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Abstract—Over last decade, Quality of Experience (QoE)
has become the guiding paradigm for enabling a more user-
centric understanding of quality of communication networks
and services. The intensifying competition among ISPs and the
exponentially increasing traffic volumes caused by online video
platforms like YouTube is forcing service providers to integrate
QoE into their corporate DNA.

This paper investigates the problem of YouTube QoE mon-
itoring from an access provider’s perspective. To this end, we
present three novel methods for in-network measurement of
the QoE impairment that dominates user perception in the
context of HTTP video-streaming: stalling of playback. Our
evaluation results show that it is possible to detect application-
level stalling events at high accuracy by using network-level
passive probing only. However, only the most complex and
most accurate approach can be used for QoE prediction due
to the non-linearities inherent in human quality perception.

Keywords-YouTube; video streaming; Quality of Experience;
network monitoring; information extraction; passive probing

I. I NTRODUCTION

Quality of Experience (QoE) describes the user perception
and the resulting satisfaction with service performance in
communication networks. QoE modeling and assessment
is increasingly gaining attention among Internet Service
Providers (ISPs) and operators. This growing interest can
be explained in terms of the increased competition and the
need for aggregated-value solutions, as well as by the risk
of having churning clients for quality dissatisfaction. With
HTTP traffic again taking the pole position in residential
broadband Internet traffic [1], one might well imagine mil-
lions of people sitting in front of their browsers, watching
their favorite YouTube videos and surfing in their preferred
social networks. However, many users face volatile network
conditions, e.g. due to signal-to-noise ratio problems on
wireless or DSL links or temporary over-utilization of shared
network resources. Such conditions may result in bad QoE,
negatively impacting the judgment of users on their ISPs.

For an ISP delivering the service to the end user, it
is thus important to understand the relationship between
the users’ perception and the characteristics of the service
provisioning through its networks. Particularly regarding
network provisioning, QoE also opens the possibility to save
resources, as it is not necessary to provide better Quality

of Service (QoS) for maintaining the same QoE level. For
example, reserving a bandwidth of 4 Mbps for delivering
a 300 Kbps video stream unnecessarily consumes ISP’s
resources without improving QoE. This is referred to as
QoE over-provisioning [2], and shows the potential impact of
considering QoE-related concepts in traditional QoS-based
network management paradigms.

To avoid QoE over-provisioning and allow for cost sav-
ings, an ISP requires proper QoE-based dimensioning (in
short QoE dimensioning) with respect to a particular service
or a mix of services. For example, for supporting video
streaming services, QoE dimensioning aims at determining
the minimum bandwidth requirements such that the targeted
QoE requirements are met. Thereby, the QoE target level is
defined by the ISP. QoE dimensioning for VoD streaming
services like YouTube faces several scientific challenges:
firstly, the ISP has to identify and monitor the traffic in
its network resulting from that service. Then, appropriate
QoE models must be conceived, which can map the resulting
measurement data into QoE levels. Finally, the ISP has to
decide which corrective actions to take so that all users get
good QoE levels.

The contribution of this work is on QoE monitoring
approaches for the YouTube video streaming service, partic-
ularly considering the ISP perspective. By ISP perspective
we refer to the fact of monitoring YouTube QoE levels
using only network-level data, which can be gathered using
ISPs monitoring infrastructures. Having a QoE monitor-
ing approach from network measurements gives to ISPs
a paramount advantage: that of detecting user-experience
problems from their available monitoring technology, thus
managing the corresponding traffic flows and the underlying
network infrastructure accordingly. We particularly consider
the YouTube video streaming service because it currently
represents the most prominent online video portal in the
Internet, with more than two billion video streams daily.
Our major contribution is dedicated to the investigation of
several network-layer monitoring approaches of YouTube
QoE, including implementation prospects and an evaluation
of their accuracy as compared to application-level moni-
toring techniques. YouTube QoE is primarily determined
by stalling effects on the application layer, as opposed to
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UDP-based video streaming common for traditional IPTV
services. In this context, the main challenge is on the robust
detection of stalling events at the application layer from
network-level traffic.

The remainder of this paper is structured as follows.
Section II discusses related work in the field of YouTube
QoE monitoring. Section III presents three approaches to-
wards passive YouTubE QoE monitoring and discusses their
advantages and disadvantages. Section IV then presents a
detailed evaluation of the most suitable approach in terms
of QoS and QoE approximation accuracy. Finally, Section V
provides some conclusions and an outlook on future work
in this field.

II. BACKGROUND AND RELATED WORK

Video streaming allows users to playback media while
content is still being downloaded in the background. The
advantages is to get almost instant access to content without
having to wait for the full download.

A number of studies have investigated the characteristics
of online video streaming traffic, which is a prerequisite
for monitoring its QoS and QoE. Authors in [3] have
studied the network characteristics of YouTube and Netflix
streaming services. They showed that depending on the
application (e.g., browser, mobile) and the container (e.g.,
Silverlight, Flash, HTML5), different streaming strategies
can be observed. In total, they identified three different
streaming strategies causing different traffic patterns which
need to be modeled accordingly.

Flash-based YouTube streaming constitutes by far the
largest share of online video traffic in current Internet
streaming scenarios. In this context, the authors of [4]
investigated the interaction between network and application
layer, particularly regarding the impact of transport protocol
and bandwidth on stalling. Authors showed that in case of
TCP, the video playback rather than the audiovisual infor-
mation itself is disturbed, since the transport protocol cares
for the retransmissions of corrupted or lost packets itself.
Furthermore, TCP adapts the transmission rate to network
congestion in order to minimize packet losses. However, if
the available bandwidth is lower than the required video
bitrate, the client buffer becomes gradually empty, which
ultimately results in stalling of the playback and thus in bad
QoE. Based on a considerable body of measurement data,
authors showed that the frequency of stalling events can be
well approximated with an exponential function

F (x) = α eβx + γ (1)

being x the normalized video demandx = V/B, defined
as the ratio between video bitrateV and network bottle-
neck capacityB, and α, β, and γ three constant values.
Furthermore, the distribution of the durationL of stalling
events can be approximated by at location-scale distribution
L ∼ TLOC(µ, σ, ν), with stalling length and stalling
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Figure 1. Fitting of the measured stalling length with a t location-scale
distribution and a normal distribution.

frequency being uncorrelated to each other. Figure 1 shows
the cumulative distribution function of the length of stalling
events. The measurement values taken from [4] are fitted
here with a normal distribution and thet location-scale
distribution. Later on we shall use the distribution of the
stalling length to evaluate the monitoring approaches in
Section IV. Results provided at [4] represent therefore a
good starting point for the detection of application-level
stalling events from network measurements, as it will be
discussed discussed in Section III.

When it comes to predicting QoE of YouTube, an essential
step is determining those key factors that have the strongest
influence on the actual experience. To this end, the authors
of [5] have conducted a series of YouTubecrowdsourcing
studies; in the QoE context, crowdsourcing consists in
outsourcing subjective testing tasks to open YouTube-users’
communities. Their results show that only the number of
stallings in a given period and the stalling length actually
have strong impact on QoE, while many other factors such
as type of browser, YouTube usage, and so forth made
very little or no difference. Therefore, QoE measurement
systems for the YouTube service should at least consider the
aforementioned two stalling-related measures. In addition,
the QoS – QoE mapping functions derived in [5] show that
user perception of stalling events is highly non-linear, with
one single stalling event already significantly impairing the
overall experience.

Regarding YouTube QoE monitoring, most related work
so far has been conducted in the context of QoE optimization
and traffic management. The authors of [6] presented a
client-side software tool to monitor YouTube traffic at the
application level, by estimating buffer levels to predict
stalling events. This approach has been successfully applied
to the application-aware self-optimization of wireless mesh
networks in [7], [8], in such a way that in case of likely
stalling, additional resources are provided by the network.
In a similar way, the ”Forwarding on Gates” (FoG) approach



[9] is used in [10] to develop a novel dynamic network
stack based on functional blocks for optimizing the QoE
of YouTube playback.

However, the aforementioned approaches are not applica-
ble in the case of an ISP willing to monitor YouTube QoE
in its network, since the installation of additional software
on the client side as well as the migration to a non-standard
network stack or topology are not practical options. For this
reason, our work focuses on monitoring YouTube QoE solely
on the network level, based on passive probing of TCP flows.

III. D ESING OFPASSIVE MONITORING APPROACHES

As already mentioned in the previous section, YouTube
QoE is basically determined by the stalling pattern as
experienced by the end user. Therefore, the passive YouTube
QoE monitoring approaches proposed in this paper rely on
the following two-steps procedure. In the first step, the
stalling pattern is reconstructed by extracting information
from the packet trace within the network. In the second step,
the reconstructed stalling pattern is mapped to QoE values by
means of an appropriate QoE model, using for example the
model provided at [5]. In such a context, the key challenge is
to accurately approximate the stalling pattern from network-
level measurements. To this end, we shall present and discuss
three different passive monitoring approaches, referred to
as monitoring approach ’M1’, ’M2’, and ’M3’. The first
approach, namely ’M1’, is based on the download time of
the YouTube video; ’M2’ relies on the end-to-end throughput
of the connection; finally, ’M3’ consists in approximating
the actual video buffer status. All three approaches allow to
estimate the stalling pattern without relying on application-
level or client-side measurements.

The stalling pattern can be described by the total stalling
time T , the number of stalling eventsN , and the duration
or length of a stalling eventL. In case of a bottleneck with
constant capacityB, regular stalling events are observed as
measured in [4]. Thus, if we assume a know distribution for
L, we can formulate the first monitoring approach:

M1. Download Time

The basic idea behind M1 is quite simple. The ISP’s
monitoring system measures the total stalling timeT as the
difference between the total video download timeY and the
video durationD, i.e. T = max(Y − D, 0). With a given
average stalling lengthL, the numberN of stalling events
can be roughly approximated asN = T/L. The download
time of the video contents can be easily extracted from
packet-level traces.

A first problem with M1 arises when trying to ob-
tain the overall duration of the videoD. There are sev-
eral possibilities in the practice. First, this information
is available from the YouTube website and can be re-
quested directly via the YouTube API. Therefore, the mon-
itoring system has to extract the YouTube video iden-

tifier from the HTTP request containing the url (e.g.
http://www.youtube.com/watch?v=75eGXJqsWJI) and the
video id (e.g. 75eGXJqsWJI). However, the system then
relies on the YouTube API for this information, which may
change from time to time. A second option is to extract
the information from the video header. YouTube uses for
example the FLV container file format, from which meta data
like video duration, framerate, and keyframes are specified.
In that case, the monitoring system has to parse the network
packets and needs to understand the container format. Hence,
both option require some extra effort for the system to get
the video duration.

A second drawback of M1 is that it considers the total
duration of the video as input; if the user does not watch the
entire video and aborts the downloading (which in practice
frequently happens), this monitoring approach cannot be
applied. Therefore, a different approach which avoids having
to download the entire video is proposed by M2.

M2. Throughput

Our second passive YouTube QoE monitoring approach
is based on the stalling frequency approximation as defined
in Eq.(1). In that case, the bottleneck capacityB has to be
estimated, which can be easily done from passive monitor-
ing packet traces and throughput measurements [11], [12].
Furthermore, the video bitrateV has to be extracted from the
packets by parsing the meta data available at the container
file format. From these two values, the normalized video de-
mandx = V/B is computed. Finally, the number of stalling
events can be approximated byN = min(D,Y )F (x),
whereY represents in this case the actual download time
of the video, and not the total video download time as in
M1. Similar to M1, the video durationD has to be extracted
from the packet traces.

The computational effort in the practice is comparable
between both approaches M1 and M2, but M2 can be applied
without completely downloading the whole video content.
However, the major problem with M1 and M2 is accuracy.
Both approaches estimate either the total stalling timeT
and/or the number of stalling eventsN , assuming that the
distribution of the stalling lengthL is known. For example,
as we have seen in Section II,L can be approximated by at
location-scale distribution, cf. Figure 1. Although the length
of a single stalling event lies between 2 s and 5 s with high
probability, this approach leads to inaccurate results andthus
QoE estimations with considerable errors.

Figure 2 shows the complementary cumulative distribu-
tion function of the number of stallingsN estimated for
given total stalling timesT , which are varied from 2 s to
16 s. The estimation is obtained by using thet location-scale
approximation depicted in Figure 1, and the approximation
applied in M1, i.e.,N = T/L. This estimation ofN
clearly exhibits a large variance, particularly for longertotal
stalling time values. For example, for a total stalling time
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Figure 2. Monitoring approaches M1 and M2 can only estimate the number
of stallings with a certain probability.

of 8 s, the number of stallings lies between 2 and 4 with
high probability. However, this range already has a strong
impact on the actual QoE, ultimately deciding between good
and bad quality: as shown in [5], the number of stalling
events is crucial for the end-user experience. Thus, the QoE
differences forN andN+1 stalling events may be dramatic.
For example, forN = 1 the difference is about 0.7 – 0.8
MOS in a 5-point MOS-scale. Consequently, in the practice
an ISP can use both approaches only for upper or lower
bound estimations of QoE.

M3. Video Buffer

In order to improve the accuracy of the YouTube QoE
monitoring, we present a third approach which estimates
the current video buffer status of the client player from
network-level measurements. The basic idea is to compare
the playback times of the video frames and the time stamps
of the received packets. The costs for the improved accuracy
are higher efforts in extracting information from the packet
traces. In particular, the size of each video frame and the
video frame rate have to be extracted from the meta data
contained in the FLV container.

Let us define some additional parameters that compose
the M3 approach. The first and most important parameter
is the total downloaded video durationτi, which is updated
from every new TCP acknowledgment received at timeti.
The value ofτi is estimated from the total number of bytes
downloaded until timeti, considering both the size of video
frames (I, B, P frames), and the video frame rate. In simple
terms, if we know the size of the received video frames, we
can estimate the number of frames to playback from the total
number of bytes downloaded; then, using the frame rate of
the video, we get the value ofτi.

We additionally define the play timeρi and the stalling
time σi, which are the user experienced video play time
and stalling time after thei-th TCP acknowledgment. The
amount of buffered video time is indicated asβi, and it

playing

stalling

Θ0

Θ1

βi−1

time

Figure 3. Management of the playback buffer in YouTube.

corresponds to the difference between downloaded video
duration τi and played timeρi, i.e., βi = τi − ρi. We
also consider a boolean stalling variableψi, which indicates
whether the video is currently playing (ψi = 0) or stalling
(ψi = 1).

The last part of the M3 approach is composed by the
way the YouTube player buffers and displays the video.
The YouTube player uses two different playing and stalling
thresholds to control the way it consumes video frames
from the playback buffer, see Figure 3. The first threshold
Θ0 defines the minimum amount of buffered video time
that has to be exceeded to start playing a stalled video;
the second thresholdΘ1 specifies the minimum amount of
buffered video time necessary to continue playing a video
once the playback has started. So if we consider the video
buffer size βi−1 at time ti−1, then we get that ifβi−1

exceedsΘ0, then the video starts playing; on the other
hand, if the video buffer falls bellowΘ1, then the video
stalls. Hence, stalling occurs if the following condition is
true: (ψi−1 ∧ (βi−1 < Θ0)) ∨ (¬ψi−1 ∧ (βi−1 < Θ1)). Our
measurement studies performed in the following section
revealed that these two buffer thresholds can be reasonably
taken asΘ0 = 2.2 s andΘ1 = 0.4 s. Using these definitions,
the stalling pattern of a YouTube video over time can be
obtained as follows:

ψi = ψi−1 ∧ (βi−1 < Θ0) ∨ ¬ψi−1 ∧ (βi−1 < Θ1)(2)

σi = σi−1 +

{
ti − ti−1, if ψi

0, if ¬ψi

(3)

ρi = ρi−1 +

{
0, if ψi

ti − ti−1, if ¬ψi

(4)

βi = τi − ρi (5)

Finally, as depicted in Eq. (3) and Eq. (4), the time
elapsed between the previous acknowledgment at timeti−1

and current acknowledgment at timeti increases the play
time ρi or the stalling timeσi, depending on the resulting
video state (i.e., playing or stalling).

Since YouTube first starts buffering (i.e., stalling state)
until the thresholdΘ0 is exceeded, the iterative computation
of the different variables is initialized in the following way:



σ0 = 0, ρ0 = 0, ψ0 = 1 . (6)

Obviously, the monitoring approach M3 is the most com-
plex and requires the highest computational effort, since all
packets have to be analyzed and the information about the
frame sizes has to be extracted. However, the approaches
M1 and M2 are not accurate enough for QoE monitoring
in the practice. For this reason, we consider only the M3
approach for evaluation in the rest of the paper.

IV. QOS AND QOE EVALUATION OF THE MONITORING

APPROACH

The evaluations of the M3 approach for passive YouTube
QoE monitoring were performed by measuring the stalling
events on the application layer, and by capturing the packets
on the network layer within a controlled environment. Then,
the M3 approach was applied to this data to estimate the
stalling pattern; finally, the obtained stalling pattern was
compared to the actual stalling as observed in the appli-
cation, which served as ground truth. This comparison of
stalling patterns represents a QoS-based evaluation, because
the user experience is not directly involved. In order to
evaluate the QoE monitoring and estimation properties of
M3, we map both the ground truth application layer stalling
patterns and the estimated stalling patterns to QoE.

A. Measurement Setup

Our measurements took place from June 2011 to August
2011 in a laboratory at FTW in Vienna. The controlled
environment was realized by emulating network conditions
resulting into stalling on application layer. We used existing
network emulation tools like Dummynet [13] to control
the network conditions in terms of packet loss, delays,
and throughput in uplink and downlink direction. Then,
we implemented a script which simulates a user watching
YouTube videos in his browser. Therefore, a local web server
was configured and web pages were dynamically generated,
which call the YouTube API for embedding and playing
the YouTube video. The video player status and the used
buffer size were monitored within the generated web page
using Javascript. At the end of the simulation (i.e. when
the simulated user completely watched the video, after a
certain timeout, or in case of any player errors), the stalling
monitoring information and the buffer status were written
to a logfile via cgi scripts. In addition, the network packet
traces were captured with wireshark, in particular tshark as
its command line implementation. As a result, we obtained
network-level QoS parameters (from the packet traces) and
application-level QoS parameters (the stalling patterns).

Next, the monitoring approach M3 was applied to the
packet traces. This means that video content packets were
identified and relevant information extracted. As a result of
this step, information about the playback times of the video
frames and the timestamps of the received network packets

were obtained. This approach can be applied online during
network operation, or offline using captured packet traces.
For the evaluation of M3, we analyzed the packets offline.

The identification of video content from a given packet
trace was achieved by analyzing the HTTP requests. The
YouTube API specifies a set of calls for requesting videos
through HTTP. Using pattern matching, these HTTP re-
quests and the corresponding HTTP objects were identi-
fied. Furthermore, YouTube uses DNS translation and URL
redirection, as the actual video contents are located on
various caching servers. This facilitates the identification of
YouTube flows. Our implementation of the video identifica-
tion and extraction tool, written in Perl, returns the following
information and data for each requested video within a
packet trace: (a) timestamps of HTTP requests, redirected
HTTP requests, and the HTTP response, (b) YouTube video
identifier, and (c) video data of the HTTP response i.e. a FLV
file. The video file itself, which was identified at the trace,
was parsed by implementing a Perl module which analyzes
the video contents. As a result, video information like video
bit rate, video resolution, used audio and video codecs, or
video size and duration were extracted. Furthermore, for
each video frame in the video stream, information about
the video playback times of frames, the size of the video
frames, as well as the type of frames (key frame or inter-
frame) were extracted. Network statistics (with respect to
TCP retransmissions, estimated round trip times, throughput.
etc.) were also obtained for the HTTP objects and for the
entire TCP stream. Finally, based on the YouTube video
identifier (b), additional information available at YouTube
were downloaded and analyzed, including the popularity of
files, the user ratings, etc.

B. QoS: Stalling on Application Layer

Based on the playback times of video frames and the
time stamps of received packets, the stalling patterns for
individual flows were approximated according to Eq.(5). The
approximation of the stalling pattern depends on additional
information like the thresholdΘ0, which makes YouTube
start playing back the video if the video buffer exceeds
this value, βi > Θ0. The thresholdΘ1 indicates that
YouTube stops playing if the video buffer is below this value,
βi < Θ1. After that, YouTube restarts playing ifβi > Θ0

again. Since we also monitored the application-level QoS
parameters beside the network-level QoS parameters, we
were able to deduce these additional parameters.

Figure 4 shows the relative error between the approxi-
mated stalling patterns and the measured stalling pattern
on the application-layer, depending on the video buffer
thresholdΘ1. From this evaluation, we found the best values
to be Θ0 = 2.2 s and Θ1 = 0.4 s, corresponding to the
minimal relative errors. Figure 4 justifies the election for
the value ofΘ1; the value ofΘ0 was obtained in a similar
way.
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Based on these thresholds, we were able to reconstruct
the stalling pattern from the network traces. Figure 5 shows
exemplary the estimated video buffer size over time. It can
be seen that the video starts playing as soon asΘ0 is
exceeded (indicated by the blue line). However, when the
buffer is belowΘ1 the video stalls (indicated by the red
line). In addition, the stalling pattern as measured on the
application layer is plotted as vertical black lines. It canbe
seen that the estimated and the actually observed stalling fits
well. However, there are some small differences caused by
various aspects. Firstly, we rely on TCP acknowledgments,
but there might be network fluctuations from the client
to the measurement point in the network. Next, the video
buffer thresholds are average values over a large set of
videos, considered in our measurements. However, the actual
thresholds for an individual video depend also on the video
structure, i.e. the sequence of I-, B-, and P-frames of the
video. Hence, small differences to the optimally found
values may emerge for some videos. Then, the small error in
estimating the video buffer propagates from frame to frame.
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Figure 6. Comparison of total stalling times measured on application layer
and estimated stalling times by YouTube monitoring approach M3.

However, a comparison of the estimated stalling time
from the network traces with the actual stalling time from
the application-level monitor revealed that the coefficient of
determination (R2 = 0.9996) was almost equal to a perfect
match (R2 = 1). The same quality of match was found
regarding the number of estimated and monitored stalling
events. Figure 6 shows the total stalling time estimated
by the monitoring approach on the x-axis versus the total
stalling time as measured on the application-layer. It can be
seen that the estimation is very accurate with respect to the
total stalling time.

However, as we have seen for the two other monitoring
approaches M1 and M2, it is not sufficient to estimate the
total stalling time only. Hence, we also take a closer look at
the estimated number of stalling events, which we can easily
obtain with M3. Figure 7 shows the absolute difference
∆N between the number of stallingsNa measured on the
application layer and the estimatedNe by M3. It can be
seen that about 50 % are exactly measured. However, for
about 30 % of the videos, there is a difference of one stalling
event. Although this does not seem to be much, it may
have a strong influence on QoE. Therefore, we additionally
investigate the relative difference∆N∗ = |Ne−Na|

Na
. From

Figure 8, we can see that the relative difference is quite
small and below 0.2 for 90 % of the videos.

C. QoE: Overall Quality as Experienced by the End User

The main goal of the monitoring approach is to estimate
the YouTube QoE. Therefore, we finally map the stalling
patterns to QoE according to the model provided at [5],
and compare the difference between the ’measured’ QoE
and the ’estimated’ QoE, based on the reconstructed stalling
patterns. For the comparison, we consider (a) a worst case
estimation to get an upper limit of the QoE difference and
(b) a best QoE estimation, which uses the ’best’ QoS – QoE
mapping function available in [5].
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Figure 7. Absolute difference∆N = |Na −Ne| between the number of
stallingsNa measured on application layer andNe estimated by YouTube
monitoring approach M3.
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Figure 8. Relative difference∆N∗ =
|Na−Ne|

Na
between the number of

stallingsNa measured on application layer andNe estimated by YouTube
monitoring approach M3.

For the worst case estimation, short stalling events of 1 s
length are considered, which sum up to the total stalling
time. This is a worst case estimation, as it leads to a higher
number of stalling events than really observed. Although the
QoS comparison in Figure 6 only leads to small differences
between the measured total stalling time and the estimated
total stalling time, these differences may lead to strong QoE
differences due to the non-linear perception of stalling. Thus,
the worst case estimation leads to an upper bound regarding
QoE differences.

For the best case estimation, the measured number of
stallings for measured lengths of single stalling events are
mapped to QoE. This measured QoE value is compared to
the estimated QoE, obtained from the estimated number of
stallings and the corresponding lengths of single stalling
events, and using the aforementioned mapping function.

The cumulative distribution function of the QoE differ-
ence is depicted in Figure 9 for both estimations. It can be
seen that for about 80 % of the analyzed videos, the QoE
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Figure 9. Quality of Experience difference∆QoE in terms of MOS
between measurements on application layer and estimation by YouTube
monitoring approach M3.

difference is almost zero (best estimation). As upper bound,
2/3 of the analyzed videos show a QoE difference below 0.5,
which may be acceptable for an ISP. However, differences
can be as large as one step on the MOS scale, as observed
for 10 % of the videos. Thus, the monitoring approach may
estimate good quality (MOS 4), while the users actually
only experience a fair quality (MOS 3). The main reason
for these inaccuracies is the aforementioned error propaga-
tion. According to [5], end-user quality perception and the
underlying mapping from stalling QoS to YouTube QoE are
highly non-linear; therefore, a relatively small measurement
error can result in the aforementioned MOS differences. For
example, when the number of stalling events is very low,
one stalling already makes a huge difference in QoE. As
a consequence, an ISP has to take these error margins into
account and set its alarm thresholds accordingly.

V. CONCLUSION

This paper has investigated the feasibility of in-network
YouTube QoE monitoring via passive probing on ISP level.
We showed that in the context of YouTube, stalling of the
video playback is the main impairment that needs to be
detected and measured. Consequently, the main challenge
for YouTube QoE monitoring on ISP level is the accurate
reconstruction of the stalling events that arrive at the ap-
plication layer, using network packet traces only. To this
end, we introduced three different monitoring approaches
and briefly compared them in terms of computational effort
and accuracy.

As a main result, we showed that accurate reconstruction
of stalling events just on behalf of network-level measure-
ment data is possible, and that YouTube QoE monitoring
on ISP-level is thus feasible. However, we found that only
the most accurate, and unfortunately the most complex
approach, can be actually used for QoE monitoring purposes,
since (a) stalling frequency and stalling duration both need to



be measured, and (b) the non-linearity of human perception
demands for high QoS measurement accuracy, particularly
in those cases where stalling frequency is low.

In this paper we claim that the developed approach can be
used for QoE monitoring from an ISP perspective, but we
did not perform any type of scalability evaluation regarding
the number of YouTube video streaming flows that can be
actually monitored and assessed. This analysis depends on
the particular characteristics and capacity of the monitoring
infrastructures used by the ISP, but in any case, we plan to
conduct evaluations on this direction, at least using standard
monitoring equipment. Continuing with future work, we also
plan to validate the M3 monitoring approach within the
context of a field trial. Furthermore, our current approach
has only been used for flash-based YouTube Streaming using
the FLV container. Therefore, we envisage to extend our
approach towards inclusion of HTML5 as well as mobile
clients.

ACKNOWLEDGMENT

The research has been supported by COST TMA Action
IC0703, COST QUALINET Action IC1003, and by the
European FP7 Network of Excellence ”Euro-NF” through
the Specific Joint Research Project “PRUNO”. In addition,
this work has been supported within the projects ACE 2.0
and U-0 at the Telecommunications Research Center Vienna
(FTW) and has been funded by the Austrian Government and
the City of Vienna within the competence center program
COMET. The authors alone are responsible for the content
of the paper.

REFERENCES

[1] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On
dominant characteristics of residential broadband internet
traffic,” in Proceedings of the 9th ACM SIGCOMM conference
on Internet measurement conference, ser. IMC ’09. New
York, NY, USA: ACM, 2009, pp. 90–102.

[2] T. Hoßfeld, “Performance Evaluation of Future Internet Ap-
plications and Emerging User Behavior,” Ph.D. dissertation,
University of Würzburg, aug 2009.

[3] A. Rao, Y.-S. Lim, C. Barakat, A. Legout, D. Towsley, and
W. Dabbous, “Network characteristics of video streaming
traffic,” CoRR, vol. abs/1111.0948, 2011.

[4] T. Hoßfeld, T. Zinner, R. Schatz, M. Seufert, and P. Tran-Gia,
“Transport Protocol Influences on YouTube QoE ,” University
of Würzburg, Tech. Rep. 482, jul 2011.

[5] T. Hoßfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, and
P. Tran-Gia, “Quantification of YouTube QoE via Crowd-
sourcing,” in IEEE International Workshop on Multimedia
Quality of Experience - Modeling, Evaluation, and Directions
(MQoE 2011), Dana Point, CA, USA, dec 2011.

[6] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle,
“YoMo: A YouTube Application Comfort Monitoring Tool,”
in New Dimensions in the Assessment and Support of Quality
of Experience for Multimedia Applications, Tampere, Finland,
jun 2010.

[7] ——, “Aquarema in Action: Improving the YouTube QoE
in Wireless Mesh Networks,” inBaltic Congress on Future
Internet Communications (BCFIC), Riga, Latvia, feb 2011.

[8] B. Staehle, F. Wamser, M. Hirth, D. Stezenbach, and
D. Staehle, “AquareYoum: Application and Quality of
Experience-Aware Resource Management for YouTube in
Wireless Mesh Networks,”PIK - Praxis der Informationsver-
arbeitung und Kommunikation, 2011.

[9] F. Liers, T. Volkert, and A. Mitschele-Thiel, “Demonstrating
forwarding on gates with first applications,” inProceedings
of EuroView2010, 2010.

[10] T. Hoßfeld, F. Liers, T. Volkert, and R. Schatz, “FoG and
Clouds: Optimizing QoE for YouTube,” inKuVS 5thGI/ITG
KuVS Fachgesprch NG Service Delivery Platforms, Munich,
Germany, oct 2011.

[11] K. Lai and M. Baker, “Nettimer: A tool for measuring
bottleneck link,” in Proceedings of the 3rd conference on
USENIX Symposium on Internet Technologies and Systems,
2001.

[12] T. En-Najjary and G. Urvoy-Keller, “Pprate: A passive ca-
pacity estimation tool,” inProceedings of E2EMON, 2006.

[13] M. Carbone and L. Rizzo, “Dummynet revisited,”SIGCOMM
Comput. Commun. Rev., vol. 40, pp. 12–20, April 2010.


