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I. INTRODUCTION  

To overcome the current limitations of the Internet, several 
different approaches are existing which can be mainly distinguished 
into network-aware applications and application-aware networks. 
Bringing together both approaches, network-application interfaces 
are to be deployed to realize smart applications as well as smart 
mediation of application data through the Internet. Via this interface, 
the application and the mediation network can directly communicate 
with each other and exchange information adequately, such that the 
end user experiences a good quality. While smart mediation includes 
resource management as well as traffic management to optimally 
utilize network resources and to deliver the contents according to the 
application requirements, smart applications react dynamically on the 
current network situation for optimal Quality of Experience (QoE), 
e.g., by reducing application requirements. In this work, we consider 
live streaming services based on connectionless transport protocols 
like video conferencing and IPTV with high video quality playback 
demands.  

The main goal of this work is to optimize the QoE for live video 
streaming by real-time adaptation of the required video bitrate and 
thus the video quality to the current network situation (i.e., available 
bandwidth or unreliable links with packet losses). Insufficient 
network resources, e.g., less available bandwidth than required or 
packet loss, result in a strong impairment of the video service [4]. In 
our case, this results in video decoding errors and frame drops. A 
smart way to reduce the required bandwidth and adjust the video 
transmission is provided by the scalable extension of the video codec 
H.264/AVC [1]. A Scalable Video Codec (SVC) stream can be 
adjusted by the service provider, the network provider or at the 
customer’s device. While the service provider can save storage 
compared to single streams of different qualities, the network 
provider can adjust the required bandwidth and avoid congestion, and 
the end device may select the playback quality according to its 
decoding capabilities in terms of computational power. 

 Current research on the impact of packet loss on the user 
perceived quality indicates a strong impairment of the video already 
at small packet loss rates of less than 2% [4]. This motivates 
mechanisms, like Forward Error Correction (FEC) methods, which 
can protect a video stream against packet loss. These techniques 
provide means to correct corrupted or lost packets at the cost of 
additional overhead resulting in a trade-off between bandwidth and 
packet loss protection. In order to optimize the user perceived quality 
of a scalable video stream for the current network conditions, it is 
necessary to know the bandwidth requirements of the different video 
quality layers and their impact on the user perceived quality. Further, 
the influence of the current network situation (e.g., packet loss and 
bandwidth) has to be measured and taken into account for deciding a) 
which SVC layers to transport and b) which FEC method with which 

parameters to use. Based on this information, it is possible to provide 
an improved QoE for the current network conditions. However, it is 
not clear where to place this measurement and decision functionality 
(within the network or within the application). There are different 
prospects for placing this functionality and for which information is 
exchanged via the network-application interface. Functionality on 
application level adds complexity to the application and requires 
information from the network, functionality in the network stack 
requires information from the application. In order to find an 
appropriate placement of the functionality and to define which 
parameters have to be exchanged, the impact of the different 
prospects on the user perceived quality and the corresponding costs 
has to be evaluated carefully. 

 This work provides a first step towards an evaluation of the 
different prospects for a video streaming system using scalable video 
coding and forward error correction mechanisms. The paper is 
structured as follows. Section 2 briefly discusses the scalable video 
codec H.264/SVC and forward error correction with Luby codes [2].  
Further we discuss the benefits of a combination of both approaches. 
The required functional blocks and their interaction, as well as an 
implementation concept are discussed in Section 3. A brief discussion 
on future work and enhancements is given in Section 4. 

II. FEC-PROTECTED SVC STREAMING 

This section details scalable video coding, forward error correction 
and how to combine both approaches. 

A. Scalable Videostreaming 

The SVC extension enables the encoding of a video file at different 
qualities within the same layered bit stream. This includes besides 
different resolutions also different frequencies (frames displayed per 
second) and different image qualities w.r.t. Signal-to-Noise Ratio 
(SNR). 

These three dimensions are denoted to as spatial, temporal and 
quality scalability. Figure 1 gives an example of different possible 
scalabilities for a video file. The left ”subcube” at the bottom is the 
base layer, which is necessary to play the video file, here with CIF 
resolution, 15 Hz frame-rate, and quality Q0. Based on this layer, 
different additional enhancement layers permit a better video 
experience with a higher resolution, better SNR or higher frame rate, 
respectively. If the available bandwidth is not enough to stream the 
full video quality, the question arises which layers are more 
important than others. At least a minimum resolution, quality and 
frame rate, which also depends on the user’s context, has to be 
provided as indicated by Figure 2. Otherwise the user will not accept 
the video service. Higher layers will increase the QoE further, but 
also require a higher bandwidth. We implemented a SVC splitting 
unit which allows adjusting the quality of a SVC stream and thus 
reducing the required bandwidth. 
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B. Rateless FEC with Luby Codes 

Luby codes are the first practical implementation of Digital Fountain 
codes and were proposed by Michael Luby. They provide the basis 
for Raptor Codes, which are widely used in commercial applications 
such as Digital Video Broadcasting [3]. 
The encoding mechanism creates linear combinations using XOR 
operations out of k source symbols. The amount of combined 
symbols and their selection is chosen randomly for each encoding 
symbol. Thus this enables the production of a quasi-unlimited amount 
of encoding symbols from a finite set of source symbols. The decoder 
requires any number k+ε encoded of encoded symbols to decode the 
source symbols, whereas ε is the required overhead. Thus, in order to 
protect the video stream against a packet loss rate pl, the sender has 
to transmit more than (k+ε)/(1-pl) encoding symbols. Thus, enough 
encoding symbols are available to decode the message. In case of 
higher packet loss rates, this number has to be increased accordingly. 
The overhead and also the decoding complexity depend on the 
decoding algorithm, the number of source symbols and the 
parameters of the random distribution.  
 We implemented the basic encoding mechanisms and two decoding 
mechanisms, namely the Ripple and the Gaussian elimination 
decoding algorithm. Whereas the Ripple algorithm requires a larger 
decoding overhead than the Gaussian algorithm, it outperforms the 
Gaussian in terms of complexity and thus in decoding time. 
Generally, for small message sizes of, e.g., 100 and 500 symbols, the 
Gaussian Elimination algorithm is used, whereas for larger message 
sizes of 1000 symbols and more, while for large messages of 1000 
symbols, the Ripple decoder is preferred, due to the differences in 
processing time. 

C. QoE Provisioning-Delivery Hysteresis 

With the described implementations we extended the work on the 
QoE Provisioning-Delivery Hysteresis (PDH) presented in [5]. The 
PDH is observed for different scenarios like VoIP, web surfing and 
video streaming and implies that a controlled reduction of the 
application layer throughput by e.g., speech codecs with lower 
quality, affects the QoE to a much lesser extent than the uncontrolled 
reduction through information loss. By combining SVC and FEC 
capabilities, controlled quality reduction can be combined with error 
protection. Thus, a good streaming quality can also be assured in case 
of packet loss whereas the network is balanced simultaneously.  

The results of our study are depicted in Figure 3. The x-axis 
denotes the goodput, which is the application perceived throughput 
and is 1 if the maximum quality can be streamed without loss. The 
  

 
Figure 3: Extension of the PDH 

y-axis denotes the corresponding user-perceived quality which is 
computed with full reference metrics as presented in [6]. 

The goodput can be reduced either in case of packet loss, as 
indicated by the case of streaming a video in 1920x1080 resolution 
with no FEC. For this case, the user perceived quality decreases 
rapidly and gets minimal for values of ~2% packet loss, i.e., a 
goodput of 0.98. In case of degradation w/o packet loss, we study the 
streaming of the video clip in lower resolutions in our example. As 
can be seen in the figure, the user perceived quality decreases much 
slower and keeps on a tolerable value for the lowest resolution, 
480x270 pixels. Accordingly, the goodput is around ~15% compared 
to the maximum resolution. The other cases denote controlled service 
degradation with FEC mechanisms. As an example, streaming a 
video with a resolution of 1280x720 with FEC is considered. 
Switching to this resolution reduces the goodput of ~ 60%. We add a 
FEC mechanism which adds an overhead ε ≈ 20%, resulting in a 
goodput of ~60%. This is illustrated by the red arrow. However, by 
transmitting more symbols it is now possible to cope with packet loss 
rates up to ~40% and still ensuring a very good quality of the video 
stream and not allocating more bandwidth than before. For lower 
video stream qualities, more bandwidth can be used to protect the 
video stream, as illustrated by the results in Figure 3. 

III. PROSPECTS FOR REALIZATION IN THE FUTURE INTERNET 

This section details the functional blocks needed for a video 
streaming service using scalable video coding and forward error 
correction mechanisms and discusses where to place them in a Future 
Internet Architecture. 

A. Functional Elements: Stream Splitter, FEC Encoder, FEC 
Decoder, Monitoring Unit and Decision Unit 

The functionalities to enhance a video streaming service using 
SVC with FEC capabilities are depicted in Figure 4: 
 SVC Splitter, an entity which can adjust the SVC stream, e.g. 

with respect to the user perceived quality, cf. [6]. 
 The FEC Encoder encodes the stream according to given 

parameters. 
 The FEC Decoder decodes the stream. 
 Network Observer denotes an entity or an interface which 

provides information on the current network conditions. This 
includes information like available bandwidth, grade of 
congestion and packet loss 

 The Decision Unit implements the extended PDH and 
maximizes the QoE of the given SVC video stream and also 

Figure 1: SVC cube Figure 2: QoE management
 for SVC 



for the current network conditions. The resulting stream and 
FEC parameters are then passed to the corresponding 
functional blocks. 

 
Figure 4: Functional blocks for the investigated video 

streaming architecture 
 

B. Implementation Possiblities with GAPI and Forwarding on 
Gates/Sonate 

A common implementation of such a system for today’s Internet 
would base on UDP/IP and just consider the end hosts. The SVC 
Splitter, FEC encoder and the decision unit would be placed on the 
sender host and the remaining two entities on the receiver side. While 
this solution is easy to deploy, the implementation overhead is large. 
In special, the network observer component has to be implemented, 
although it is not directly related to the problem itself. Moreover, this 
component is even interesting for other applications. But such 
applications would have to implement it as well, despite the fact that 
these common components could be reused theoretically. In order to 
decrease the implementation effort for all applications, a common 
library for this component would be beneficial. 

From the architectural point of view, moving this functionality into 
the stack would be even more beneficial. It enables the stack itself to 
access the measurement data collected by this component. In order to 
enable the application to access the measurements, a suitable 
application programming interface is needed. Furthermore, the 
architectural view broadens the problem to multiple such 
communications running in parallel. In case of limited resources the 
network has to decide how to distribute the resources to the video 
transmissions. More abstract, that is a question of how to distribute 
the QoE among the transmissions. Should the bandwidth be used for 
one video transmission in order to maximize its QoE or should the 
bandwidth be equally distributed in order to have fair QoE for all? 
But an equal distribution might not be optimal due to the discrete 
steps and the overhead caused by a special bandwidth, as shown in 
Figure 4. As a solution, the application should tell the network more 
details about its streams by defining requirements.  

The G-Lab API (GAPI) [7] provides access to measurement data 
and enables the application to specify functional and non-functional 
requirements, like “bandwidth >= 150kbit/s and loss rate < 2%”. If 
these requirements cannot be fulfilled (e.g. indicated by the network 
observer, which is situated in the stack) the stack will inform the 
applications via events. Based on the events, the decision unit can 
adjust the sender’s parameters. Different to the situation without the 
application requirements, the network now has a clue about the 
minimum requirements of each stream. 

With dynamic stacks supporting functional composition and GAPI 
(like e.g. “Forwarding on Gates” (FoG) [8] or SONATE [10]) it 
might even be possible to move all other components from the 
application to the stack. The main benefit would be that the decision 

unit is than a part of the stack and would give the network a better 
handle to adjust the amount of used bandwidth per stream. 

Furthermore, Future Internets supporting functions within the 
network might use the FEC en-/decoder as dynamic functional block 
for securing lossy links. FoG provides this opportunity. As shown in 
a demo [9], FoG can integrate such functional blocks in a scalable 
way. Furthermore, the re-use of such blocks for multiple 
transmissions would increase the bandwidth handled by one entity. 
This results in a higher number of source symbols which can be 
protected with the presented FEC mechanism more efficiently. 

IV. FUTURE STEPS 

Future steps concerning the proposed streaming service are 
twofold. First, the mechanisms itself is currently implemented and 
evaluated for static network conditions. This has to be extended to 
deal with dynamic network conditions through an online adaptation 
of the SVC splitter and the FEC encoder. Further, guidelines on the 
accuracy and precision of the network measurements have to be 
investigated in detail. Second, the current version of the  SVC splitter 
and FEC en-/decoder are implemented in the common way for 
today’s Internet. We would like to integrate them to the FoG and 
SONATE approach in order to investigate the additional benefits 
from re-using them and to analyze the impact of the requirements on 
the behavior of parallel streams. 
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