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Abstract
A considerable share of applications such as web or e-mail brows-
ing, online picture viewing and file downloads imply waiting times
for their users, which is due to the turn-taking of information re-
quests by the user and correspoding response times until each re-
quest is fulfilled. Thus, end-user quality perception in the context of
interactive data services is dominated by waiting times; the longer
the latter, the less satisfied the user becomes. As opposed to heav-
ily researched multimedia experience, perception of waiting times is
still not strongly explored in the context of Quality of Experience
(QoE). This tutorial will contribute to closing this gap. In its first
part, it addresses perception principles and discusses their applica-
bility towards fundamental relationships between waiting times and
resulting QoE. It then investigates to which extent the same relation-
ships can also be used to describe QoE for more complex services
such as web browsing. Finally, it discusses applications where wait-
ing times determine QoE, amongst other factors. For example, the
past shift from UDP media streaming to TCP media streaming (e.g.
youtube.com) has extended the relevance of waiting times also to the
domain of online video services. In particular, user-perceived quality
suffers from initial delays when applications are launched, as well as
from freezes during the delivery of the stream. These aspects, which
have to be traded against each other to some extent, will be discussed
mainly for HTTP video streaming in the last part of this tutorial.

Index Terms— Waiting Time Perception, Web QoE, YouTube
Video Streaming, Stalling, Initial Delay, QoE, Subjective Tests

Disclaimer
The authors want to point out that this is an invited paper which is
based on previous publications by the authors [12,21,23,38,48] and
partly reuses contents in terms of figures and text passages. The
original figures and publications are clearly referenced and provide
the tutorial audience with links to further reading.

The tutorial is aimed at researchers interested in the impact of
waiting times and delays on QoE, in particular, for web-based appli-
cations such as web browsing and video streaming. Since the content
of the tutorial is on fundamental relationships known from psychol-
ogy which are applied (in theory and practice) to web-based services,
all level of researchers are welcome: PhD students with basic back-
ground on QoE as well as QoE experts. The structure of the tutorial
is reflected by the table of contents of this paper.

1. INTRODUCTION

Time is non-recurring. Other than money and goods, it cannot be
reproduced, extended or multiplied. In general, people do not like to
wait unnecessarily since time spent on unnecessary or unproductive
matters is considered to be lost. This particularly applies to waiting
times when time cannot used it for other purposes.

Reference [31] puts an experience of early World Wide Web
(WWW) adopters in the middle of the 1990s in a nutshell by asking
“Tired of having to make coffee while you wait for a home page to
download?”. The page reminds of the growth of waiting times in Eu-
rope during the afternoon when the American users became active;
users associated WWW with “World Wide Wait”. In the meantime,
the early-afternoon problem lost importance due to massive installa-
tions of server and network capacities. Today, we are facing other
slowpokes such as overloaded terminals and access networks, or in-
effective service chains. As interactive applications dominate the
computer world, with very different activity grades ranging from ini-
tiating a video transfer in a browser via web-based work processes to
online gaming, associated waiting times on quite different timescales
(for the video start; for the web form to become updated; for the
game to react to one’s input) have become daily business and bones
of contention for users.

Technically speaking, service usage on the WWW (or short
Web) is characterized by a request – response scheme where the
user issues a request for a search result, a web page, a file down-
load, a video and so forth. Typically, the response of these requests
is not instant but rather delayed to a certain extent (influenced by
the type of request and the type of desired response). As a result,
user-perceived quality is largely dominated by these response times
or waiting times, respectively. Figure 1 provides an illustration of
waiting time for web-based services.

The importance of limited waiting times for successful e-
commerce was investigated already in the early days of the Web.
Reference [62] points out an 8 s-limit of page download time to be
kept in order to avoid user churn. In the study [7], users were given
tasks in a web-shop with deliberate additional delays. Most interest-
ing are some citations of user reactions, such as “If it’s slow, I won’t
give my credit card number”; “This is the way the consumer sees the
company...it should look good, it should be fast”; “As long as you
see things coming up it’s not nearly as bad as just sitting there wait-
ing and again you don’t know whether you’re stuck”; “You get a bit
spoiled. I guess once you’re used to the quickness, then you want it
all the time”. Obviously, waiting times affect user trust into the sys-
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Fig. 1. Illustration of Waiting Time (modified from [38]).

tem and the company behind it, and can easily become showstoppers
once money gets involved. Furthermore, decreases in waiting times
increase user expectations on performance; based on the knowledge
and experience of how quick responses could be given, subsequently
growing waiting times are perceived as particularly disturbing.

Research on QoE has so far been dominated by multimedia ser-
vices. However, it may be observed that early literature even refers
to web experience. For instance, reference [32] investigates the rela-
tionship between (limited) access speed and the share of user-broken
sessions, which are clear signals that users lost patience. Also in
the study [52], users were given the opportunity to break the down-
load of a picture once they ran out of patience, which typically hap-
pened after 10 to 20 s. As increasingly many videos are offered via
the web, having to wait for a video to start has become a widely-
known phenomenon. Furthermore, the increased use of TCP as
transport protocol and the corresponding transformation of packet
losses and reorderings into delays frequently make users wait for a
frozen video to resume and turn attention from well-researched spa-
tial issues (i.e. artefacts within the video pictures) to temporal is-
sues. Obviously, user patience is challenged by waiting times before
and during video consumption, and too long and/or frequent waiting
times imply risk for user churn as for any other interactive service.
For telecom operators, the special character of web-based interac-
tive services changes their quality paradigm from “What distortions
are tolerable to ensure a certain degree of user satisfaction” towards
“Which waiting times are sufficient to ensure a certain degree of user
satisfaction”.

On this background, the paper sets out to contribute to the un-
derstanding of temporal QoE issues, in particular of the impact of
waiting times on QoE. Its remainder is structured as follows. In
Section 2 we review related work from psychology on human time
perception. Section 3 describes a set of studies which have been
conducted in order to prove that for simple interactive data services,
time perception principles from psychology are also applicable to
explaining the logarithmic relationship between waiting times and
resulting user satisfaction ratings. In addition it is discussed whether
the same relationship also holds true for more complex services such
as web browsing. By doing so, we identify several difficulties on the
technical as well as the user level which increase the complexity of
quantifying web browsing QoE considerable. Section 4 addresses
waiting times both before and during video delivery. Finally, Sec-
tion 5 concludes the paper with a brief summary.

Fig. 2. Perceived duration vs. objective duration from [51].

2. TIME PERCEPTION IN PSYCHOLOGY

Work on human time perception covers a wide range of temporal
perspectives on human behavior (see [20] for a comprehensive re-
view). This includes time estimation, perception of durations, the
underlying timing systems in the human brain etc. The aim of this
tutorial is not to go into the whole deepness of the psychological lit-
erature but rather focus on the general terminology and relationships
between human time perception and psychophysical principles1. By
reviewing the related work on human time perception one encoun-
ters several different notions about the subjectively perceived time
used by the subject for making his judgment. Therefore, we want to
point out that the terms perceived, internal, subjective, psychologi-
cal, and apparent duration (time) are used interchangeably; generally
speaking, they refer to the temporal value(cf. [1]).

As in the domain of multimedia quality evaluation different
modalities have to be considered, researchers should be aware of
differences between modalities regarding time perception. By its
nature, time can not be a direct stimuli but is a certain duration be-
tween electrial stimuli signals of the nervous system. This requires
the transformation from physical signals into a electrical signals
in the nervous system via a sensory organ. Due to the different
(temporal) properties of different sensory organs the temporal res-
olution differs for stimuli of different modalities. Auditory stimuli
are more precisely processed on a temporal level compared to vi-
sual or tactile stimuli [19]. A further difference is the fact, that
auditory marked intervals are perceived longer as visually marked
ones [17,36]. Another characteristic of temporal stimuli is the effect
that there are instances in which the second of two intervals is per-
ceived as being much shorter than the first one, an effect known as
the time-shrinking illusion [4]. These differences and characteristics
of temporal stimuli have to be considered in the relation between
waiting times and QoE.

In human time perception it is acknowledged that (subjective)
perception of a duration should never be assumed to be accurate and
true to the actual duration2. Whereas actual duration reflects objec-
tive time, perceived duration reflects subjective psychological time,
which is susceptible to varying degrees of distortion. When users
do gauge durations, they are more likely to rely on mental estima-
tions rather than objective measurements [1, 20, 51] as depicted in
Figure 2.

In the context of interactive applications system response times
do not only contribute to the user’s perceived quality of the system

1An exhaustive survey on the four laws of psychophysics can be found
in [64].

2This is similar to difference between subjectively perceived quality and
objectively measured quality (QoS).



but also add to the felt interactive nature of the system. [38] summa-
rizes three important limits for subjective response times (i.e. wait-
ing times) stemming from [43] and their relation towards perceived
interactivity:

• 0.1 s is about the limit for having the user feel that the system
is reacting instantaneously.

• 1.0 s is about the limit for the user’s flow of thought to stay
uninterrupted, even though the user will notice the delay.

• 10 s is about the limit for keeping the user’s attention focused
on the dialogue.

However, user satisfaction or user perceived quality is not automati-
cally linked with these times as there are also other influencing fac-
tors to be considered such as service or application, expectations
etc. For analyzing user satisfaction based on perceived duration
[51] states that this is only meaningful when the perceived duration
is compared to a tolerance threshold. If the perceived duration is
shorter than the tolerance threshold, the user interprets that as fast
and decent. Conversely, if the duration is perceived as longer than
the tolerance threshold, the user interprets the duration as slow and
insufficient. The value of this tolerance threshold is influenced by
the context, personal factors, past experiences etc. (cf. [51]). Putting
that into the QoE context it is obvious that this is congruent with the
formation of subjectively perceived quality as described by [30, 47].
An example for the context influence of the duration threshold reads
as follows [51]: A ten-minute wait for a person who is already 15
minutes late for an important meeting is excruciating. The same
ten-minute wait for a person who has already waited three days
for a package to arrive is trivial. This also exemplifies nicely the
importance of the relation between stimuli and stimuli change for
user satisfaction with a service and bridges to the principles of psy-
chophysics and human perception [14, 57]

Initial work on psychophysical principles in human time per-
ception has been conducted by [13] already in 1975, where a rela-
tionship between the magnitude of the error of time estimations and
the duration of the sample length to be estimated has been identified
and attributed to Steven’s Power Law [54]. Successive work by [1]
extended these results and added other models including the Weber-
Fechner-law while [18,33] set out to identify the minimal achievable
error for time estimation based on the aforementioned models. They
came to the conclusion that the relationship between estimation er-
ror and stimuli length is constant, which is essentially a version of
Weber’s law where the estimation error (termed Weber Fraction) is
equivalent to the just noticeable difference already discussed above.
Extension of these results to time related problems in other disci-
plines such as medicine [55] or consumer behavior research [3, 63]
has proven that these relations can be successfully transferred from
psychological lab studies to real world problems. Of particular in-
terest to our problem is the work of [3], which shows that for the
subjective evaluation of waiting times on a linear scale a logarithmic
relationship does apply. Within the remainder of this tutorial paper
we will additionally focus on this logarithmic relationship between
waiting time and QoE.

3. SURFING VS. WAITING: WEB QOE

In general, the term Web QoE stands for the Quality of Experience
of interactive services that are based on the HTTP protocol and are
accessed via a browser [22]. The most prominent application exam-
ples of this category are surfing the web, downloading files (e.g. mp3

songs) and handling e-mails. Since from a user perspective the inter-
action with such applications is based on the same WIMP3 paradigm
known from traditional GUI-based desktop multimedia applications,
similar principles of time perception and QoE apply to both cate-
gories [16, 53].

3.1. QoE of Web Browsing

As concerns web browsing it has been widely recognized that in
contrast to the domains of audio and video quality, where psycho-
acoustic and psycho-visual phenomena are dominant, end-user wait-
ing time is the key determinant of QoE [6, 41, 42]: the longer users
have to wait for the web page to arrive (or transactions to complete),
the more dissatisfied they tend become with the service.

3.1.1. From Pages to Sessions

From a technical perspective, a web page is an HTML (Hyper Text
Markup Language) text document with references to other objects
embedded in it such as images, scripts, etc. While HTTP Hyper Text
Transfer Protocol) constitutes the messaging protocol of the Web, the
HTML describes the content and allows content providers to connect
other web pages through hyperlinks. Typically, users access other
pages or new data by clicking on links, submitting forms. Within
this basic paradigm, each clicked link (or submitted form) results in
loading a new web page in response to the respective HTTP request
issued by the user, resulting in a new page view whose QoE is char-
acterized by the the time the new content takes to load and render in
the browser. Furthermore, the surfing user typically clicks through
several pages belonging to a certain web site and of course also oc-
casionally changes sites as well. In this respect, user’s web session
can be characterized by a series of page view events and the related
timings of the stream of interactions (see Figure 3b).

3.1.2. From Request-Response to Flow Experience

The speed and fluidity of the browsing experience has been shown
to depend on a number of factors, particularly on QoS (Quality of
Service) parameters of the underlying network. In particular, large
packet delay or low bandwidth are well known to cause long load-
ing times of objects and thus unacceptable completion times of page
views (cf. [2, 6, 8]). In this respect, the time elapsed between the
URL-request (e.g. caused by a click on a link) and the finished ren-
dering of the Web page, referred to as page load time (PLT), is a
key performance metric (see Figure 3b). Another relevant metric
is the duration from request submission until the rendering of the
new page starts, i.e. when the user receives the first visual sign of
progress [10, 45]. In dedicated lab studies, these page view cen-
tric metrics have been shown to directly correlate with QoE [27,28].
Thus it seems that waiting times related to the progress of page views
are sufficient for predicting Web QoE.

However, several web studies confirm that web browsing is a
rapidly interactive activity (cf. [53, 59]). Even new pages with plen-
tiful information and many links tend to be regularly viewed only
for a brief period - another reason to offer concise pages that load
fast [42]. Thus, users do not perceive web browsing as sequence
of single isolated page retrieval events but rather as an immersive
flow experience (cf. [53]). In general, the flow state is characterized
by positive emotions (enjoyment) and focused attention [9] and as
a result, heightened human performance and engagement [58]. The

3The acronym WIMP denotes “windows, icons, menus, pointer”, a style
of interaction using these elements of the user interface.



notion of flow implies that the quality of the web browsing experi-
ence is determined by the timings of multiple page-view events that
occur over a certain time frame during which the user interacts with
a website and forms a quality judgment. This has a dual influence
on the relationship between waiting times and QoE: on the one hand,
flow experiences cause users to ’lose their sense of time’, resulting in
distorted time perception [9]. On the other hand, a sudden instance
of overly long waiting time(s) abruptly ends the pleasant flow state
and thus tends to be perceived particularly negatively [53, 60].

In addition, since during rendering page elements are typically
displayed progressively before the page has been fully loaded, the
users information processing activity tends to overlap with the page
loading phase. In addition, the screen real-estate of the browser win-
dows tends to be limited, with pages appearing to be complete before
even having been fully loaded. As a consequence, the users percep-
tion of waiting time and latencies becomes blurred by the rendering
process itself (which in turn is strongly influenced by page design
and programming) [34, 53].

All of the above factors make the relationship between waiting
times and QoE more complex than e.g. a file download, as the ex-
perimental results in the next subsections will demonstrate.

3.2. Experimental Results

On this part of the tutorial we will also discusses experimental re-
sults in the field of Web QoE and their consequences on questions of
methodology and time perception. User-perceived performance can-
not be simply derived from a direct mapping of page-load or session
times to QoE. This is shown by the following three findings from a
series of web-browsing QoE studies conducted in our labs at FTW:
firstly, web-browsing is an immersive flow experience during which
the user encounters a time series of waiting times (here also called
page-load times or PLTs), beyond a single request-response transac-
tion. Secondly, even if conditions in terms of QoS levels are held
constant, PLTs fluctuate substantially during the course of browsing
a web site. Thirdly, the subjective PLT as perceived by the end user
and the technical PLT (typically measured on network or application
level) tend to deviate from each other considerably.

3.2.1. Subjective Testing Methodologies for Web Browsing QoE

In contrast to audio and video quality assessment methodologies,
where several accepted and even standardized testing methodologies
exist, there is far less guidance for proper testing methodologies for
web browsing QoE. One main difference towards audio and video
assessment methods is the difference in user behavior as the user
of a web page is not issuing a single request which is responded
by one media experience, but rather a series of such request and
responses as described in 3.1 is typical for web page usage. Figure 3a
depicts the two request - response patterns involved in web browsing
where T1+T2 or T3+T4 respectively, characterize the waiting time
for one page view. As discussed in 3.1, a web session consists of
several of such waiting times which are typically of different length
(cf. Figure 3b).

A testing methodology for web browsing QoE must therefore
ensure that such request - response patterns are issued throughout an
evaluation. In order to achieve that two different approaches can be
distinguished: 1) a certain number of requests or 2) a certain time
for one web session. Approach 1) as used in [15, 22, 28] demands
two requests and following responses and page views as depicted
in Figure 3b (therefore addressing just a subset of page views of a
whole web session as indicated by the zoom beam in Figure 3). Af-
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Fig. 3. a) Waiting times related to request-response patterns in web
browsing [28] and b) Web session as series of page views with dif-
ferent waiting times.

ter completing the user is then prompted for his quality rating on an
ACR scale. The independent variable here are the T1+T2 and T3+T4
times. Contrary, approach 2) which was utilized in [48–50] uses pre
defined session times. For each session the user is asked to execute
a certain task on the given webpage while network parameters (e.g.
downlink bandwidth, round trip time) are varied as independent vari-
able. After the session time is elapsed the quality rating is gathered.
Whereas approach 1) considers the overall session time as indepen-
dent variable against which the MOS are plotted, approach 2) uses
network level parameters as independent variable which then influ-
ences the waiting times for each request - response pair. While the
latter approach guarantees a more realistic web browsing experience
for the user resulting in a series of waiting times (cf. Figure 3b)
the user is exposed to, the former approach allows to exactly control
waiting times. Depending on the aim of the web browsing study to
be conducted one has to decide for one has to weigh advantages and
disadvantages os these two approaches.

3.2.2. Independent Variable: Page Load Time vs. Bandwidth

Next, we want to present results from two subjective user studies
differing regarding the independent variable varied. In the first study
the page load time has been varied whereas in the second study the
downlink bandwidth was varied. The results of the two experiments
are illustrated in the following way. The mean opinion score (MOS),
i.e. the average over the subjective ratings for the same test con-
dition, is plotted depending on the preset waiting time t with some
markers. Additionally, as [12] assume that the relationship between
waiting time and corresponding QoE is logarithmic, a logarithmic
curve fitting QoE(t) according to [12] is plotted as solid or dashed
line.

Figure 4 shows the result for manipulated page load times (PLT
task). The subjects were asked to browse through a picture album
or to perform google searches. In both cases the request for the
next picture and the search result were delayed for a certain time,
respectively. The user study for the ’picture load’ task was repeated
twice. In addition, a ’photo’ task has been conducted which dif-
fers from the ’picture load’ task in the technical realization of the
instrumented waiting time. For the ’picture load’ (and the ’search’)
task, the HTTP requests were delayed, while for the ’photo’ task
the HTTP response instead of the HTTP request was delayed. How-
ever, this does not lead to observable differences from the end user’s
point of view. It can be seen that the assumed logarithmic relation-
ship holds true except for the lowest load time t = 0.18 s for the



’Photo task’ in Figure 4. This exception is in line with psychological
time perception literature stating that duration estimation of waiting
times below 0.5 s have to be treated different from longer waiting
times [20]. This means that QoE reaches saturation for small wait-
ing times and that the logarithmic relationship only applies above the
saturation point, i.e. for noticeable waiting times.

The differences in the y-intercept for the different task can be
ascribed to the difference in the tolerance thresholds for the different
tasks.
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Fig. 4. User satisfaction for various constant page load times (PLT
task) [12].

In the second study the users were asked to browse five differ-
ent webpages while we manipulated the downlink bandwidth and
gathered respective ratings for each bandwidth setting (details can
be found in [50]). We assumed that these bandwidths could be re-
calculated into waiting times if the number of objects and their size
are known as recommended by [28]. To be able to do that a poste-
riori we gathered these properties through passive traffic monitoring
which we were running in parallel throughout the test.

Figure 5 shows the measured MOS and the corresponding loga-
rithmic fitting in dependence of the downlink bandwidth. However,
it can be seen that the logarithmic fitting does not match the MOS
values very well. The major reasons for this mismatch are discussed
below.
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Fig. 5. Web browsing with downlink bandwidth limitation instead
of instrumented constant page load times [12].

3.2.3. Practical Issues with Web Browsing and Waiting Times

1. Stimuli vs. Impairment. First of all, the logarithmic relationship
relates waiting times to QoE. Similar to the Weber-Fechner law, a
stimulus, i.e. waiting time, is related to user perception. However,
bandwidth is not a stimulus in a strict psychological sense. Hence,
the logarithmic relationship can only be applied if there is a linear
relationship between bandwidth and time which is obviously not the
case. In contrast, the IQX hypothesis introduced in [24] proposes an
exponential interdependency between QoE and QoS parameters like
bandwidth. Figure 5 shows in addition the corresponding exponen-
tial curve fitting which obviously seems to be quite appropriate to
describe web QoE with respect to bandwidth.

2. Time vs. Bandwidth. The example of using bandwidth in-
stead of waiting times for pages of a known size as shown in Fig-
ure 5 has already shown that the relation between bandwidth and
QoE is different from the more simple scenarios where editing time
was directly manipulated. One of the main causes for this difference
is the fact that the relation between objectively measurable page load
time and bandwidth is not linear due to the complexity and interac-
tions of the HTTP and TCP protocol with the network performance
(e.g. impact of high bandwidth-delay product on TCP performance;
impact of TCP’s slow start, congestion and flow control on loading
times of small pages; HTTP pipelining. cf. [5]). This leads to com-
plex, non-linear models of network-level page load times for entire
web pages. Furthermore, in addition to the network page load time,
the local machine rendering and displaying the web page requires a
certain amount of time. Hence, the application-level page load time
differs from the network PLT and may vary dramatically for differ-
ent types of web pages, e.d. due to the actual implementation, the
used plugins, etc.

3. Perceived vs. Application PLT. As we have already seen,
there are several factors yielding to non-linear relationships between
bandwidth and (network and application) page load time. But even
if we could achieve a mapping function outputting the exact objec-
tive (network and / or application) PLT this does not yet mean that
this matches the subjective PLT as the example of perceived and
objective time in Figure 2 has already shown. In addition, in web
browsing a page might appear to the end-user to be already loaded
although page content is still being retrieved, due to the progressive
rendering of the browser, asynchronous content loading (AJAX) and
the fact that pages are often larger than the browser window itself. To
assess the resulting differences between subjectively perceived PLT
and application-level PLT, we additionally asked participants in ded-
icated tasks to mark the point in time when they considered a page
to be loaded, i.e. the subjectively perceived PLT. Figure 6 shows
the ratio of the application-level PLT and the subjectively perceived
PLT for different page types (and three different pages within each
type, e.g. front page, search results and article detail page for Ama-
zon). It can be seen that there are large differences between technical
and perceived completion time, with ratios ranging from 1.3 up to 3
(where 1 would be the exact match between subjectively perceived
and application level PLT).

Summarizing, all these different aspects lead to practical issues
and challenges to measure or estimate the waiting time as perceived
by the end user.

3.2.4. Waiting Times for other Web-based Services

Also other web-based services such as file downloads, e-mail re-
trieval etc. are also characterized by waiting times and are shown
within this section. Figure 7 depicts the results of file downloads
from [12] in which 2.5 MB and a 10 MB files were downloaded by
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Fig. 6. Perceived subjective vs. application-level PLT for different
pages [12].

the users. The measurement studies were conducted in 2009 first and
repeated in 2011. It can be seen that the file size influences the eval-
uation of the waiting time on the y-intercept. The same waiting time
results in significantly different MOS scores depending on the file
size. For example, a waiting time of 38 s for the 2.5 MB files yield
a MOS of 2.75 whereas the MOS of the 10 MB files was 3.58. This
can be explained by the fact, that the expectation dimension of QoE
(cf. [11]) interferes here. If people do know that the file size is large,
they have different expectations regarding the respective download
time to expect. As this expected time is longer in case of the 10MB
files compared to the 2.5MB files, the ratings for the 10MB files are
better. A further discussion on expectations and their influence on
waiting time evaluation can be found in [3].
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Fig. 7. Download of files of various sizes was investigated in two
subjective user studies conducted in 2009 and in 2011, respectively
(DL task) [12].

Figure 8 shows results from another study where waiting times
were manipulated by [44]. In order to compare their results to the
results we have obtained, we have also plotted logarithmic fittings.
It can be seen that also these results can be closely approximated by
the shown logarithmic fitting, hence coinciding with the results from
our studies.
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Fig. 8. Results from [44] supporting the WQL hypothesis, i.e. log-
arithmic relationship between MOS and waiting times, for several
services.

4. WAITING TIMES IN VIDEO STREAMING

In the final part of the tutorial, we discuss relevant applications
beyond web browsing where waiting times determine QoE amongst
other factors. As major application, we consider Internet video
streaming. While Section 4.1 discusses service interruptions caus-
ing the user to wait during service consumption, Section 4.2 con-
siders the impact of initial delays, i.e. waiting times before service
consumption.

For video streaming applications, service interruptions followed
by waiting times are caused by rebuffering of the video due to ’bad’
content delivery by the network or service provider. For example,
if the video bit rate is larger then the available network (or server)
data rate, the video buffer is emptied over time and then the video
freezes until the video buffer is filled again with some video frames.
Depending on the actual implementation of the video streaming ap-
plication at the client side, the video frames which should be played
out during the freezing period are either skipped or the video playout
continues without skipping any video frames. The impact of freez-
ing and skipping is discussed in Section 4.1.1.

In fact, the shift from unreliable media streaming to reliable
HTTP (via TCP) streaming make waiting times one of the key
QoE influence factors in the domain of web-based video streaming.
There, the video rebuffering make the video freeze for some time
and the rebuffering is visually indicated (e.g. by animated icons).
To be more precise, we define stalling as freezing without skipping
with a visual indication of the video rebuffering for the end user. In
case of HTTP streaming, stalling is the major QoE influence factor.
In particular, we will take a closer look at the impact of stalling and
the resulting waiting times for the YouTube video streaming service
in Section 4.1.2.

In general, user perceived quality suffers from initial delays
when applications are launched. This will be disccussed exemplary
for authentication in social network applications, 3G wireless con-
nection setup times, as well as for video streaming applications to
fill up the video buffer before the video playout, see Section 4.2.1.
Finally, we show whether waiting times before or during service
consumption are perceived worse, again on the example of YouTube
QoE in Section 4.2.2.



4.1. Waiting During Service Consumption

4.1.1. Video Rebuffering and Freezing

Regarding service interruptions in video services most of the cur-
rent work has focused on frame freezing caused by bursty packet
losses. The authors in [39] and [46] have studied users’ reactions to
different disturbance patterns including frame freezing and skipping
at the beginning, in the middle and at the end of the video. Their
results correspond to each other in terms of the finding that the aver-
age ratings of disturbances in the middle of the video are perceived
worse than those in the beginning and at the end. Additionally, [46]
concludes that “viewers prefer a scenario in which a single but long
freeze occurs to a scenario in which frequent short freezes occur.”
Also the current ITU-T recommendation on a objective multime-
dia quality model [29] considers frame freezing and frame skipping
jointly.

Contrary, the studies reported in [61] and [26] do neglect im-
pairments from frame skipping and concentrate solely on the impact
of frame freezing itself. For HTTP video streaming, where frame
skipping does not take place either, [23] and [40] have studied the
impact of stalling events on user perceived video quality. Out of this
overview, only the latter two studies have studied interruptions with
rebuffering indication (stalling) as it takes place in HTTP streaming.

4.1.2. YouTube QoE and Stalling

There exist a variety of influence factors on QoE for YouTube video
streaming. In general, four different categories of influence factors
are distinguished, that are influence factors on context, user, system,
and content level. The context level considers aspects like the en-
vironment where the user is consuming the service, the social and
cultural background, or the purpose of using the service like time
killing or information retrieval. The user level includes psychologi-
cal factors like expectations of the user, memory and recency effects,
or the usage history of the application. The technical influences fac-
tors are abstracted on the system level. They cover influences of the
transmission network, the devices and screens, but also of the im-
plementation of the application itself like video buffering strategies.
For YouTube QoE, the content level addresses the video codec, for-
mat, resolution, but also the contents of the video, the type of video
and its motion patterns.

Key Influence Factors. [23] focuses on quantifying the impact
of stalling on YouTube QoE and varied 1) the number of stalling
events as well as 2) the length of a single stalling event, resulting
in 3) different total stalling times. In addition, they considered the
influence of 4) the actual subjective test which were conducted in a
crowdsourcing setting, 5) the test video id in order to take into ac-
count the type of video as well as the resolution, used codec settings,
etc. Further, the users were asked to additionally rate 6) whether
they liked the content (using a 5-point ACR scale). Additional data
was collected concerning the background of the user by integrating
demographic questions including 7) age, 8) gender, 9) family situa-
tion, 10) education, 11) profession, 12) home country, 13) and home
continent. To get insights into the users expectations and habits in
the context of YouTube, [23] additionally estimated 14) the user’s
access speed by measuring the time for downloading the video con-
tents. Further, 15) the used browser was monitored by reading the
user-agent field in the HTTP request header. Finally, the users were
asked about their 16) YouTube usage and 17) Internet usage, i.e. how
often the use YouTube or the Internet (several times per day, once a
day, several times per week, once a week, several times per month,

Fig. 9. Identification of key influence factors on YouTube QoE [23].

less often, never). These influence factors introduced are labeled
accordingly in Figure 9.

Finally, the key influence factors on YouTube QoE are identified
in [23] by means of (a) correlation coefficients and (b) support vector
machine (SVM) weights. The Spearman rank-order correlation co-
efficient between the subjective user rating and the above mentioned
variables are computed. In addition, SVMs are utilized as machine
learning approach to make a model for classification. Every variable
gets a weight from the model indicating the importance of the vari-
able. However, SVMs are acting on two-class problems only. For
this, the categories 1 to 3 of the ACR scale to class “bad quality” and
the categories 4 to 5 to class “good quality” are taken, respectively.
Figure 9 shows the results from the key influence analysis. On the
x-axis, the different influence factors νi are considered, while the y-
axis depicts the correlation coefficientαi as well as the SVM weights
βi which are normalized to the largest correlation coefficient for the
sake of readability. We can clearly observe from both measures αi

and βi, that the stalling parameters dominate and are the key influ-
ence factors. Surprisingly, the user ratings are statistically indepen-
dent from the video parameters (like resolution, video motion, type
of content like news or music clip, etc.), the usage pattern of the user,
as well as its access speed to reflect the user’s expectations.

However, it has to be noted that in these tests only typical
YouTube videos were considered, however, more ’extreme’ scenar-
ios e.g. very small resolution vs. HD resolution are a subject of
future work. Furthermore, the applied stalling pattern considers a
bottleneck in the network or at the server side with a constant data
rate. This leads to a periodic stalling pattern in which the dura-
tion of a single stall event has a fixed duration [25]. Hence, the
impact of different traffic patterns on YouTube QoE is still to be
investigated. Finally, the considered videos in the experiments [23]
had a length of 30 s. However, [21] shows that the video duration
impacts YouTube QoE and shows results for videos of 30 s and 60 s,
respectively. Thus, a general relationship between the ratio of the
stalling duration and the video duration onto YouTube QoE still is
to be developed.

Mapping between YouTube MOS and Stalling. The identification
of key influence factors has shown that YouTube QoE is mainly de-
termined by stalling and both stalling parameters, i.e. frequency and
length. For quantifying YouTube QoE, concrete mapping functions
depending on these two stalling parameters were derived in [23]. To
be more precise, YouTube videos of 30 s length were considered in
the bottleneck scenario leading to period stalling events. Figure 10



Fig. 10. Mapping functions of stalling parameters to MOS [23].

depicts the MOS values for one and three seconds stalling length for
varying number of stalling events together with exponential fitting
curves (as discussed in [15]). The goodness of fit is quantified by
coefficient of determination R2 and close to perfect match. The x-
axis again denotes the number of stalling events, whereas the y-axis
denotes the MOS rating. The results show hat users tend to be highly
dissatisfied with two ore more stalling events per clip. However, for
the case of a stalling length of one second, the user ratings are sub-
stantially better for same number of stallings. Nonetheless, users are
likely to be dissatisfied in case of four or more stalling events, inde-
pendent of stalling duration. Similar relationships and finding were
reported in [21] as shown in Figure 11.

4.1.3. Comparison of Freezing and Stalling Models

[21] revisits freezing models found in literature and compares them
with model functions describing the impact of stalling on YouTube
QoE aIn particular, we consider the piecewise linear model for
HTTP streaming [40] taking into account stalling events. Figure 11
shows the MOS depending on the stalling length D normalized by
the video duration V , i.e. D∗ = D/V . Although [40] converges
to similar MOS values for long stalling events, the model fails in
predicting accurately MOS for shorter stalling events below 4 s
emerging in bandwidth limited scenarios for YouTube [25]. Fur-
thermore, we apply the temporal model specified for freezing with
skipping in ITU-T J.247 [29]. This model considers only relative
delays. However, the comparison in Figure 11 shows that the freez-
ing model is not applicable to stalling and completely neglects the
influence of video duration.

4.2. Waiting Before Service Consumption

4.2.1. Initial Delays across Different Applications

The topic of waiting times before service consumption has been
studied for several decades in the domain of market research where
relations between initial delay, purchase decisions and discontent
have been studied. In the domain of internet services the topic is
rather recent and only little work has been published so far. Results
from [12, 28] relate initial delays for web browsing and connection
setup with QoE, whereas [37] has studied user perception of web
logins and its related waiting times. For HTTP video streaming the
authors in [40] have studied the impact of initial delays and inte-
grated results from objective tests in their piecewise linear model.
For IPTV services, which are affected by initial delays in the form

Fig. 11. Comparison of YouTube QoE model derived from subjec-
tive tests (’subjective test model’) [21,23] with temporal model spec-
ified for freezing in ITU-T J.247 [29] and the piecewise linear model
for HTTP streaming [40].

of waiting times in channel zapping as well [35] have studied its im-
pact on user perceived quality. What is missing from these results
is a comparison of the initial delay impact on QoE across different
services.

The scope of this section is on the impact of initial delays for
different application scenarios [21] that comprise 1) YouTube video
streaming, 2) authentication in social networks, 3) 3G Internet con-
nection setup.

Figure 12 shows the mean opinion scores for the different ap-
plication scenarios depending on the duration T0 of the initial de-
lay, together with errorbars representing the 95 % confidence inter-
val over the M user ratings for the corresponding initial delay of
the considered service. In addition, the MOS values of the subjec-
tive studies are fitted with a logarithmic function according to the
WQL hypothesis [12]. This hypothesis is based on the fundamen-
tal Weber-Fechner law from psychophysics and applied to waiting
times. It assumes that the relationship between ‘W’aiting time and
its ‘Q’oE evaluation on a linear ACR scale is ‘L’ogarithmic.

As a first observation, we see that the logarithmic function well
fits the measurement results. In particular, we use a logarithmic func-
tion of the form f(T0) = −a log (T0 + b) + 5 to cope with zero
values (T0 = 0 s) if no initial delay is present. The parameters a and
b are determined by solving a non-linear minimization problem of
the least-square errors between the MOS values at T0 and the model
function value f(T0). Reference [21] shows the model functions for
the different applications which map the initial delay to MOS. In this
paper we also show that for all measurement studies D is close to a
perfect match. Thus, the WQL hypothesis cannot be rejected.

The second observation addresses the results for YouTube video
streaming conducted in a laboratory test and a crowdsourcing test.
Figure 12 shows the MOS values and the fitted logarithmic functions
for the results from (a) the laboratory test (solid line) and (b) the
crowdsourcing test (dashed line), when the users are watching a
video of duration V = 30 s. The initial delay is varied from 0 s to
32 s.It can be seen that the differences between the MOS values from
the lab test and the crowdsourcing test are not statistically signifi-
cant. In particular, the MOS values for both experiments lie within
the bounds of the confidence intervals. For readability reasons, we
have also omitted the confidence intervals for the crowdsourcing test,
since they anyway overlap with corresponding confidence intervals
of the lab test.



Fig. 12. Influence of initial delay on MOS across services [21].

Thirdly, we observe that the curves for the different services
strongly diverge. This means that initial delays are perceived differ-
ently for different services. For example, an initial delay of T0 = 8 s
leads to the following MOS values: (A) 4.00 for YouTube (lab and
crowdsourcing). (B) 3.30 for 3G Internet connection setup. (C) 2.51
for authentication in social networks. These considerable differences
across services for the same stimuli (i.e. initial waiting times) may
be caused by the different application contexts and resulting user ex-
pectations. In particular, users learn from everyday interaction with
an application how much waiting time is expected e.g. when log-
ging in to a social network. Furthermore, the duration of the task
itself may also influence the experience.

4.2.2. YouTube QoE and Initial Delays

[21] compares the influence of initial delays and interruptions for a
certain time during watching on the user perceived quality. For this,
we consider YouTube video streaming as application, since it easily
allows to design and implement appropriate user studies for com-
paring the different influence factors, i.e. initial delay vs. stalling.
It has to be noted that the user perceived quality of YouTube video
streaming is compared in the presence of the same amount of wait-
ing time. However, the waiting time materializes either as initial de-
lay before service consumption or as stalling with an interruption of
video watching. The results clearly show that service interruptions
have to be avoided in any case, even at costs of increased initial de-
lays for filling up the video buffers.

In particular, we analyze the subjective user ratings for the initial
delay tests for YouTube videos of duration 30 s and 60 s. Regarding
stalling, studies for 30 s and for 60 s video clips were executed in
[21, 23]. The injected waiting times, either in terms of initial delay
or in terms of one stalling event, range from 0 s until 32 s. Figure 13
shows the MOS and the corresponding 95 % confidence intervals
depending on the introduced delay. In addition, the measurement
results were fitted with appropriate functions. The results yield a set
of interesting insights how temporal stimuli influence QoE.

Firstly, there is no statistical difference for video clips of 30 s
and 60 s regarding the MOS in dependence of initial delays. This
result seems counterintuitive, given the plausible presence of the re-
cency effect. This effect means that e.g. if a drop to “bad quality”
happens close to the end of service consumption, the overall MOS is
stronger influenced than if the quality drop had occured earlier [56].
Thus for longer video durations, the inital “bad quality” event hap-
pened longer time ago which should lead to more positive ratings.
However, recency effects cannot be expected in this case, since ini-

Fig. 13. One stalling vs. initial delay for YouTube QoE for videos
of duration V = 30 s and V = 60 s, respectively [21].

tial waiting times are considered here which are not clearly perceiv-
able impairments such as stallings that visibly interrupt the service
consumption and better match the concept of a ”bad quality” event.

Secondly, for stalling the video duration matters. In contrast to
initial delays, stalling invokes a service interruption by definition.
This leads to clearly noticeable disturbance, i.e. a “bad quality”
event, to which the recency effect applies. As a result, the MOS for
the same stalling duration shows significant differences for 60 s and
30 s YouTube video clips which is e.g. 3.30 and 2.51 for a stalling
event of length 8 s respectively.

Thirdly, the WQL hypothesis that suggests logarithmic depen-
dencies between waiting times and QoE has to be rejected for the
case of stalling. Instead, an exponential relationship leads to very
good matchings4 as postulated by the IQX hypothesis [15] which
relates QoE and QoS impairments.

Finally, the results in Figure 13 clearly show again that service
interruptions have to be avoided in any case from a user-centric point
of view. Even very short stalling events of a few seconds already
decrease user perceived quality significantly.

5. CONCLUSIONS

In this paper we have outlined structure and content of our tutorial
on waiting times in quality of experience for web based services.
Our examples show, that the study of waiting times in the context
of interactive applications is a timely and relevant topic that is ad-
dressed best in an interdisciplinary fashion. Like QoE, time per-
ception is highly subjective and context-dependent, but also adheres
to certain fundamental principles. In this respect, the logarithmic
relationships between waiting times and QoE demonstrate the appli-
cability of well-known principles such as the law of Weber-Fechner.
Furthermore, the interplay between immersion, (the disruption of)
flow and QoE was shown to be relevant but complex – a property
shared by many kinds of interactive multimedia applications. Con-
sequently, we want to encourage researchers to further investigate
these aspects and address them by adapting existing methods to the
temporal characteristics of QoE.

4Coefficient of determination is 0.973 and 0.994 for exponential fittings
instead of 0.945 and 0.817 for logarithmic fittings (for 60 s and 30 s videos).
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