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Abstract. Completing their initial phase of rapid growth social net-
works are expected to reach a plateau from where on they are in a sta-
tistically stationary state. Such stationary conditions may have different
dynamical properties. For example, if each message in a network is fol-
lowed by a reply in opposite direction, the dynamics is locally balanced.
Otherwise, if messages are ignored or forwarded to a different user, one
may reach a stationary state with a directed flow of information. To dis-
tinguish between the two situations, we propose a quantity called entropy
production that was introduced in statistical physics as a measure for
non-vanishing probability currents in nonequilibrium stationary states.
The proposed quantity closes a gap for characterizing social networks.
As major contribution, we present a general scheme that allows one to
measure the entropy production in arbitrary social networks in which
individuals are interacting with each other, e.g. by exchanging messages.
The scheme is then applied for a specific example of the R mailing list.

1 Introduction

Due to the rapid growth of social media in the last decade, many theoretical
studies have been focused on the growth dynamics of social networks [1]. In such
a social network, individuals are connected to each other (e.g. friends in facebook,
sender and receiver in mail networks) and there is an interaction between the
individuals (e.g. exchanging messages). Hence, beside the network topology, the
interaction among invididuals characterize the social network. However, recent
observations [2] indicate that many social networks are approaching a plateau of
constant size, e.g. due to logistic growth models and resulting upper population
bounds like in [3]. In such a matured state, the dynamics of the network are ap-
proximately stationary in a statistical sense, meaning that the network topology
as well as the probability for receiving and sending messages do not change in
the long-term limit.

The dynamics of a stationary state of a network is not uniquely given, rather
there is a large variety of possible realizations. For example, the three individuals
shown in Fig. 1 may send messages (a) randomly in both directions or (b) in
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Fig. 1. Example of a stationary network with three users. (a) Each individual sends
messages to randomly selected neighbors, leading to a statistically balanced stationary
state with vanishing entropy production. (b) The individuals send messages to only
one neighbor, generating a stationary but directed flow of information with positive
entropy production.

clockwise direction. In both situations the individuals send and receive messages
at constant rate, meaning that the network is statistically stationary. However,
in the first case the dynamics is locally balanced between pairs of users, while in
the second case there is a directed current of messages flowing clockwise through
the system.

In the present work we introduce a new type of quantity, called entropy
production in statistical physics, to characterize the stationary properties of ar-
bitrary social networks. To this end, we associate with each pair of individuals
i, j a quantity Hij called entropy, which depends on the number of messages sent
from i to j and vice versa. The entropy Hij measures the directionality of the
information exchange and vanishes for perfectly balanced communication. Defin-
ing the entropy production of a node as the sum over the entropy of all its links,
one can identify nodes contributing preferentially to balanced or unidirectional
information transfer.

The concept of entropy production requires to make certain assumptions
about the dynamics of the network. In particular, we ignore possible correlations
between the messages by assuming that the individuals communicate randomly
at constant rates. With this assumption each message sent from node i to node
j increases the entropy by [4–7]

∆Hij = lnwij − lnwji , (1)

where wij and wji are the rates for messages from i to j and in opposite direction,
respectively. In physics, this quantity can be interpreted as the minimal entropy
produced by a machine that keeps the network running. In computer science this
interpretation is irrelevant since realistic networks produce much more entropy
in the environment. However, as we will demonstrate in the present work, the
entropy production is a useful measure to characterize the stationary properties
of the network as, for example, to distinguish the situations (a) and (b) in Fig. 1.

The formula (1) is trivial to evaluate if the rates wij and wji are known.
However, in realistic networks with data taking over a finite time span T , only
the number of messages nij and nji exchanged between pairs of nodes are known.
Although it is tempting to replace the rates wij by the relative frequencies nij/T
and to approximate the entropy production by ∆Hij = lnnij − lnnji, it is easy
to see that this approximation would diverge as soon as one of the count numbers



vanishes. Therefore, the paper deals to a large extent with the question how we
can reasonably reconstruct the rates from the given number of messages.

The remainder of this paper is structured as follows. Section 2 introduces
variables describing the observed data from a measurement campaign of a so-
cial network. Further, assumptions on the network dynamics are summarized.
Based on that, Section 3 defines the entropy production which is based on the
(unknown) message rate between any two individuals of the social network. An
estimator of the rates based on the observed measurement data is introduced by
means of Bayesian inference. Section 4 presents appropriate choice of the prior
distribution for small-world networks, in which the number of messages follows a
power-law distribution. Relevant parameters of the prior distribution are calcu-
lated which finally allows computing the entropy production. The general scheme
is summarized for social networks manifesting small-world characteristics on the
number of messages. In Section 5, the general scheme is applied exemplarily
to the R mailing list. Section 6 revisits related work in order to show that en-
tropy production fills a gap in characterizing social networks. Finally, Section 7
concludes the work and gives an outlook on next steps in this research direction.

2 Stationary network dynamics

2.1 Observed data

Let us consider a social network of individuals communicating by directed mes-
sages (e.g. emails, Twitter or Facebook messages). Suppose that we monitor M
messages over a finite time span, recording sender and receiver id’s in a file.
Such a data set can be represented as a graph of nodes (individuals) connected
by directed links (messages) as depicted in Fig. 2.

Enumerating the individuals in the list by i = 1 . . . N , let nij be the number
of messages sent from i to j. These numbers constitute a N × N connectivity
matrix which is the starting point for the subsequent analysis.

If at least one message is sent from i to j, the two nodes are said to be
connected by a directed link. Obviously, the number of recorded messages M

{wij} =




0 0.3 0 0 2.0
0.5 0 0 0.5 0
0 0 0 3.0 0
0 0.7 0.2 0 1.5

0.2 0 0 1.5 0



, {nij} =




0 0 0 0 5
1 0 0 1 0
0 0 0 4 0
0 1 1 0 3
0 0 0 2 0




Fig. 2. Example of a directed social network with N = 5 participants. It is assumed
that node i sends messages to node j randomly with the rate wij . Observing the
network for a finite time span the number of recorded messages from i to j is nij . In
order to compute the entropy production, one has to estimate the unknown rates wij
from the numbers nij .



and the total number of directed links L are given by

M =
N∑

i,j=1

nij , L =
N∑

i,j=1

(1− δ0,nij ) (2)

using the Kronecker delta δa,b, cf. Section 8. Note that M ≥ L since two indi-
viduals can communicate several times during the observation period.

The statistics of multiple communication is described by the probability dis-
tribution

P (n) :=

∑N
i,j=1 δn,nij

N(N − 1)
(3)

of the matrix elements nij . In the present work are particularly interested in so-
cial media networks with a small-world topology, where this distribution follows
a power law, i.e.

P (n) ∼ n−1−α . (4)

2.2 Assumptions on network dynamics

In a realistic social network the messages are causally connected and mutually
correlated. As this information is usually not available and requires semantic
analysis of the messages, let us consider the messages as uncorrelated instan-
taneous events which occur randomly like the clicks of a Geiger counter. More
specifically, we start with the following assumptions:

– Stationarity: We assume that the size of the social network is approximately
constant during data taking. This means that the total number Ntot of par-
ticipants in the system is constant. This assumption is e.g. valid for networks
following a logistic growth model [3]. Note that Ntot may be larger than the
actual number of participants N communicating during data taking.

– Effective rates: Messages are sent from node i to node j at a constant rate
(probability per unit time), denoted as wij ≥ 0.

– Reversibility: If node i is can communicate with note j, node j can also
communicate with node i. This assumption is typically true in social net-
works. Hence if wij is nonzero, then the rate in opposite direction wji is also
nonzero.

With these assumptions, the average number of communications from i to j is
given by

〈nij〉 = wijT , (5)

where T denotes the observation time.



3 Entropy production

3.1 Definition

As outlined above, each message sent from node i to j produces an entropy of

∆Hij := ln
wij
wji

. (6)

Since node i sends nij messages to node j during the observation period, the
total entropy produced by messages i→ j is given by nij∆Hij , while messages in
opposite direction produce the entropy nji∆Hji. Adding the two contributions
we obtain the entropy per link

Hij = nij∆Hij + nji∆Hji = (nij − nji) ln
wij
wji

. (7)

This entropy is symmetric (Hij = Hji) and can equally be attributed to the
corresponding nodes, allowing us to define an entropy production per node

Hi =
1

2

N∑

j=1

Hij (8)

as well as the entropy production of the total network

H =
∑

i

Hi =
1

2

N∑

i,j=1

Hij . (9)

3.2 Näıve estimate

The entropy production depends on the message numbers nij and the rates wij .
While the numbers nij can be determined directly from the given data, the rates
wij are usually not known in advance. Of course, in the limit of infinite obser-
vation time the relative frequencies of messages converge to the corresponding
rates, i.e.

wij = lim
T→∞

nij
T
. (10)

For finite observation time the count numbers nij are scattered around their
mean value 〈nij〉 = Twij . Therefore it is tempting to approximate the entropy
production by replacing the ratio of the rates with the ratio of the relative
frequencies, i.e.

Hnaive
ij ≈ (nij − nji) ln

nij
nji

. (11)

However, this näıve estimator is useless for two reasons. Firstly, the nonlinear
logarithm does not commute with the linear average and is thus expected to gen-
erate systematic deviations. Secondly, in realistic data sets there may be one-way
communications with nij > 0 and nji = 0, producing diverging contributions in



the näıve estimator (11). However, observing no messages in opposite direction
does not mean that the actual rate is zero, it only means that the rate is small.
In the following we suggest a possible solution to this problem by using stan-
dard methods of Bayesian inference, following similar ideas that were recently
addressed in a different context [8].

3.3 Bayesian inference

As the messages are assumed to occur randomly like the clicks of a Geiger
counter, we expect the number of messages n for a given rate w to be distributed
according to the Poisson distribution

P (n|w) =
(Tw)ne−Tw

n!
, (12)

where T is the observation time. But instead of n for given w, we need an estimate
of the rate w for given n. According to Bayes formula [9] the corresponding
conditional probability distribution is given by the posterior

P (w|n) =
P (n|w)P (w)

P (n)
, (13)

where P (w) is the prior distribution and

P (n) =

∫ ∞

0

dw P (n|w)P (w) (14)

is the normalizing marginal likelihood. The prior distribution expresses our be-
lieve how the rates are statistically distributed and introduces an element of
ambiguity as will be discussed below. Having chosen an appropriate prior the
expectation value 〈lnw〉 for given n reads

〈lnw〉n =

∫ ∞

0

dw lnwP (w|n) . (15)

This allows us to estimate the entropy production of the directed link i→ j by

Hij ≈ (nij − nji)
[
〈lnw〉nij − 〈lnw〉nji

]
. (16)

As we will see, this estimator does not diverge if nji = 0.

4 Small-world networks

4.1 Choice of the prior distribution

The prior should be as much as possible in accordance with the available data. In
the example to be discussed below, where we investigate a small-world network
with message numbers distributed according to Eq. (4) with an exponent α > 1,



it would be natural to postulate a power-law distribution of the rates P (w) ∼
w−1−α. Since such a distribution can only be normalized with a suitable lower
cutoff, a natural choice for the prior would be the inverse gamma distribution

P (w) =
βαw−α−1e−β/w

Γ (α)
, (17)

where the parameter β plays the role of a lower cutoff for the rate w. With this
prior distribution the integration can be carried out, giving the posterior

P (w|n) =
(β/T )

α−n
2 wn−α−1e−Tw−

β
w

2Kn−α(z)
, (18)

where Kν(z) is the modified Bessel function of the second kind and z = 2
√
βT .

Inserting this result into Eq. (15) we obtain an estimate of lnw for given n,
namely

〈lnw〉n =
1

2
ln
β

T
+
K

(1,0)
n−α (z)

Kn−α(z)
, (19)

where K
(1,0)
ν (z) = ∂

∂νKν(z). The estimator for the entropy production is then
given by

Hij ≈ (nij − nji)
[K(1,0)

nij−α(z)

Knij−α(z)
−
K

(1,0)
nji−α(z)

Knji−α(z)

]
. (20)

4.2 Estimating the cutoff parameter z = 2
√
βT

Eq. (19) depends on the exponent α, which can be obtained from the distribution
of messages per link, and the lower cutoff β, which can be determined as follows.
On the one hand, the probability to have no link between two nodes for a given
rate w is 1−P (0|w). Therefore, the total number of links L can be estimated by

L ≈ Ltot

∫ ∞

0

dw
(

1− P (0|w)
)
P (w) (21)

= Ltot

(
1− 2(Tβ)α/2

Γ (α)
Kα(2

√
Tβ)

)
.

Here Ltot = Ntot(Ntot−1) is the unknown total number of potential links in the
stationary network which may exceed the actual number of links L established
during the finite observation time T .

On the other hand, it is obvious that the total number of messages M can
be estimated by

M ≈ Ltot

∞∑

n=0

n

∫ ∞

0

dw P (n|w)P (w) = Ltot
Tβ

α− 1
. (22)



This relation can be used to eliminate Ltot, turning Eq. (21) into

Lz2

4M(α− 1)
≈ 1− 2(z/2)α

Γ (α)
Kα(z) . (23)

For given M,L, α this approximation interpreted as an equation allows us to
numerically determine z = 2

√
βT .

4.3 Summary of the procedure

The procedure to calculate the entropy production can be summarized as follows:

1. In the given data set of M messages, identify all participants (nodes) and
label them from 1, . . . , N .

2. Determine the numbers nij how often a message is sent from i to j and count
the number L of nonzero entries (links) in the matrix {nij}.

3. Plot a histogram of the numbers nij . If it exhibits a power law P (n) ∼ n−1−α
estimate the exponent α.

4. Solve Eq.(23) numerically for z.

5. Compute the numbers χn = K
(1,0)
n−α (z)/Kn−α(z) .

6. Associate with each directed link i→ j the entropy production Hij = (nij−
nji)(χnij − χnji).

7. Compute Hi and H according to Eqs. (8) and (9).

5 Example: Mailing list archive

To demonstrate the concepts introduced above, we analyzed the mailing lists
archive for the programming language R [10], recording senders and receivers of
all messages over the past 15 years. In this mailing list N = 23 462 individuals
(nodes) have exchanged M = 168 778 directed comments (undirected activities
like opening a new thread are ignored). The connectivity matrix nij has L =
114 713 nonzero entries (links). Their statistical distribution shown in Fig. 3
confirms a small-world topology with an exponent α ≈ 2. Interestingly, the node
degree distribution of outgoing and incoming links in Fig. 3(b) seems to exhibit
slightly different exponents. A similar phenomenon was observed some time ago
in email communication networks [11].

Entropy production per link: Since Hij depends on two integers nij and nji, the
entropy production of a link produces a discrete set of values. The upper panel
of Fig. 4 shows how these values are distributed and how often they occur. As
can be seen, the entropy production varies over five orders of magnitude and is
distributed irregularly with count numbers ranging from 1 to 104.



(a) messages per link (b) links per node

Fig. 3. Degree distributions. (a) Probability P (nij) that a directed link i → j carries
nij messages. The data is consistent with a power law P (nij) ∼ n−3

ij , meaning that
α = 2. (b) Node degree distribution, showing the probability P (ki) that a node i
is connected with ki outgoing or incoming links. The two data sets display slightly
different power laws close to P (ki) ∼ k−2

i .

Entropy production per node: Let us now turn to the question how the entropy
per node Hi = 1

2

∑N
j=1Hij is correlated with other properties of the node, in

particular with the number of outgoing and incoming messages

nouti =
∑

j

nij , nini =
∑

j

nji . (24)

Since the entropy production is expected to grow with the number of messages,
it is reasonable to define the node entropy production per message

hi :=
Hi

nouti + nini
. (25)

Fig. 5 shows how the entropy production per node is distributed depending on
the number of sent and received messages. As expected, the entropy is minimal
if these numbers coincide. Plotting the entropy production of a node versus the
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Fig. 4. Upper panel: Histogram of the entropy Hij per link. Lower panel: Histogram
of the marginal entropy production Hi per node.
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difference of outgoing and incoming messages

∆ni = nouti − nini (26)

one finds again an asymmetric distribution (see right panel). This indicates that
nodes with a large number of outgoing links tend to produce less entropy per
message than individuals who preferentially receive messages.

6 Discussions on Related Work

In literature, various measures of the characteristics of complex networks exist.
We briefly revisit them in order to show that entropy production fills a gap for
measuring the directionality of the information exchange and quantifying the
balance of communication or interaction. The quantities introduced in literature
analyze mainly the topology of the graph itself by means of the adjacency matrix
A with elements Aij = 1 − δ0,nij . Extensions of several quantities exist for
weighted networks. In that case, the directed link connecting the nodes i and
j are weighted by the message rate wij . Instead of A, the message rate matrix
W is used. Thereby, beyond the topological effects, the metrics which allow
to work on weighted networks give insights into the structure of the message
diffusion, too. Those metrics are to be analyzed with the network entropy H for
different network topologies and message exchange models W. Future concerns
an analysis of those metrics with the entropy production for different network
topologies and message exchange models W.

Principal graph characteristics. The basic quantities are the in- and out-degree
of nodes corresponding to the number of incoming and outgoing links of nodes.



We observe a strong correlation of the node degree with entropy production for
the example of the R mailing list. However, a closer look in the previous sec-
tion revealed that nodes with a large number of outgoing links tend to produce
less entropy per message. Future work investigates for which kind of network
topologies and message exchange models those quantities are correlated. Other
principal characteristics of nodes are eccentricity and local clustering coefficient.
Global network metrics are e.g. radius, diameter, average path length, or assor-
tativity coefficient. Those metrics can be extended to weighted networks and
need to be interrelated to entropy production per node and network entropy
production, respectively.

Centrality metrics. Centrality metrics quantify the ’importance’ of nodes. Differ-
ent variations exist like degree, (random walk) closeness, information, between-
ness, or Eigenvector centrality like PageRank. Considering again the R mailing
list, we observed a strong correlation between entropy production per node Hi

and e.g. betweenness centrality. Nodes in the social network that have a high
probability to occur on a randomly chosen shortest path between two randomly
chosen nodes have a high betweenness. Hence, those nodes are also responsible
for high entropy production in the network. In contrast, closeness centrality and
entropy production revealed no correlation. Closeness measures how fast it will
take to spread information from a single node to all other nodes sequentially.

Symmetry measures and entropy measures. Current developmentsintroduce mea-
sures of symmetry and their relation with measures like Graph entropy [12]. The
concept of Graph entropy is based on a probability distribution on the node set

V of the graph [13], G =
∑|V |
i=1 p(vi) log 1

p(vi)
, but not on the ratio between

incoming and outgoing message rates as for entropy production. Hence, graph
entropy measures the amount of information within the graph based on p(vi).
Symmetry of complex networks means invariance of adjacency of nodes under
the permutations on the node set itself and a symmetry index is defined in [14].
This concept is close to entropy production, however, symmetry measure are
defined on network topology only. In a similar way, the symmetry based struc-
ture entropy of complex networks [15] quantifies the heteogeneity of a network
system based on automorphism partition of the node set into equivalent cells.
Thereby, the probability that a node belongs to the cell is used while message
rates are not part of this concept. Nevertheless, a comparison of those measures
with entropy production is relevant future work.

7 Conclusions

In the current Internet, social networks like Facebook gain more and more pop-
ularity and attract millions of users. In a social network the users are connected
to each other and as a key feature social media platforms allow interactions
between users like exchange of messages. In complex network research, the ma-
jority of existing quantities analyze the structural properties of the emerging



network topology and the growth dynamics, respectively. For social networks,
however, beyond the network topology the interaction among individuals needs
to be characterized. Further, the dynamics of a stationary state of a social net-
work is not uniquely given, rather there is a large variety of possible realizations.
Hence, there is a gap in describing dynamical properties of social networks in
stationary conditions, i.e., when the network topology as well as the probability
for receiving and sending messages do not change in the long-term limit.

Inspired from statistical physics, we introduce a quantity called entropy pro-
duction to characterize the stationary properties of arbitrary social networks.
The entropy production measures the directionality of the information exchange
and vanishes for perfectly balanced communication. Defining the entropy pro-
duction of a node as the sum over the entropy of all its links, one can identify
nodes contributing preferentially to balanced or unidirectional information trans-
fer. Hence, entropy production is a valuable measure for link and node analysis
and rating and can be used to detect hidden structures and interactions in net-
works. Since the application of entropy production is not limited to social media
network, but can be used for communication networks or interaction graphs in
general, it can be applied for a variety of different purposes like anomaly detec-
tion [16] but also characterization of traffic flows in the Internet, e.g. for BitTor-
rent swarms [17]. Future work addresses the application of entropy production
to such use cases but also to relate the quantity with centrality or symmetry
measures for various network topologies and message exchange models.
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8 Appendix: Notion of variables frequently used

For the sake of readability, the appendix is included for review only and will be
removed in the camera-ready version.

variables describing the measurement data

T measurement period over which messages between individuals are recorded
nij number of messages sent from i to j during time T
N total number of individuals, i.e. nodes in the graph, communicating during T

M total number of recorded messages, i.e. directed link, M =
∑N
i,j=1 nij

δa,b Kronecker delta defined by δa,b =

{
1 a = b

0 a 6= b

L total number of directed links, L =
∑N
i,j=1 1− δ0,nij

nout
i number of outgoing messages from node i, nout

i =
∑N
j=1 nij

nin
i number of incoming messages to node i, nin

i =
∑N
j=1 nji

∆ni difference of outgoing and incoming messages of node i

P (n) probability that n messages are sent on a link, P (n) =
∑N
i,j=1 δn,nij/N(N−1)

A adjacency matrix with matrix elements Aij = 1− δ0,nij
variables describing entropy production

wij message rate from i to j estimated by measured nij over T
W rate matrix with matrix elements Wij = wij
∆Hij amount of entropy increased for each message sent from i to j, ∆Hij = ln

wij
wji

Hij entropy per link, Hij = (nij − nji) ln
wij
wji

Hi entropy production per node i, Hi = 1
2

∑N
j=1Hij

H entropy production of total network, H =
∑N
i=1Hi

hi node entropy production per message, hi = Hi
nout
i +nin

i

variables for estimating message rates

P (w|n) posterior distribution of message rates w conditional on observed messages n
P (w) prior distribution of message rates; assumed to follow a power law in social

networks with P (w) ∼ w−1−α; normalization with suitable lower cutoff leads
to inverse gamma distribution P (w) = βα

Γ (α)
w−α−1e−β/w

α shape parameter of the inverse gamma distribution
β lower cutoff parameter for the rate w concerning inverse gamma distribution

P (n) normalizing marginal likelihood
〈lnw〉n expectation value for given n, 〈lnw〉n =

∫∞
0
dw lnwP (w|n)

Kν(z) modified Bessel function of the second kind and z = 2
√
βT


