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Abstract—The high energy costs for running a data center led
to a rethinking towards an energy-efficient operation of a data
center. Designed for supporting the expected peak traffic load,
the goal of the data center provider such as Amazon or Google
is now to dynamically adapt the number of offered resources
according to the current traffic load. In this paper, we present
a queuing theoretical model to evaluate the trade-off between
waiting time and power consumption if only a subset of servers
is active all the time and the remaining servers are enabled on
demand. We develop a queuing model with thresholds to turn-on
reserve servers when needed. Furthermore, the resulting system
behavior under varying parameters and requirements for Pareto
optimality are studied.

I. INTRODUCTION

In recent years, vast investments have been made to build
up large-scale data centers. These data centers can have a size
of a few hundred servers to up to 100,000 servers operating in
a cloud, which is e.g. used for storage and computation. The
reason for investments in those large clouds is the economy of
scale for power, cooling, network, and administration capacity
compared to classical enterprise systems. Although the data
centers are set up for different purposes and applications,
the basic structure is similar. The service provider aims to
achieve high revenue while still guaranteeing the Service
Level Agreements (SLAs). To decrease the capital expenditure,
service providers - like Google - use commercial of-the-shelf
hardware and to guarantee the SLAs, the data centers are
designed according to the expected peak traffic load. However,
the average load level of a data center is about 60% of the peak
load [1]. Taking a look at the power consumption, these low
loaded data centers waste a lot of energy. Although several
servers are not under load, they still consume about 65% of
the maximal power consumption [2].

The costs for powering the servers and network equipment
exceed the acquisition costs after only three years. One way
to efficiently reduce the power consumption in a data center
is thus to switch off servers which are temporarily unused. In
case the load in the data center again increases, the servers can
be switched on using wake on LAN. The challenge is here to
save as much energy as possible while still guaranteeing the
SLAs.

In this paper, we develop a basic queuing model for mech-
anisms to operate a data center in an energy-efficient way.
We separate the amount of servers in a data center in two
groups: the base-line servers which are always in operation

and the reserved servers which can be switched on if needed.
The decision to switch the server on or off are based on
a hysteresis-oriented mechanism with two thresholds, which
have to be properly dimensioned, depending on the load level
expressed by the queue length of jobs waiting.

The remainder of this work is organized as follows. In
Section II, the work related to energy-efficient data center
operation is reviewed. Section III describes the considered
dimensioning problems. The queuing model is outlined in
Section IV and a closed form solution is presented in Sec-
tion V. Results showing trade-offs between waiting time as
performance measure and power consumption are evaluated
in Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

Several papers have been published, proposing new archi-
tectures for data centers, which provide more resilience or
are cheaper to deploy [3]–[5]. However, only a few papers
consider the energy consumption of a data center and propose
mechanisms of how to reduce it.

Heller et al. [6] published a paper considering the trade-off
between energy efficiency and resilience. They use the fat-tree
architecture similar to [3], [4], which is based on commer-
cial of-the-shelf network equipment. During normal network
operation, the additional switches used for backup paths are
switched off and only turned on in case of high load or network
failures. The proposed mechanism is implemented in a testbed
where OpenFlow is used for the switch management. However,
they only turn off the switches and not the servers. Pries et.
al. [7] show that these only consume between 5% and 10% of
the overall energy consumption.

Kliazovich et al. [8] developed a simulation environment
for computing the energy consumption of different data center
architectures. In addition to showing the share of network and
server energy consumption, they present how much energy can
be saved while using dynamic voltage and frequency scaling
or dynamic power management.

One of the first paper presenting a dynamic resource man-
agement according to the offered load is presented by Chase
et al. [9]. They propose an architecture where server clusters
are dynamically resized in accordance to the negotiated SLAs.

A more detailed approach is presented by Chen et al. [10].
Three solutions are proposed to reduce the power consumption
of servers in a data center. For the first solution, the workload
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behavior of the near future is predicted while the second solu-
tion is a reactive solution, using periodic feedback of system
execution. The third proposed solution is a hybrid solution
using a combination of prediction and periodic feedback.

The most closely related work is presented in [11]–[13].
Their goal is to run a minimum number of servers in a data
center to maximize the revenue of the service provider. The
considered data center hosts a webpage application. While
in [11], the authors do not consider user impatience and the
fact that servers consume energy without producing revenue
during wake up, [13] takes both into account. In [12], the
authors introduced a policy for dynamically adapting the
number of running servers. The goal of the paper was to
find the best trade-off between consumed power and service
quality.

Provisioning schemes for data centers are discussed in [14].
They discuss single and multi server models, where both the
inter-arrival time as well as the service time are exponentially
distributed and constant setup times are considered. Further-
more, a time-varying arrival process is discussed. With regard
to optimality, quasi-optimality is proven for the discussed
power-saving policies with regard to a compound objective
function of mean service time and mean power consumption.

In [15] the authors present a model for server farms using
exponential inter-arrival, service and setup times. They con-
sider different policies for powering down servers for finite
and infinite servers.

In contrast to the above mentioned papers, we evaluate the
energy savings by adapting the number of servers dynamically
according to the current load using thresholds on the queue
size to enable additional servers and on the total number of
jobs in the system to disable servers. Furthermore, we use
a true multi-objective optimization approach to find optima,
which can not be found using weighted sum aggregate objec-
tive functions.

III. PROBLEM FORMULATION

A widely used data center architecture is the three-tier
architecture shown in Figure 1. The upper two layers of the
architecture are responsible for distributing the traffic and
consist of layer 3 switches where each switch has a backup
switch. In this paper, we focus on the edge layer and here
on a single Performance Optimized Data center (POD). A
POD consists of a number of servers connected over top of
rack switches to an aggregation switch. We assume, that new
jobs entering the system arrive with exponentially distributed
inter-arrival time. When a job in form of a packet arrives at
the POD, it is forwarded to an idle server. If no idle server is
available, the job is queued. Once a server finishes processing
its current job, it picks another one from the queue.

Our goal is now to evaluate how much power is consumed
in a data center and how much can be saved when servers, not
processing any job, are switched off. Therefore, we developed
two different data center models. The first model, the default
data center, consists of two-state servers only which are
either busy or idle (see Figure 2a). For the second model,

Core layer

Aggregation
layer

Edge layer

POD 0 POD 1 POD 2 POD 3

Fig. 1: Three-tier data center architecture.

a more energy-efficient data center, a subset of servers may
additionally be switched on and off on demand (see Figure 2b)
as recommended in [16].











(a) 2-state server model.




















(b) 3-state model of a reserved server.

Fig. 2: Power state transition on a per server level.

A. Default Data Center

For the default data center model, each of the n servers
is either on and processing a job or on and idle as depicted
in Figure 2a. If a busy server finishes processing a job and
the queue is empty, the server becomes idle. Once a new
job is assigned to a yet idle server, the server becomes busy.
According to our measurements of a server with an Intel
twelve core processor (2.67 GHz) and 32 GB RAM, a server
currently processing a job consumes ebusy = 240 Watt. An idle
server still consumes eidle = 170 Watt.

B. Energy-Efficient Data Center

For the second model, we differentiate between two types
of servers. The number of base-line servers which are always
on is given by n and the reserved servers to be enabled on
demand is described by m. If they are enabled, the power
consumption is similar to the default data center model. If
they are disabled, each server consumes eoff = 0 Watt. The n
servers which are always on consume the same power as in the



default data center model. If the system queue has a length
exceeding ✓2 (for ✓2 2 (0, m)), the m reserved servers are
enabled and stay enabled until the total number of jobs in the
system drops to ✓1 (for ✓1 2 (0, n)). The transition between
power levels for each of the reserved servers is depicted in
Figure 2b.

The energy-efficient data center operation model with the
parameters ✓1 and ✓2 can be seen in Figure 3 and is described
in detail in the next section.
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Fig. 3: System model for an energy-efficient operation.

IV. MODELING

In this section, we first discuss the default data center model,
where a server can either be idle or busy, processing a job.
Afterwards, the energy-efficient data center model with the
three states is set up.

A. Default Data Center

Let us assume that the jobs in a POD arrive according to
an independent Poisson process with rate � and each server
accepts only one job at a time with an exponentially distributed
service time with mean 1

µ . Then, the system can be modeled
using a simple M/M/n delay system. Where the random
variable X gives the number of jobs in the system and x(i)
is the stationary probability that i jobs are in the system.

We obtain the mean power consumption of such a system
based on the measured values presented in Section III. If less
then i < n jobs are in the system, then i servers are busy each
consuming ebusy Watt and n � i servers are idle, where each
consumes eidle Watt. If i � n jobs are in the system all servers
are busy and consume n · ebusy Watt. This results in the upper
bound for power consumption

Emax =
nX

i=0

x(i)(iebusy +(n� i)eidle)+nebusy

+1X

i=n+1

x(i). (1)

Furthermore, we can provide a lower bound for the power
consumption of the system by assuming that a server is turned
off if it is not processing a job, thus consuming eoff. By
substituting eoff for eidle in Equation 1 we get

Emin =
nX

i=0

x(i)(iebusy + (n � i)eoff) + nebusy

+1X

i=n+1

x(i).

B. Energy-Efficient Data Center

To extend the queuing system to model the energy-efficient
data center model introduced in Section III-B, we need to
modify the state space. We now model the system state as
a tuple (i, j) where i is the number of jobs in the system
and j is 1 if the reserved servers are activated and 0 if they
are not activated (see Figure 4). The system activates the
reserved servers if more than ✓2 jobs are in the queue, i.e.
more than n+ ✓2 jobs are in the system. The reserved servers
are deactivated if the number of jobs in the system drops under
✓1.
Again, X is the random variable describing the number of
jobs in the system if the reserved servers are activated or
deactivated, and x(i, j) is the stationary probability that i jobs
are in the system, and the reserved servers are activated (for
j = 1) or deactivated (for j = 0).

Based on the state space and transitions, we can formulate
macro state equations, defined as the sum of all local balance
equations of the states contained in the macrostate. They
provide, when solved, the state probabilities required for
further analysis.

First, we consider the macro state equations for state Si
1,

which contains all system states where up to i� 1 jobs are in
the system and no reserved servers are activated. Depending
on i, we get the following equations.

iµx(i, 0) = �x(i � 1, 0) 0 < i < ✓1

iµx(i, 0) + ✓1µx(✓1, 1) = �x(i � 1, 0) ✓1  i  n

nµx(i, 0) + ✓1µx(✓1, 1) = �x(i � 1, 0) n  i  n + ✓2.

Next, we examine the system state if the reserved servers are
activated. The macro state Si

2 contains all system states with
activated reserved servers and at least i+1 jobs in the system.
We get

iµx(i, 1) = �x(i � 1, 1)

+�x(n + ✓2, 0) ✓1 < i  n + ✓2 + 1

iµx(i, 1) = �x(i � 1, 1) n + ✓2 + 1 < i  n + m

(n + m)µx(i, 1) = �x(i � 1, 1) n + m < i.
(2)

The third macro state S3 contains all system states where only
the base-line servers are activated and its equation states

�x(n + ✓2, 0) = ✓1µx(✓1, 1).

Finally, the sum of all probabilities should be 1, i.e.

1 =

n+✓2X

i=0

x(i, 0) +
+1X

i=✓1

x(i, 1)

should hold.
Based on the state probabilities, we can derive the required
performance metrics for our analysis as we did in Sec-
tion IV-A.
The carried traffic and utilization is given by

a =
�

µ
and ⇢ =

�

µ(n + m)
.
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Fig. 4: M/M/(n + m)(✓1,✓2) System with macro states Si
1, S

i
2, and S3 for the calculation of x(i, {0, 1}).

Furthermore, we obtain the mean queue length

⌦ =

n+✓2X

i=n

(i � n)x(i, 0) +
+1X

i=n+m

(i � (n + m))x(i, 1).

By applying macro state Equation 2 we obtain for all i > n+m

x(i, 1) = ⇢x(i � 1, 1) = x(n + m, 1)⇢i�(n+m).

Using this result and the first derivative of the geometric series
we get

⌦ =

n+✓2X

i=n

(i � n)x(i, 0) + x(n + m, 1)
+1X

i=0

i⇢i

=

n+✓2X

i=n

(i � n)x(i, 0) + x(n + m, 1)
⇢

(1 � ⇢)2
.

Now, we can give the mean waiting time for all jobs in the
system as

E[W ] =
⌦

�
.

Finally, we obtain the mean power consumption similarly to
Equation 1.

E =

nX

i=0

x(i, 0)(iebusy + (n � i)eidle + meoff)

+

n+✓2X

i=n+1

x(i, 0)(nebusy + meoff)

+
n+mX

i=✓1

x(i, 1)(iebusy + (n + m � i)eidle)

+ x(i > n + m)(n + m)ebusy

V. CLOSED FORM SOLUTION

We obtain closed form solutions for the state probabilities.
These equations can be derived by recursively applying the
macro state equations. All equations feature a factor x(0, 0),
which in turn can be calculated using the normalization prop-
erty. Due to the length of the individual formulas, the following
shorthand is introduced: For each state probability x(i, j)

depending on the factor x(0, 0) we define x̄(i, j) = x(i,j)
x(0,0)

(i.e. we cancel the factor).
For 0 < i < ✓1 we get

x(i, 0) = x(0, 0) · ai

i!
.

As a further shorthand for substitution, we define

si =

iX

k=0

ak(n � k � 1)!.

Using this definition, we get the state probability for ✓1 jobs
in the system with activated reserved servers:

x(✓1, 1) = x(0, 0) · an+✓2+1

⇣
1 + a

✓1

⌘

·
(✓1 � 1)!

⇣
(1�a✓2 )✓1

1�a + a✓2sn�✓1

⌘

n✓2n! (n � ✓1 + 1)!
.

For ✓1  i  n we get

x(i, 0) = x(0, 0) ·
✓

x̄(n, 0)ai�✓1+1

(i � ✓1 + 1)!

� x̄(✓1, 1)✓1si�✓1

i!

◆
.

And for n < i  n + ✓2 we get

x(i, 0) = x(0, 0) ·
✓

x̄(n, 0)ai�✓1+1

ni�n(n � ✓1 + 1)!

�x̄(✓1, 1)

✓
✓1sn�✓1a

i�n

n!

+
✓1(1 � ai�n)

1 � a

◆◆
.

Thus, we have all probabilities for system states where only
the baseline servers are active. For the reserved servers, we
obtain state probabilities for ✓1 < i  n + ✓2 + 1 as

x(i, 1) = x(0, 0) ·
✓

x̄(✓1, 1)
ai�✓1✓1!

i!

+x̄(n + ✓2, 0)

i�✓1X

k=1

ak(i � k)!

i!

!
.



For n + ✓2 + 1 < i  n + m we get

x(i, 1) = x(0, 0) · x̄(n + ✓2 + 1, 1)

·a
i�(n+✓2+1)(n + ✓2 + 1)!

i!
,

and finally for i > n + m

x(i, 1) = x(0, 0) · x̄(n + m, 1)

✓
a

n + m

◆i�(n+m)

.

As discussed earlier, the probability of an empty system is
given by the usual normalization property:

x(0, 0) =

 
1 +

n+✓2X

k=1

x̄(k, 0) +
1X

k=✓1

x̄(k, 1)

!�1

.

Using these equations, the state probabilities can be obtained
and the performance metrics introduced in Section IV can be
evaluated.

VI. PERFORMANCE EVALUATION

Based on the metrics obtained in Section IV, we can now
compare the introduced default data center and energy-efficient
data center models.

An optimal system setting would decrease both, waiting
time and power consumption. For the discussion of this
optimization problem, we require additional notation which
is introduced first. We assume that the job inter-arrival rate �,
the job service rate µ, and the total number of servers ntotal are
constants and not subject to the optimization process. Thus, the
complete system can be described by the number of base-line
servers n from which the number of reserved servers m can
be easily derived if the total number of servers ntotal is known,
the server activation threshold ✓2, and the server deactivation
threshold ✓1. Given these parameters, we define e(n, ✓1, ✓2) to
be the mean power consumption of the system and w(n, ✓1, ✓2)
be the mean waiting time of all jobs.

A general approach for solving such multi objective op-
timization problems is defining a single aggregate objective
function, such as:

f(n, ✓1, ✓2) = ↵e(n, ✓1, ✓2) + (1 � ↵)w(n, ✓1, ✓2) (3)

for 0  ↵  1. Then, it is possible to choose an ↵ in such a
way that a desirable trade-off is made. Thus, the optimization
problem can be defined as

min f(n, ✓1, ✓2) s.t. 1 < n < s, (4)
1 < ✓1 < n � 1,

1 < ✓2 < m � 1,

and trivially solved by evaluating all valid parameter combi-
nations, sorting the objective function values and choosing the
minimum.

This approach has the obvious disadvantage that while
a parameter combination may be optimal according to the
chosen objective function, it may very well not be optimal to
the user. For example, it may be possible that another system

configuration exists with a minimally greater mean waiting
time and a greatly reduced power consumption. To be able to
decide whether such a trade-off exists, a more global view of
the problem space is required. However, due to the number
of possible parameter combinations, it is difficult to select
appropriate parameters. We reduce the number of possible
parameters by considering only Pareto optimal states.

To define Pareto optimality, we need to introduce the
product order partial relation. Let X ✓ Rn be our feature
set. We set x � x⇤ for x, x⇤ 2 Rn iff

xi  x⇤
i 81  i  n (5)

holds. Then, x⇤ is Pareto optimal in X if no x 2 X\ {x⇤}
exists, such that x � x⇤ holds.

To study the system behavior, we consider an exemplary
rack of ntotal = 100 servers, where new jobs arrive with
a negative exponential inter-arrival time with mean 10 ms,
yielding � = 1

10 ms. To determine the mean service time
we turn to [17] where it is reported that on average servers
are operating at 10 to 50% of their maximum utilization
levels. With this in mind, we assume that the service time
for job completion is again negative exponential with a mean
of 400 ms, which implies µ = 1

400 ms, resulting in an overall
utilization of �

µ(n+m) = 0.4, well within the described limits.
Based on these parameters, we can compute the mean

waiting time and power consumption for the default data
center model. The mean waiting time achieved by the default
data center model provides a lower bound for the achievable
waiting time for the energy-efficient data center model, as
obviously all n servers are always either idle or busy. For
the parameters described above, the default data center model
achieves a mean waiting time for all jobs E[W ] = 4.75 ·
10�14 ms. Furthermore, the mean power consumption of the
system, under the assumption that no servers are disabled,
is set at Emax = 100%, which provides an upper bound for
the energy-efficient data center model. However, if we assume
that all servers are immediately switched off if they are not
processing any jobs, we get Emin = 48.48%, which is the
lower bound for the energy-efficient data center model.

Using the same parameters, we evaluate the systems per-
formance metrics, the mean power consumption e(n, ✓1, ✓2)
relative to Emax, and the mean waiting time w(n, ✓1, ✓2) for
the energy-efficient data center. As mentioned before, the
Pareto optima of the system are a subset of the R2, with one
dimension corresponding to the mean waiting time, the other
to the mean power consumption. We plot all Pareto optima,
cf. Figure 5, the resulting curve has hyperbolic properties,
going asymptotically to the mean waiting time as well as
asymptotically to a parallel of the lower bound of the power
consumption. This allows us to select an acceptable increase in
waiting time, for example one that would still satisfy a service
level agreement, and harness the resulting energy savings. On
the other hand, we can decide on the required energy savings
and infer if the corresponding waiting times are acceptable.
One possible parameter choice would allow the reduction of
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the energy consumption by 40% while only increasing the
waiting time by less then one millisecond.

Given the set of Pareto optima, we can investigate the
parameter choice that leads to these optima. To this end, we
plot the system parameters for each optimum, cf. Figure 6. The
optima themselves are sorted according to the mean waiting
time. From the figure we can see that generally, the server
deactivation threshold is very close to the number of base-line
servers, in most cases n�✓1 = 2, the closest possible distance
due to the macro state equation constraints. Furthermore, the
number of base-line servers is decreasing as the waiting time
increases. The mean waiting time spectrum can be partitioned
in interleaving sections, during which the number of base-line
servers remain constant. Furthermore, in such a section, the
server activation threshold increases super linearly.

VII. CONCLUSION

In this paper, we proposed a threshold-oriented operation
model for reducing the power consumption in a data center.
This is achieved by adjusting the number of active servers
in the system while turning the others off. The decision of
whether servers should be activated is based on the number
of packets in the incoming queue of the top of rack switch.
To get the optimal trade-off between average waiting time in
the system and the overall power consumption, we set up an
analytical model.

The results show that configurations exist, so that the power
consumption can be significantly reduced while still having
an acceptable mean waiting time. Thus, we can guarantee the
service level agreements to the end user while still saving
about 40% of energy with the server adaptation. Possible
directions for future research can introduce more adjustment
steps, take the time required for waking servers up into
account, and study the dynamic behavior of the system.
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