
Prospects for Realizing User-Centric Network
Orchestration: FEC-protected SVC Streaming

Thomas Zinner1, Florian Liers3, Tobias Hoßfeld1, Dirk Rauscher1, Bernd Reuther2, Daniel Günther2, Thomas Volkert3,
Markus Fiedler4

1University of Würzburg, Institute of Computer Science,Würzburg, Germany, [zinner;hossfeld;rauscher]@informatik.uni-wuerzburg.de
2Technical University of Kaiserslautern, Kaiserslautern, Germany, [reuther;guenther]@informatik.uni-kl.de

3Technical University of Ilmenau, Ilmenau, Germany, [florian.liers;thomas.volkert]@tu-ilmenau.de
4Blekinge Tekniska Högskola, Karlskrona, Sweden, markus.fiedler@bth.se

I. INTRODUCTION

To overcome the current limitations of the Internet, several
different approaches are existing which can be mainly distinguished
into network-aware applications and application-aware networks.
Bringing together both approaches, network-application interfaces
are to be deployed to realize smart applications as well as smart
mediation of application data through the Internet. Via this interface,
the application and the mediation network can directly communicate
with each other and exchange information adequately, such that the
end user experiences a good quality. While smart mediation includes
resource management as well as traffic management to optimally
utilize network resources and to deliver the contents according to the
application requirements, smart applications react dynamically on the
current network situation for optimal Quality of Experience (QoE),
e.g., by reducing application requirements. In this work, we consider
live streaming services based on connectionless transport protocols
like video conferencing and IPTV with high video quality playback
demands.

The main goal of this work is to optimize the QoE for live video
streaming by real-time adaptation of the required video bitrate and
thus the video quality to the current network situation (i.e., available
bandwidth or unreliable links with packet losses). Insufficient
network resources, e.g., less available bandwidth than required or
packet loss, result in a strong impairment of the video service [4]. In
our case, this results in video decoding errors and frame drops. A
smart way to reduce the required bandwidth and adjust the video
transmission is provided by the scalable extension of the video codec
H.264/AVC [1]. A Scalable Video Codec (SVC) stream can be
adjusted by the service provider, the network provider or at the
customer’s device. While the service provider can save storage
compared to single streams of different qualities, the network
provider can adjust the required bandwidth and avoid congestion, and
the end device may select the playback quality according to its
decoding capabilities in terms of computational power.

 Current research on the impact of packet loss on the user
perceived quality indicates a strong impairment of the video already
at small packet loss rates of less than 2% [4]. This motivates
mechanisms, like Forward Error Correction (FEC) methods, which
can protect a video stream against packet loss. These techniques
provide means to correct corrupted or lost packets at the cost of
additional overhead resulting in a trade-off between bandwidth and
packet loss protection. In order to optimize the user perceived quality
of a scalable video stream for the current network conditions, it is
necessary to know the bandwidth requirements of the different video
quality layers and their impact on the user perceived quality. Further,
the influence of the current network situation (e.g., packet loss and
bandwidth) has to be measured and taken into account for deciding a)
which SVC layers to transport and b) which FEC method with which

parameters to use. Based on this information, it is possible to provide
an improved QoE for the current network conditions. However, it is
not clear where to place this measurement and decision functionality
(within the network or within the application). There are different
prospects for placing this functionality and for which information is
exchanged via the network-application interface. Functionality on
application level adds complexity to the application and requires
information from the network, functionality in the network stack
requires information from the application. In order to find an
appropriate placement of the functionality and to define which
parameters have to be exchanged, the impact of the different
prospects on the user perceived quality and the corresponding costs
has to be evaluated carefully.

 This work provides a first step towards an evaluation of the
different prospects for a video streaming system using scalable video
coding and forward error correction mechanisms. The paper is
structured as follows. Section 2 briefly discusses the scalable video
codec H.264/SVC and forward error correction with Luby codes [2].
Further we discuss the benefits of a combination of both approaches.
The required functional blocks and their interaction, as well as an
implementation concept are discussed in Section 3. A brief discussion
on future work and enhancements is given in Section 4.

II. FEC-PROTECTED SVC STREAMING

This section details scalable video coding, forward error correction
and how to combine both approaches.

A. Scalable Videostreaming

The SVC extension enables the encoding of a video file at different
qualities within the same layered bit stream. This includes besides
different resolutions also different frequencies (frames displayed per
second) and different image qualities w.r.t. Signal-to-Noise Ratio
(SNR).

These three dimensions are denoted to as spatial, temporal and
quality scalability. Figure 1 gives an example of different possible
scalabilities for a video file. The left ”subcube” at the bottom is the
base layer, which is necessary to play the video file, here with CIF
resolution, 15 Hz frame-rate, and quality Q0. Based on this layer,
different additional enhancement layers permit a better video
experience with a higher resolution, better SNR or higher frame rate,
respectively. If the available bandwidth is not enough to stream the
full video quality, the question arises which layers are more
important than others. At least a minimum resolution, quality and
frame rate, which also depends on the user’s context, has to be
provided as indicated by Figure 2. Otherwise the user will not accept
the video service. Higher layers will increase the QoE further, but
also require a higher bandwidth. We implemented a SVC splitting
unit which allows adjusting the quality of a SVC stream and thus
reducing the required bandwidth.

c ©
2
0
1
2

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
i-

ti
v
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

7
.

G
I/

IT
G

K
u
V

S
F

a
ch

g
es

p
rc

h
’F

u
tu

re
In

te
rn

et
’,

2
0
1
2
.

B. Rateless FEC with Luby Codes

Luby codes are the first practical implementation of Digital Fountain
codes and were proposed by Michael Luby. They provide the basis
for Raptor Codes, which are widely used in commercial applications
such as Digital Video Broadcasting [3].
The encoding mechanism creates linear combinations using XOR
operations out of k source symbols. The amount of combined
symbols and their selection is chosen randomly for each encoding
symbol. Thus this enables the production of a quasi-unlimited amount
of encoding symbols from a finite set of source symbols. The decoder
requires any number k+ε encoded of encoded symbols to decode the
source symbols, whereas ε is the required overhead. Thus, in order to
protect the video stream against a packet loss rate pl, the sender has
to transmit more than (k+ε)/(1-pl) encoding symbols. Thus, enough
encoding symbols are available to decode the message. In case of
higher packet loss rates, this number has to be increased accordingly.
The overhead and also the decoding complexity depend on the
decoding algorithm, the number of source symbols and the
parameters of the random distribution.
 We implemented the basic encoding mechanisms and two decoding
mechanisms, namely the Ripple and the Gaussian elimination
decoding algorithm. Whereas the Ripple algorithm requires a larger
decoding overhead than the Gaussian algorithm, it outperforms the
Gaussian in terms of complexity and thus in decoding time.
Generally, for small message sizes of, e.g., 100 and 500 symbols, the
Gaussian Elimination algorithm is used, whereas for larger message
sizes of 1000 symbols and more, while for large messages of 1000
symbols, the Ripple decoder is preferred, due to the differences in
processing time.

C. QoE Provisioning-Delivery Hysteresis

With the described implementations we extended the work on the
QoE Provisioning-Delivery Hysteresis (PDH) presented in [5]. The
PDH is observed for different scenarios like VoIP, web surfing and
video streaming and implies that a controlled reduction of the
application layer throughput by e.g., speech codecs with lower
quality, affects the QoE to a much lesser extent than the uncontrolled
reduction through information loss. By combining SVC and FEC
capabilities, controlled quality reduction can be combined with error
protection. Thus, a good streaming quality can also be assured in case
of packet loss whereas the network is balanced simultaneously.

The results of our study are depicted in Figure 3. The x-axis
denotes the goodput, which is the application perceived throughput
and is 1 if the maximum quality can be streamed without loss. The

Figure 3: Extension of the PDH

y-axis denotes the corresponding user-perceived quality which is
computed with full reference metrics as presented in [6].

The goodput can be reduced either in case of packet loss, as
indicated by the case of streaming a video in 1920x1080 resolution
with no FEC. For this case, the user perceived quality decreases
rapidly and gets minimal for values of ~2% packet loss, i.e., a
goodput of 0.98. In case of degradation w/o packet loss, we study the
streaming of the video clip in lower resolutions in our example. As
can be seen in the figure, the user perceived quality decreases much
slower and keeps on a tolerable value for the lowest resolution,
480x270 pixels. Accordingly, the goodput is around ~15% compared
to the maximum resolution. The other cases denote controlled service
degradation with FEC mechanisms. As an example, streaming a
video with a resolution of 1280x720 with FEC is considered.
Switching to this resolution reduces the goodput of ~ 60%. We add a
FEC mechanism which adds an overhead ε ≈ 20%, resulting in a
goodput of ~60%. This is illustrated by the red arrow. However, by
transmitting more symbols it is now possible to cope with packet loss
rates up to ~40% and still ensuring a very good quality of the video
stream and not allocating more bandwidth than before. For lower
video stream qualities, more bandwidth can be used to protect the
video stream, as illustrated by the results in Figure 3.

III. PROSPECTS FOR REALIZATION IN THE FUTURE INTERNET

This section details the functional blocks needed for a video
streaming service using scalable video coding and forward error
correction mechanisms and discusses where to place them in a Future
Internet Architecture.

A. Functional Elements: Stream Splitter, FEC Encoder, FEC
Decoder, Monitoring Unit and Decision Unit

The functionalities to enhance a video streaming service using
SVC with FEC capabilities are depicted in Figure 4:
 SVC Splitter, an entity which can adjust the SVC stream, e.g.

with respect to the user perceived quality, cf. [6].
 The FEC Encoder encodes the stream according to given

parameters.
 The FEC Decoder decodes the stream.
 Network Observer denotes an entity or an interface which

provides information on the current network conditions. This
includes information like available bandwidth, grade of
congestion and packet loss

 The Decision Unit implements the extended PDH and
maximizes the QoE of the given SVC video stream and also

Figure 1: SVC cube Figure 2: QoE management
 for SVC

for the current network conditions. The resulting stream and
FEC parameters are then passed to the corresponding
functional blocks.

Figure 4: Functional blocks for the investigated video

streaming architecture

B. Implementation Possiblities with GAPI and Forwarding on
Gates/Sonate

A common implementation of such a system for today’s Internet
would base on UDP/IP and just consider the end hosts. The SVC
Splitter, FEC encoder and the decision unit would be placed on the
sender host and the remaining two entities on the receiver side. While
this solution is easy to deploy, the implementation overhead is large.
In special, the network observer component has to be implemented,
although it is not directly related to the problem itself. Moreover, this
component is even interesting for other applications. But such
applications would have to implement it as well, despite the fact that
these common components could be reused theoretically. In order to
decrease the implementation effort for all applications, a common
library for this component would be beneficial.

From the architectural point of view, moving this functionality into
the stack would be even more beneficial. It enables the stack itself to
access the measurement data collected by this component. In order to
enable the application to access the measurements, a suitable
application programming interface is needed. Furthermore, the
architectural view broadens the problem to multiple such
communications running in parallel. In case of limited resources the
network has to decide how to distribute the resources to the video
transmissions. More abstract, that is a question of how to distribute
the QoE among the transmissions. Should the bandwidth be used for
one video transmission in order to maximize its QoE or should the
bandwidth be equally distributed in order to have fair QoE for all?
But an equal distribution might not be optimal due to the discrete
steps and the overhead caused by a special bandwidth, as shown in
Figure 4. As a solution, the application should tell the network more
details about its streams by defining requirements.

The G-Lab API (GAPI) [7] provides access to measurement data
and enables the application to specify functional and non-functional
requirements, like “bandwidth >= 150kbit/s and loss rate < 2%”. If
these requirements cannot be fulfilled (e.g. indicated by the network
observer, which is situated in the stack) the stack will inform the
applications via events. Based on the events, the decision unit can
adjust the sender’s parameters. Different to the situation without the
application requirements, the network now has a clue about the
minimum requirements of each stream.

With dynamic stacks supporting functional composition and GAPI
(like e.g. “Forwarding on Gates” (FoG) [8] or SONATE [10]) it
might even be possible to move all other components from the
application to the stack. The main benefit would be that the decision

unit is than a part of the stack and would give the network a better
handle to adjust the amount of used bandwidth per stream.

Furthermore, Future Internets supporting functions within the
network might use the FEC en-/decoder as dynamic functional block
for securing lossy links. FoG provides this opportunity. As shown in
a demo [9], FoG can integrate such functional blocks in a scalable
way. Furthermore, the re-use of such blocks for multiple
transmissions would increase the bandwidth handled by one entity.
This results in a higher number of source symbols which can be
protected with the presented FEC mechanism more efficiently.

IV. FUTURE STEPS

Future steps concerning the proposed streaming service are
twofold. First, the mechanisms itself is currently implemented and
evaluated for static network conditions. This has to be extended to
deal with dynamic network conditions through an online adaptation
of the SVC splitter and the FEC encoder. Further, guidelines on the
accuracy and precision of the network measurements have to be
investigated in detail. Second, the current version of the SVC splitter
and FEC en-/decoder are implemented in the common way for
today’s Internet. We would like to integrate them to the FoG and
SONATE approach in order to investigate the additional benefits
from re-using them and to analyze the impact of the requirements on
the behavior of parallel streams.

Acknowledgements

This work was funded by the Federal Ministry of Education and
Research of the Federal Republic of Germany (support code 01 BK
0806, G-Lab) and by the European FP7 Network of Excellence
"Euro-NF" through the Specific Joint Research Project "PRUNO".

V. REFERENCES

[1] ITU-T Recommendation H.264: Advanced video coding for generic
audiovisual services, Telecommunication Standardization Sector of ITU,
March 2010.

[2] M. Luby: LT Codes. 43rd Annual IEEE Symposium on Foundations of
Computer Science, November 2002.

[3] DVB TM Joint Task Force on Upper Layer Forward Error Correction:
Digital Video Broadcasting (DVB); Upper Layer Forward Error
Correction in DVB. DVB Document A148, March 2010.

[4] T. Zinner, O. Abboud, O. Hohlfeld, T. Hoßfeld, P. Tran-Gia: Towards
QoE Management for Scalable Video Streaming. 21th ITC Specialist
Seminar on Multimedia Applications – Traffic, Performance and QoE,
March 2010.

[5] T. Hoßfeld, M. Fiedler, T. Zinner: The QoE Provisioning-Delivery-
Hysteresis and Its Importance for Service Provisioning in the Future
Internet. Proceedings of the 7th Conference on Next Generation Internet
Networks (NGI), June 2011.

[6] T. Zinner, O. Hohlfeld, O. Abboud, T. Hoßfeld: Impact of Frame Rate
and Resolution on Objective QoE Metrics. 2nd International Workshop
on Quality of Multimedia Experience, June 2010.

[7] F. Liers, T. Volkert, D. Martin, H. Backhaus, H. Wippel, E. Veith, A. A.
Siddiqui, R. Khondoker: GAPI: A G-Lab Application-to-Network
Interface, 11th Würzburg Workshop on IP (EuroView), Germany,
Würzburg, August 2011.

[8] F. Liers, T. Volkert, A. Mitschele-Thiel: A Flexible Abstraction for the
Future Internet, 8th Würzburg Workshop on IP (EuroView), Würzburg,
Germany, August 2008.

[9] F. Liers, T. Volkert, A. Mitschele-Thiel: Scalable Network Support for
Application Requirements with Forwarding on Gates, EuroView2011,
Würzburg, Germany, August 2011.

[10] P. Müller, B. Reuther, M. Hillenbrand: Future Internet: A Service-
Oriented Approach – SONATE, EuroView 2007, Würzburg, Germany,
July 2007

