
Monitoring YouTube QoE: Is Your Mobile Network
Delivering the Right Experience to your Customers?

Pedro Casas∗, Raimund Schatz∗, and Tobias Hoßfeld†
∗Telecommunications Research Center Vienna - FTW, Email: surname@ftw.at

†University of Würzburg, Institute of Computer Science, Email: hossfeld@informatik.uni-wuerzburg.de

Abstract—YouTube, the monster application of today’s Inter-
net, is changing the way ISPs and network operators manage
quality monitoring and provisioning on their IP networks.
YouTube is currently the most consumed Internet application,
accounting for more than 30% of the overall Internet’s traf-
fic worldwide. Coupling such an overwhelming traffic volume
with the ever intensifying competition among ISPs is pushing
operators to integrate Quality of Experience (QoE) paradigms
into their traffic management systems. The need for automatic
QoE assessment solutions becomes even more critical in mobile
broadband networks, where over-provisioning solutions can not
be foreseen and bad user experience translates into churning
clients. This paper presents a complete study on the problem
of YouTube Quality of Experience monitoring and assessmentin
mobile networks. The paper considers not only the QoE analysis,
modeling and assessment based on real users’ experience, but also
the passive monitoring of the quality provided by the ISP to its
end-customers in a large mobile broadband network.

Index Terms—Quality of Experience; YouTube; Real-time
Traffic Monitoring; MOS; 3G/HSPA Networks.

I. I NTRODUCTION

YouTube is one of the most popular applications in today’s
Internet. On its own, YouTube accounts for more than 30%
of the overall Internet’s traffic [1], with 72 hours of video
uploaded every minute and over 4 billion videos viewed every
day [4]. This outstanding and ever-growing success imposes
serious challenges for network operators, who need to engineer
their systems to correctly handle the huge volume of traffic
and the vast number of users in efficient ways. The issue
becomes even more challenging for mobile network operators,
who need to offer high quality levels to reduce the risks
of clients churning for quality dissatisfaction, particularly in
current highly competitive mobile broadband markets. The
popularity of YouTube is also growing in mobile networks: the
volume of traffic carried by YouTube flows in mobile devices
has tripled in 2011, and more than 20% of the global YouTube
views come today from mobile devices [4].

The research community has addressed the challenges im-
posed by YouTube’s popularity from multiple perspectives:by
characterizing its traffic [2], by studying the video delivery
infrastructure [3], [8], by exploring the correlations between
network and users behavior [2], [7], and by assessing the Qual-
ity of Experience (QoE) in controlled lab studies [11], [12]or
in the field [13]. In this paper we present a complete study
on the problem of YouTube Quality of Experience monitoring
and assessment in mobile networks. The main objective of
the paper is to guide network operators in getting an answer

to a basic yet difficult to answer question: is my mobile
network delivering the right QoE to those end-users watching
YouTube videos? The challenges associated to this question
are various and go beyond the classical approach of QoE
analysis for network dimensioning, i.e., beyond determining
the minimum bandwidth requirements such that the targeted
QoE requirements are met.

QoE monitoring in YouTube faces several scientific chal-
lenges: firstly, a set of traffic descriptors or measurements
which are accessible for the network operator and that corre-
late with the video quality experienced by the end-user mustbe
identified. The closer to the end-user these measurements are
performed, the easier the QoE monitoring task becomes. How-
ever, network monitoring at the edge of the network (i.e., atthe
end-users’ terminals or set-top boxes) is difficult to realize due
to scalability, privacy, and management issues, speciallyin the
case of large-scale monitoring. For this reason, measurements
should be performed at the core of the network, making even
more challenging the QoE estimation task. Authors in [2],
[7] have proposed to monitor the ratio between the encoding
bitrate of the YouTube video and the throughput achieved by
underlying network flows as a QoE indication. While this
approach makes sense and is simple to apply, it can be too
rough to distinguish between a good or bad experience due to
the high variance of both metrics. This is specially true when
the video bitrate and the network throughput are similar.

The second important challenge is on YouTube QoE mod-
eling and assessment: appropriate QoE models which can
map the identified measurements into QoE levels must be
conceived. Defining these models is not a trivial task, and
requires both controlled lab studies as well as analysis in real
service conditions to obtain reliable results. The final challenge
is associated to the implementation and deployment of the
complete monitoring system in the core of the network, which
requires a system capable of handling the extraction of the
necessary measurements and the application of the QoE mod-
els, both in real-time. This paper addresses the aforementioned
challenges in a comprehensive manner, presenting the analysis
and the solutions to achieve all the steps from the modeling to
the real-time monitoring of the QoE in YouTube. The focus is
set on broadband mobile networks scenarios, which are more
sensitive to bad QoE levels.

The remainder of the paper is organized as follows: Section
II presents an overview of some selected studies on YouTube
monitoring and QoE. Section III tackles the problem of QoE
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modeling in YouTube, considering both lab studies as well
as measurements performed in the field. In Section IV we
discuss and evaluate an off-line monitoring technique to map
YouTube traffic flows into QoE levels, exclusively relying on
the analysis of network packet traces. Section V integrates
this technique into a real-time monitoring system for YouTube
QoE, presenting evaluation results on its application at the core
of a broadband mobile network. Finally, Section VI concludes
this work.

II. RELATED WORK

The evaluation of YouTube from the end-user perspective
has been recently addressed in multiple works [2], [7], [9]–
[13]. Authors in [2] present a YouTube performance and user
experience analysis in terms of video startup latency and ratio
between download rate and video encoding rate. Similarly,
[7] presents an analysis on YouTube and DailyMotion per-
formance, using the aforementioned ratio as a user-experience
metric. Both studies perform the analysis from a pure network
and application perspective, without considering the end user’s
opinions in terms of QoE.

The standard approach to analyze the QoE of a network
application such as YouTube is to conduct controlled lab
experiments [19]–[21]. The key benefits of such an approach
rely on the full control the experimenter has on the overall
evaluation process. However, lab experiments miss out many
important QoE influence factors such as usage context, content
preferences by individual users, or device usability amongoth-
ers, introducing differences w.r.t. evaluations conducted in the
field. For this reason, experiments where the participants use
the application in the real running environment are additionally
conducted to improve the quality of the analysis.

The studies conducted in [9]–[13] do consider subjective
user experience analysis in HTTP video streaming, directly
asking the participants about their impressions on the per-
ceived performance. In [9], a YouTube-like player is used
to conduct subjective tests through crowdsourcing1. Results
show that the number of stallings in a given period and
the stallings’ duration are the most impacting parameters on
YouTube QoE. The study is complemented in [11], where
the impacts of video startup latency are additionally studied
through lab experiments. Authors in [10], [12] follow a similar
approach to evaluate the QoE in HTTP video streaming. The
aforementioned works limit their study to very controlled
usage scenarios, which impacts the quality and generalization
of the obtained results. In a very recent study we have analyzed
the QoE of YouTube in a real mobile broadband network
scenario [13], complementing the results of previous lab and
crowdsourcing studies.

As regards monitoring, QoE monitoring in YouTube has
very recently attracted the attention of the research community.
The authors of [15] presented a client-side software tool to
monitor YouTube traffic at the application layer, estimating

1Crowdsourcing in this context means outsourcing the subjective evaluation
tasks to a vast and highly distributed group of people, who perform the
evaluation in their own computers and are paid for it.
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the amount of video content at the YouTube playing buffer to
predict stalling events on the video playback. The approachis
interesting but not applicable in the case of an ISP willing to
monitor YouTube QoE on its network, since the installation
of additional software on the client side is not a practical
option. In [16], [17], authors present an approach for mea-
suring YouTube stallings in an off-line fashion, relying on
network packet traces; the study presents some first interesting
results, but the validation of the technique is limited to a
couple of application examples, making it difficult to draw
conclusions on the accuracy of the approach. Finally, we have
recently introduced a Deep Packet Inspection (DPI) technique
to estimate the number of stalling events and their duration
in a YouTube video [18], and tested its accuracy with off-line
YouTube video packet traces. In this paper we build upon our
previous studies and give a further step on the direction of
QoE monitoring and assessment, presenting the first results
in the large-scale, real-time monitoring of YouTube QoE in
mobile broadband networks.

III. M ODELING QOE IN YOUTUBE

The experience of a user with any application is conditioned
by multiple influence parameters, including dimensions such
as technical characteristics of the application, user personality
and expectations, user demographics, device usability, and
usage context among others. Particularly when evaluating
networking-based applications such as YouTube, the influence
of the network itself as well as its interplay with the particular
application have to be linked to the user’s opinions, addi-
tionally identifying those perceivable performance parameters
that are most relevant to the user experience. This mapping is
realized by analyzing and correlating the three layers depicted
in figure 1: the network layer accounts for the influence
of the network QoS parameters (e.g., network bandwidth,
RTT, etc.); theapplication layerconsiders both the technical
characteristics (e.g., video bit-rate) and the perceivable per-
formance parameters of the application (e.g., page-load times,
video stallings, etc.); finally, theuser layer spans the user
subjective opinions on the evaluated application (e.g., MOS
values, acceptability, etc.).



In the case of YouTube QoE, previous studies [9], [12]
have shown that both the number of stalling events and
their duration are the only impairments visible to the end-
user. A stalling event in HTTP video streaming applications
corresponds to the interruption of the video playback due to
the depletion of the playback buffer at the user’s terminal.
When the available bandwidth is lower than the required
video bitrate, the playback buffer becomes gradually empty,
ultimately leading to the stalling of the playback. For this
reason, a good starting point to assess the QoE in YouTube
is to study the relations between both the number and the
duration of these stalling events and the users’ perception.
Having a model which can map stallings to QoE has a very
powerful advantage, that of becoming independent of the
underlying specific characteristics of the network in whichthe
YouTube QoE will be monitored.

Figures 2 and 3 depict these relations for both controlled
studies (lab and crowdsourcing) and field experiments we
have recently performed in [9], [11], [13]. In the case of lab
and crowdsourcing studies, 37 participants watched different
YouTube videos for which a fully controlled stalling pattern
was applied (i.e., number and duration of stalling events
were perfectly defined), and then rated the perceived overall
quality according to an ordinal ACR Mean Opinion Score
(MOS) scale [19], ranging from “bad” (MOS=1) to “excellent”
(MOS=5). The obtained results are depicted in figure 2. In
the case of field studies, a group of 33 participants used
mobile broadband 3.5G modems connected to the 3G HSPA
network of a leading European network operator to watch
their preferred YouTube videos on their own laptops, rating
the overall perceived quality. Stalling patterns can not be
controlled in field studies; for this reason, participants’traffic
was rate-limited to different down-link bandwidth values,and
the resulting stallings were measured at the application layer
using the client-side software tool developed in [15]. The
reader should note that this tool was installed in the laptop
of the participants for this specific study, but that using such a
client-side tool in a large-scale and distributed mobile network
scenario is not scalable in the practice. The obtained results
are depicted in figure 3.

Both lab and field studies show that user perception of
stalling events is highly non-linear, with one single stalling
event already significantly impairing the overall experience.
In both cases, a single stalling event reduces the video quality
from excellent to fair (i.e., 1 MOS point in the scale). Note
that the maximum ratings provided by users in both figure 2
and figure 3 are never 5 but somewhere between 4.3 and 4.6.
This is a well known phenomenon in QoS studies, where users
hardly employ the limit values of the scale for their ratings. A
second stalling event has also a strong influence on YouTube
QoE, but saturation already starts after 2 stallings, as even
getting more than 4 stallings slightly reduces the QoE from
around 2 to 1.6. Stallings duration also plays an important
role in YouTube QoE, but shows to be less critical in this
case. For example, doubling the stalling duration from 2 to 4
seconds in the lab studies has a limited impact, but increasing
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Fig. 2. MOS vs number of stallings from Lab and Crowdsourcingmeasure-
ments: stallings of 2 (left) and 4 (right) seconds of duration.
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Fig. 3. MOS vs average number (left) and average duration (right) of stallings
per video from field measurements.

its value to more than 8 seconds shows deterioration of the
user experience in the field.

In section V we combine the results obtained from both
studies into a single model that maps the stalling patterns
that occur in the playback of a YouTube video into the QoE
as perceived by the user watching the video. The question
that now arises is how can we actually measure these stalling
patterns without having access to the YouTube application
running at the terminal of the user. We tackle this issue in
the next section.

IV. FROM PACKETS TO YOUTUBE QOE

As previously stated, YouTube QoE is determined by the
stalling patterns in the video playback as experienced by the
end user. In [18] we have recently introduced a Deep Packet
Inspection (DPI) technique that permits to reconstruct these
stalling patterns from the packets transmitted in the YouTube
IP flows. The basic idea of this technique is to estimate the
playing time that is accumulated in the buffer of the YouTube
player, comparing the playback times of the video frames and
the time stamps of the received packets. If the playback buffer
runs empty, the video stalls until more packets are received.

The playback times of the video frames composing the
video can be obtained by dissecting the metadata present in
the so calledvideo container(FLV, MP4, etc.). Each YouTube
video is compressed and encoded as an FLV, MP4, etc. file
which is a container format for media files. The container
includes the compressed video and audio, as well as the
information needed by the YouTube player to decode and
display the video content. The header of these media files starts
with a well-defined signature identifying the corresponding
container format, and contains metadata information such as



the times when the video frames have to be actually displayed.
The YouTube player opens a new TCP connection each time
it downloads a new FLV, MP4, etc. file or if the user jumps
to another time in the video. The developed DPI technique
consists in identifying the beginning of a new YouTube video
flow as marked by the signature of its container, and extracting
the corresponding play times of the downloaded content to
estimate the accumulated video play time at the buffer.

Let us define some additional parameters that compose this
DPI technique. The first and most important parameter is the
total downloaded video play timeτi, which is updated from
every new TCP ack received at timeti. As we said before, the
value ofτi is obtained from the parsing of the video container
metadata. We additionally define the play timeρi and the
stalling timeσi, which are the user experienced video play
time and stalling time after thei-th TCP ack. The amount of
buffered video time is indicated asβi, and it corresponds to the
difference between the downloaded video play timeτi and the
actually played timeρi, i.e., βi = τi − ρi. We also consider
a boolean stalling variableψi, which indicates whether the
video is currently playing (ψi = 0) or stalling (ψi = 1).

In addition, the YouTube player uses two different playing
and stalling thresholds to control the way it consumes video
frames from the playback buffer. The first thresholdΘ0 defines
the minimum amount of buffered video time that has to be ex-
ceeded to start playing a stalled video; the second thresholdΘ1

specifies the minimum amount of buffered video time neces-
sary to continue playing a video once the playback has started.
So if we consider the video buffer sizeβi−1 at timeti−1, then
we get that ifβi−1 exceedsΘ0, the video starts playing; on
the other hand, if the video buffer falls bellowΘ1, then the
video stalls. Hence, stalling occurs if the following condition
is true:(ψi−1 ∧ (βi−1 < Θ0))∨ (¬ψi−1 ∧ (βi−1 < Θ1)). The
measurement studies performed in [18] revealed that these two
buffer thresholds can be reasonably taken asΘ0 = 2.2 s and
Θ1 = 0.4 s. While these two thresholds are not constant and
depend on the specific characteristics of a video, results show
that even if using not 100% exact values the estimations can
be very accurate. Using these definitions, the stalling pattern
of a YouTube video over time can be obtained as follows:

ψi = ψi−1 ∧ (βi−1 < Θ0) ∨ ¬ψi−1 ∧ (βi−1 < Θ1) (1)

σi = σi−1 +

{
ti − ti−1, if ψi

0, if ¬ψi

(2)

ρi = ρi−1 +

{
0, if ψi

ti − ti−1, if ¬ψi

(3)

βi = τi − ρi (4)

Finally, as depicted in eq. (2) and eq. (3), the time elapsed
between the previous ack at timeti−1 and current ack at
time ti increases the play timeρi or the stalling timeσi,
depending on the resulting video state (i.e., playing or stalling).
Since YouTube first starts buffering (i.e., stalling state)until
the thresholdΘ0 is exceeded, the iterative computation of the
different variables is initialized withσ0 = ρ0 = 0 andψ0 = 1.

Figure 4(a) shows an exemplary case of the estimated video
buffer size and stalling events over time of a YouTube video,
using the described technique. The video starts playing as soon
asΘ0 is exceeded. However, when the buffer is belowΘ1, the
video stalls. In addition, the stalling pattern as measuredon
the application layer is plotted as gap lines, which shows that
the estimated and the actually observed stallings fit quite well.
However, there are some small differences caused by different
aspects. Firstly, we rely on TCP acknowledgments, which
might be delayed due to network performance fluctuations
and/or protocol implementation issues (e.g., if using delayed
acks). Secondly, the video buffer thresholds are average values
over a large set of videos, but the actual thresholds for an
individual video depends on its particular characteristics (e.g.,
the sequence of I, B, P frames). Hence, small differences to
the considered values may emerge for some videos.

Figures 4(b) and 4(c) present the estimated stalling patterns
obtained for a set of 100 YouTube videos downloaded under
different bandwidth conditions. The study is performed in
an off-line fashion, by analyzing the packet traces captured
during the video downloading/playback. Figure 4(b) shows
the relative difference∆N = |Ne−Na|

Na
between the number

of stallingsNa measured on the application layer and the
estimatedNe through the DPI technique. The relative differ-
ence is small and below 20% for 90% of the videos. The
reader should note that the minimum relative difference∆N
obtained in the case of estimation errors forNa = 1, 2, or
3 is of 1/3 = 33%, which actually shows that the errors
depicted in 4(b) occur for bigger values ofNa. As we showed
in section III, a difference of 1 or more stalling events after
3 or 4 stallings has a negligible impact on YouTube QoE,
reducing the impacts of such estimation errors. As regards
stallings’ duration, a comparison of the estimated stalling time
for these videos as depicted on figure 4(c) reveals an almost
perfect match with the actual stalling time as measured on the
application layer.

These results show that the DPI technique can actually
be used to extract the stalling patterns that occur during the
streaming of a YouTube video, which can then be mapped to
QoE values by applying the models depicted in section III.
The main limitation of this estimation technique as presented
so far is that it has not been conceived as a tool for monitoring
the QoE of YouTube from the perspective of an operator, who
actually needs to run such estimations in the core or close
to it to have an idea of the overall quality his customers
are experiencing. The last step to achieve such a monitoring
system is described in the next section.

V. YOUTUBE QOE MONITORING: HOW GOOD IS YOUR

MOBILE NETWORK DOING?

The main question that this paper tries to answer is how to
actually determine how good is a certain mobile network in
providing YouTube to its customers with good QoE levels. In
this section we build upon the QoE models depicted in section
III and on the aforementioned DPI technique to build and show
example results on the application of a real-time monitoring
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system capable of assessing the YouTube QoE in the core of
a mobile broadband network.

We have devised an optimized DPI-based technique for
reconstructing the stalling patterns of YouTube videos from
network packets captured and analyzed on the fly. The basic
functioning of this technique relies on the steps described
in previous section. Going into the particular implementation
details of the approach is out of the scope of this paper;
nevertheless, we provide some basic details to guide the reader
and to facilitate the interpretation of the obtained results.
The technique is implemented as a module of a 3G mobile
network monitoring system, which basically captures all the
data packets flowing from/to the terminals of the mobile users
to/from the Internet and performs analysis on the fly, in a
stream basis. Traffic is continuously monitored at the Gn
interface of the mobile network, and in the particular case
of YouTube QoE monitoring, the system issues a report or
ticket everyT = 60 seconds for every YouTube flow detected
in the stream of packets. Among other information, each ticket
contains the estimated YouTube QoE MOS value for the 60
seconds and the number of video seconds that were consumed
with that MOS. The estimated YouTube QoE is computed
from the extracted number and duration of stallings in the
60 seconds time slot. Using such time slots of short duration
permits to have a clear idea of the performance of the network
as regards YouTube QoE in a real-basis, providing valuable
information for the network operator on the satisfaction ofhis
customers.

In order to map the extracted number and duration of
stalling events into MOS values, we have adapted the datasets
and curves presented in section III to the specific slotted time
functioning of the monitoring system. In particular, we have
considered a new mapping function where we take the ratioλ
between the total stalling time and the total video elapsed time
(i.e., playing + stalling time) in the corresponding time slot as
a better image of the impacts of stalling time on YouTube
QoE. This permits to limit the effects of videos with different
durations, as we are now considering the stalling time relative
to the length of the evaluation (i.e., the length of the time
slot). The resulting YouTube stallings–QoE mapping model
depicted in figure 5 is decomposed in five different functions,
depending on the value ofλ computed in the time slot of
lengthT . The five functions have all the same shape, in the
form of:

MOS(n)i = ai · e−bi·n + ci, ∀i = 1, 2, 3, 4, 5. (5)

wheren is the number of stalling events estimated on the
time slot of lengthT and{ai, bi, ci} depend on the computed
value forλ. At every new time slot where a YouTube video
is detected (active or starting), the value ofλ is obtained as
follows: first, compute the total stalling timeσ and the total
play timeρ for this time slot; then, if the total video elapsed
time ρ + σ is smaller than the length of the time slotT , then
computeλ = σ/(σ + ρ); otherwise,λ = σ/T . The curves
depicted in figure 5 deserve some clarifications: firstly, the
MOS value computed forn = 0 stallings only makes sense
for the curve in whichλ < 5%; in all the other cases,n > 0.
Secondly, the curves only show mappings for up ton = 6
stallings; this is because a YouTube video with more than
such a number of stalling events can be directly declared as
very bad quality, and no extra mapping is therefore required.

In order to validate the resulting on-line YouTube QoE
monitoring system and the corresponding mappings, we replay
some of the network packet traces captured in the field trial
study conducted in [13], for which we have the MOS values
declared by the users as ground truth. Figure 6 (left) compares
both the declared MOS and the predicted MOS values for 16
different videos which experienced different stalling patterns
in the field trial. All the considered videos have a total
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Fig. 6. YouTube QoE real-time monitoring results. (left) Validation with
real traces from the field trial. (right) The monitoring is performed at the Gn
interface of the 3G HSPA network of a leading European network operator,
on a period of 1 hour.

duration of less than 60 seconds, just to avoid any biased
comparison due to the different evaluation procedure used
in the field trial and on this evaluation. Obtained results are
very accurate and close to the actual declared MOS values
by the participants, but some strange deviations occur at the
edges of the rating scale, both at very low or very high
MOS values. This difference comes from the edge-ratings
phenomenon previously mentioned in section III. In the field
study, ratings for 0 stallings correspond to MOS values around
4.5, while the model depicted in figure 5 gives a MOS value
of 5 on these situations. Similarly, the limit values for very
bad quality provided by the model are slightly higher than the
actual opinion of the users; for this reason, the model provides
a MOS value around 1.8 when users actually rate around 1.5.
In any case, the reader should note that none of both identified
differences are an issue to consider.

To conclude with this work, we present in figure 6 (right)
the YouTube QoE monitoring results obtained by using the
described real-time monitoring system with the real mobile
broadband traffic of a leading European network operator. The
monitoring is performed on 1 hour of on-line traffic flows
observed at the Gn interface. The histogram depicts both the
number of reported tickets and the total played seconds at
the different YouTube QoE levels provided by the devised
model. To avoid misunderstandings, the reader should note
the logarithmic scale on they-axis of the plot. The most
important comment on these results comes from the fact that
with this system, it is actually possible to have a clear view
of the performance of the mobile network as regards the
satisfaction of the customers consuming YouTube videos. As
regards the specific MOS values, the estimated YouTube QoE
is excellent for more than 90% of the tickets and of the video
time consumed during the analyzed hour. For about 8% of
the issued tickets and 5% of the total video time, the quality
achieved was average (i.e. MOS = 3.4 in this case). Regarding
bad quality estimation, one of the main limitations of doing
only monitoring is that the system can not say whether bad
quality events come from problems on the network or in any
other place (the customer terminal, the YouTube servers, a
bad SNR, etc). In this particular evaluation, the aggregated
occurrence of bad quality events is practically negligible.

VI. CONCLUDING REMARKS

In this paper we have studied the problem of YouTube QoE
real-time monitoring and assessment in mobile networks. We
have addressed all the different steps to reach a system capable
of giving concrete real-time indications on the performance
of a mobile broadband network regarding the experience of
the customers watching YouTube videos. In particular, we
have covered the modeling of YouTube QoE by combining
results from both lab and field studies; we have studied the
problem of how to extract YouTube performance indicators
related to the QoE perceived by end-users, relying exclusively
on packet-level measurements; and most important, we have
devised and depicted evaluation results that show the potential
and feasibility of doing real-time QoE monitoring in services
such as YouTube in mobile broadband networks. This paper
provides a first answer to the original question we posed at
the very beginning: Is Your Mobile Network Delivering the
Right Experience to your Customers? Now we can answer it.

ACKNOWLEDGMENTS

This work has been performed in the framework of the projects
ACE 2.0 and U-0 at the Telecommunications Research Center Vienna
(FTW), and has been funded by the Austrian Government and the
City of Vienna through the program COMET. The authors would
like to thank Eduard Hasenleithner and Tobias Witek for their highly
valuable participation in all the implementation details of the study.

REFERENCES

[1] V. Gehen, A. Finamore, M. Mellia, and M. Munafo, “Uncovering the Big Players
of the Web”, inTMA’12, 2012.

[2] A. Finamore et al., “YouTube Everywhere: Impact of Device and Infrastructure
Synergies on User Experience”, inACM IMC’11, 2011.

[3] R. Torres, A. Finamore, J. Kim, M. Mellia, M. Munafo, and S. Rao, “Dissecting
Video Server Selection Strategies in the YouTube CDN”, inIEEE ICDCS’11, 2011.

[4] YouTube Press Room - Statistics, http://www.youtube.com/t/pressstatistics, ac-
cessed on October 2012.

[5] Y. Liu, K. Gummadi, B. Krishnamurthy, and A. Mislove, “Analyzing Facebook
Privacy Settings: User Expectations vs. Reality”, inACM IMC’11, 2011.

[6] A. Mislove, M. Marcon, K. Gummadi, P. Druschel, and B. Bhattacharjee, “Mea-
surement and Analysis of Online Social Networks”, inACM IMC’07, 2007.

[7] L. Plissonneau and E. Biersack, “A Longitudinal View of HTTP Video Streaming
Performance”, inACM MMSys’12, 2012.

[8] S. Alcock et al., “Application Flow Control in YouTube Video Streams”, inACM
SIGCOMM Computer Communication Review, vol. 41 (2), pp. 24-30, 2012.

[9] T. Hossfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, and P. Tran-Gia,
“Quantification of YouTube QoE via Crowdsourcing ”, inIEEE MQoE 2011, 2011.

[10] R. Mok, E. Chan, X. Luo, and R. Chang, “Inferring the QoE of HTTP Video
Streaming from User-Viewing Activities”, inACM SIGCOMM W-MUST’11, 2011.

[11] T. Hossfeld et al., “Initial Delay vs. Interruptions: Between the Devil and the Deep
Blue Sea”, inQoMEX 2012, 2012.

[12] R. Mok, E. Chan, and R. Chang, “Measuring the Quality of Experience of HTTP
Video Streaming”, inIFIP/IEEE IM 2011, 2011.

[13] P. Casas, A. Sackl, S. Egger, and R. Schatz, “YouTube & Facebook Quality of
Experience in Mobile Broadband Networks”, inIEEE QoEMC 2012, 2012.

[14] S. Hemminger, “Network Emulation with NetEm”, inLCA 2005, 2005.
[15] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “YoMo: A YouTube

Application Comfort Monitoring Tool”, inEuroITV 2010, 2010.
[16] S. Rugel, T. Knoll, M. Eckert, and T. Bauschert, “A Network based Method for

Measurement of Internet Video Streaming Quality”, inProc. European Teletraffic
Seminar, 2011.

[17] M. Eckert and T. Knoll, “An Advanced Network based Method for Video QoE
Estimation based on Throughput Measurement”, inProc. EuroView 2012, 2012.

[18] R. Schatz, T. Hoßfeld, and P. Casas, “Passive YouTube QoE Monitoring for ISPs”,
in Proc. FingNET 2012, 2012.

[19] International Telecommunication Union, “Methods forSubjective Determination
of Transmission Quality”,ITU-T Recommendation P.800, 1996.

[20] International Telecommunication Union, “SubjectiveVideo Quality Assessment
Methods for Multimedia Applications”,ITU-T Recommendation P.910, 2008.

[21] International Telecommunication Union, “EstimatingEnd-to-End Performance in
IP Networks for Data Applications”,ITU-T Recommendation G.1030, 2005.


