the computation
of MOSi we only take into account the previous MOSi−1.
Similar to [20] where the evolution of VoIP quality is estimated
by means of exponential regressions, the fundamental equation
of the IERMo is as follows.

MOSi = f(PLTi)− ωe−j · (MOSi−1 − f(PLTi)) (2)

Thus, the current MOSi depends on the previous experience
MOSi−1 and the actual PLTi which is mapped according to
the Weber-Fechner law in Equation (1) to the corresponding
perceived intensity MOSi = f(PLTi). It has to be noted
that f is a time-independent function. The evolution over
time is taken into account by exponential regressions, such
that the memory effect decays exponentially over consecutive
web pages with similar PLTs. In particular, for the j-th web
page in a row with similar PLTs, i.e. |PLTi−1 − PLTi| < ǫ,
the quality difference between the previous MOSi−1 and the
currently perceived intensity f(PLTi) is only considered with
ωe−j . Otherwise, the user perceive a new test condition, i.e.
|PLTi−1 − PLTi| ≥ ǫ, and the previous quality is taken into
account with j = 1.

The parameter ω is retrieved by minimizing the least-
squared errors between the measured data of online test #1
and the resulting model values MOSi. In particular, we used
the mean absolute relative error Θ which was found to follow

Θ(ω) = 0.019ω2 − 0.0095ω + 0.052 , (3)

and which achieves the minimum for ω = 0.254. This
model can be further enhanced by considering the user types
individually, since the memory effect is distinctive according
to the type of user. For different user types, we have different
functions f and weights ω. For example, insensitive users do
not show a memory effect, i.e. ω = 0, since the users are more
or less always satisfied, while for hectic users the memory
effect is strongly observed and accordingly reflected by the
weight ω.

An evaluation of the IERMo is illustrated in Figure 6. As
training data, we used the online test #1 to obtain the parameter
ω. Applying iteratively Equation 2 leads to the following mean
absolute relative errors of δ = 10.00% for the local test and
δ = 6.18% for the online test #2, respectively. Applying the
IERMo to the training set leads to δ = 5.94% for the online
test #1.

Summarizing, the IERMo is a simple, but efficient algorithm
for Web QoE modeling which takes into the memory effect
with an exponential decay for different types of users.

C. Hidden Memory Markov Model

Another approach to model the time-dynamics of QoE
caused by the memory effect is a two-dimensional Hidden
Markov Model. The hidden states describe the internal system
state while the emission describe the observed user ratings.
As a result of the SVM model, it is sufficient to consider
the previous web page in order to take into account the
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Fig. 6. Iterative exponential regression QoE model for local test and online
test #1 with mean absolute relative error δ1 = 5.18% and δ2 = 6.66%.

memory effect properly. Therefore, the hidden states do not
include only the current PLT, but also a second state to capture
the previous download time. This way, we obtain a Memory
Markov model similar to [29] to “remember” the past system
states. The emission from a hidden state reflects the individual
user rating on a certain rating scale like ACR. Thus, the model
is referred to as Hidden Memory Markov Model (HMMM).

A sequence of N web pages with corresponding PLTs
{x1, x2, . . . , xN} is now extended to a series of pairs
{(xi, xi−1)} for i = 2, . . . , N . Hence, the series of pairs
consists of one sample less than the original time series {xi}.
Each pair of the extended series {(xi, xi−1)} is related to
a hidden system state (Hi, Hi−1) where Hi ∈ {1, . . . ,M}
denotes the current PLT class and Hi−1 ∈ {1, . . . ,M} the
previous PLT class. The classes are obtained by discretizing
both the xi and xi−1 as follows.

Hi =

{
1 if xi = mini xi⌈

xi−mini xi

maxi xi−mini xi
·M

⌉
otherwise

(4)

The xi−1 are processed analogously. The discretization is
no problem and has only a minor impact on the accuracy of the
HMMM, since M can be chosen adequately at increased com-
puational costs and storage costs. In this context, the results
from psychophysics can also be used for the discretization. As
a key concept of the Weber-Fechner law, the “just noticeable
differences” as integral part of the human sensory system were
identified. This means a user notices a difference in perception
∆P only if the physical stimulus changes S for more than a
constant proportion of its actual magnitude, i.e. ∆P = k∆S

S .
Thus, the hidden states can be defined such that these just-
noticeable differences are considered.

With the definition of the hidden states H =
{H11, H12, . . . , HMM}, the generation of the transition
probablity matrix P = {pij,kl} is straightforward and can
now be estimated using empirical transition probabilities,
where pij,kl is the probability for a state transition from Hij

to Hkl. In the same way, the emission probability matrix
E = {eij,u} is obtained where eij,u is the probability that in
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Fig. 7. Hidden Memory Markov QoE model for online test #1 and #2 with
mean absolute relative error δ1 = 4.49% and δ2 = 6.24% respectively.

state Hij the emission, i.e. the user rating, is u. In the case
of the ACR scale, it is u ∈ {1, . . . , 5}.

An evaluation of the HMMM for online test #1 and online
test #2 is shown in Figure 7 which shows the average user
rating for a given sequence of web pages. It can be seen that
the HMMM leads to a very good match with a mean absolute
relative error δ1 = 4.49% and δ2 = 6.24%, respectively.
As a result, the HMMM allows accurate Web QoE modeling
which takes into account the memory effect by using two-
dimensional hidden system states. Hereby, additional KIFs like
the type of user and the type of website can be easily taken
into account by integrating them in the emission probability
matrix.

VI. CONCLUSIONS AND OUTLOOK

This paper has introduced the memory effect to the field
of Web QoE modeling. Motivated by the fact that a person’s
current experience of service quality is shaped by past expe-
riences, we investigated the memory effect in the context of
three web browsing user studies. The test scenario used consid-
ers a user sequentially browsing the pages of an online photo
album. Our results show that, although the current QoS level
clearly determines resulting end-user quality ratings, there
is also a visible influence of the quality levels experienced
in previous test conditions. Statistical analysis confirmed the
significance of the page load time and the memory effect as
key influence factors on browsing QoE. In particular, we found
that in addition to the current QoS level the user experienced
quality of the last downloaded web page has to be taken into
account.

The implications of our results on Web QoE assessment
and modeling are twofold: firstly, the design of dedicated
Web QoE studies are required to quantify the impact of the
memory effect on QoE (cf. III). Secondly, time-dynamics and
the internal state of the user (that both manifest in the memory
effect) are essential components of the web experience and
thus need to be adequately reflected in Web QoE models.

As concerns the latter, we discussed three modeling ap-
proaches: Support Vector Machines, Iterative Exponential Re-



gression and Hidden Memory Markov Models. The weighting
factors of the SVM indicate that the strength of the memory
effect lies in the same order of magnitude as the influence of
the PLT. However, the SVM is unable to calculate a MOS score
because it treats QoE only as a two-class problem (satisfied
vs. dissatisfied). In contrast, the IERMo allows to iteratively
compute the MOS for a given sequence of PLTs. The memory
effect is taken into account with an exponential decay, as the
memory effect diminishes if the user experiences the same
QoS level for several web pages in a row. The HMMM also
computes a MOS score and takes the memory effects into
account via two-dimensional hidden system states and the cor-
responding emission probabilities. In contrast to the IERMo,
the HMMM is able to predict the QoE value of an individual
user and requires only the state transition probability matrix
as well as the emission probability matrix. Thus, the HMMM
can be easily used for example in simulations to derive the
Web QoE.

We are convinced that this work represents an important
first step towards a more accurate assessment and modeling of
Web QoE that takes the time-dynamics of human perception
into account. Building on these results, we foresee future work
to address this challenge along the following two trajectories:
firstly, additional web browsing studies need to be conducted
to investigate the memory effect in the context of the flow
of a true web surfing experience, beyond the single photo
page. To this end, more sophisticated content such as news
and web 2.0 pages as well as longer test conditions that span
flows of pages are required in order to expose subjects to more
complex but realistic stimuli. Secondly, beyond web browsing,
the time-dynamics of QoE perception need to be studied across
the whole spectrum of interactive data services, including e-
mail, file downloads, as well as progressive downloads that
are common for online video services such as YouTube.
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