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Abstract—Application-Aware Networking is a promising ap-
proach to provide good application quality to users in scenarios
with limited network resources, like today’s access networks.
With SDN, a particularly interesting method to enable flow-
based traffic management in networks has become available.
In this work we take a look at how a specific application,
i.e., YouTube Streaming, can benefit from such an SDN-based
Application-Aware Network. We implement and investigate an
approach based on Deep Packet Inspection (DPI) and one
based on direct information input from the application in an
OpenFlow testbed in order to show, how these different types
of application information can be exploited to enhance the
Quality of Experience (QoE). Furthermore, we determine the
overhead caused by each of the presented approaches.

Keywords-Application-Aware Networking, SDN, Software
Defined Networking, OpenFlow, DPI, Deep Packet Inspection

I. INTRODUCTION

The requirements for network applications are diverse and
today’s networks try to support them based on Quality of
Service (QoS) parameters. However, the performance of a
specific application cannot be determined by simply relying
on QoS metrics [1]. Instead, a good application quality,
e.g., the video quality or short waiting times, is the metric
by which a user quantifies his/her Quality of Experience
(QoE). Therefore, a major challenge for future networks is
to dynamically adapt to QoE demands of the applications in
the network. This is especially true for networks with limited
resources, like today’s access networks. Application-Aware
Networking is a way to provide a good application quality
to users of these networks.

The introduction of Software-Defined Networking (SDN)
opens a path towards the realization of this approach. By
introducing an external and programmable network control
plane, SDN creates a flexible, adaptable, and open interface
to the network, the ”Northbound-API”. It enables the ex-
change of application information with the network. This in
turn can be leveraged to augment the network management
to improve the user QoE. The challenge here is to determine
which kind of information should be how often exchanged.

In this paper we examine how different kinds of informa-
tion, such as per-flow parameters, application signatures, or
application quality parameters can support a more effective
network management in an SDN-enabled network. Applica-
tion information and related QoS levels offer greater flexibil-

ity in terms of supporting QoE than hard QoS parameters.
However, using them may require an overhead of signal-
ing effort compared to management at the network level.
Therefore, we take a look at the trade-off between the QoE
improvement due to more detailed application information
and corresponding signaling overhead. All approaches are
emulated in an SDN-enabled testbed for the application of
YouTube streaming. We use the YouTube quality monitoring
tool YoMo [2], which monitors the buffer filling level and
the occurrence of playback stalling to quantify the impact
each approach has on the YouTube QoE.

The remainder of this paper is structured as follows. In
Section II we give background information to SDN and
Application-Aware Networking and discuss related work.
We then introduce our testbed setup and scenarios in Sec-
tion III. Section IV discusses the different approaches with
the corresponding experimental results. Finally, we derive
our conclusions in Section V.

II. BACKGROUND AND RELATED WORK

Currently, the prevalent idea in networking for improving
the quality of a service for the end-user is to differentiate
traffic flows into Quality of Service levels. For this purpose,
different QoS classes are defined according to the expected
type of traffic in the network and applications with similar
needs are assigned to them. These classes ensure a minimum
reserved traffic rate according to the QoS parameters of the
application type.

However, a QoS-based provisioning alone is often not
sufficient to provide an acceptable application quality. This
is especially the case for applications with time-dynamic
QoS requirements. For example, due to video encoding,
download patterns, or user behavior an application may not
have a fixed demand for bandwidth. Instead, bandwidth is
required depending on the application state. SDN provides
an interface to convey this application state to the network.
This allows the network control plane to optimize the flow
of traffic according to the information available.

A. Application-Aware SDN

In an SDN-enabled world as we see it, new open inter-
faces exist between the application, the data-plane, and the
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Figure 1. Application-Aware SDN Architecture

control-plane. These are illustrated in Figure 1.
The interface between data- and control-plane is called

the ”Southbound-API”. It enables the externalization of the
control plane from the forwarding device to a logically-
centralized network control plane, often simply called ”con-
troller”. As a software entity, the controller can be freely
programmed and adapted to the network according to the
operator’s requirements. Currently, the most popular real-
ization of this interface is OpenFlow [3], which we use for
our experiments. While the Southbound-API is an important
component of SDN, from our point of view, the significant
additional value of SDN lies within the ”Northbound-API”
interface between the network control plane and what we
call ”application control plane”, i.e. applications running on
top of or interacting with the network itself. This enables the
exchange of information about the application and network
state, respectively. Curtis et al. [4] suggest an optimized
data center flow scheduling by notifying an OpenFlow-
like controller about elephant flows detected at the hosts’
socket buffers. In [5] Das et al. demonstrate how SDN-based
aggregate routing can be adapted with the QoS parameters
of applications in mind. Jarschel et al. [6] show how a pre-
notification of the network control plane in case of a virtual
machine migration can serve to maintain service. We are
going one step further by also taking the actual application
quality and state over time into account to maintain a good
service quality for the customer.

B. Technical Details on YouTube Streaming

YouTube, one of the most important VoD platforms,
provides mainly small to medium sized video clips in
different qualities. The default video compression format is
H.264/MPEG-4 Advanced Video Coding (AVC). In order
to watch a video, the user opens the YouTube web page
where an HTML-5 or Adobe Flash player is embedded for
video playback. The video player requests the video data
from a YouTube streaming server in the Internet using the
HTTP protocol. YouTube uses progressive video streaming
which means that the video is already played out, while the
client downloads the content into a buffer or a temporary
file in the background. If the buffer is sufficiently filled, a
smooth video playback can be guaranteed. If the buffer is

empty, the video playback is interrupted and stalling occurs.
According to [7], [8], stalling is the dominating factor of
the QoE for online video streaming, clearly exceeding the
significance of video resolution. Hence, a simple mapping
of a QoS parameter such as throughput to YouTube QoE is
difficult, as the QoE depends on the buffer level and video
encoding. This complexity makes YouTube streaming a good
candidate for the Application-Aware SDN approach.

III. SCENARIO AND TESTBED SETUP

Our Application-Aware SDN testbed emulates a path
selection scenario for an access network provider. The access
network provider, e.g. a mobile network operator, transmits
the data of its customers over multiple leased lines to the
Internet. The goal of the provider is to use these lines as
efficiently as possible, i.e., as few lines as possible should
be rented as long as the QoE of the user does not suffer.

The provider has chosen an OpenFlow-enabled device
as termination point for several access connections to its
customers. While the provider does have exclusive last
mile-access to the customers, the upstream connectivity
belongs to a different ISP. Therefore, the OpenFlow device
is connected via leased virtual channels across the WAN to a
second OpenFlow-enabled device in the provider’s Internet
backbone. A customer of the provider is watching a YouTube
video, while other customers run file downloads or surf the
web. The provider is interested in providing a good quality
of experience to the YouTube user, while at the same time
not overextending its leased resources.

A. Testbed Setup

Figure 2 shows our testbed setup for the reference case.
As OpenFlow-enabled devices at the access and provider
edge, we use two Pronto 3290 switches [9] running PicOS
1.6.1. Both are configured for out-band management and
are connected via their management interfaces to an HP
ProCurve 1810-24 switch, forming the management net-
work. A Dell PowerEdge 860 server is used as controller
host and is also connected to the HP switch. As controller
software, we are using the Floodlight controller [10] from
BigSwitch running our own modules. The ”virtual” provider
connections are represented by five links between the two
switches using Cat-5 cabling. The physical ports on the
switches for these five links are set to 10 Mbps link speed.
The ”provider switch” is connected to a Cisco router, which
serves as Internet gateway for our testbed. The YouTube
user is represented by a standard PC running Ubuntu Linux.
The browser used to access YouTube is Mozilla Firefox
running our YoMo plugin. When the browser is directed to
play a YouTube video, YoMo, among other things, is able
to identify the TCP-flows used for the transmission as well
as track the buffered and current playtime in the YouTube
player. Since the QoE of YouTube depends on stalling [7],
[8], monitoring the buffered playtime gives us an indication
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Figure 2. Testbed Setup

whether the current performance offered by the network
leads to a QoE degradation for the user or not.

B. Experiments

In the following, we discuss the differences between each
of the experiments as well as their purpose. The start of the
YouTube video coincides with the start of each experiment.
The video is played out with a resolution of 480p by default.

Reference Experiment: In this experiment only YouTube
traffic to a single client is transmitted. The controller chooses
one of the five available links at random to transfer the flow.
The YouTube traffic can use the full 10 Mbps available on
that link. This experiment gives us a baseline in terms of
the available buffered playtime we can expect under optimal
conditions.

Reference Experiment with Interfering Traffic: For
this experiment two additional PCs are connected to the
testbed. One is connected to the access switch, the other
to the provider switch. We use Iperf [11] to generate traffic
between those two machines in order to emulate other users
on the network. In addition to the YouTube traffic, 20 TCP
flows are started sequentially after 60 seconds with a flow
inter-arrival time of one second. The controller directs all
traffic via only one of the five links, which gives us a worst
case approximation.

Round-Robin Path Selection: The testbed setup for
this experiment remains the same as in the previous case.
Once again 20 TCP flows are generated. However, this time
the controller can use more than one link. It does so by
directing each new flow to a different link in a round-robin
fashion. This experiment represents our naive load-balancing
approach.

Bandwidth-Based Path Selection: The same traffic and
testbed as in the previous experiments is also used here. The
controller is still able to use all links. Links are selected by
their currently used bandwidth. When a new flow arrives,
the controller determines the least loaded link and directs
the flow to it. At the same time the controller checks the
bandwidth required by each of the flows every second via
the switches’ flow table counters. If there is a link with free
capacity available, the controller will then redirect the largest
flow in terms of bandwidth consumption from a loaded link

to the free link. In order to avoid constant redirection, this
can only happen once every ten seconds for a specific flow.

Deep Packet Inspection: We extend the testbed by a
machine performing Deep Packet Inspection (DPI). The
machine is connected to the management network and can be
contacted by the controller. The experiment parameters are
the same otherwise. In this experiment, the controller directs
all traffic via one link. The first ten packets of each flow,
are mirrored to the controller, which then sends them to the
DPI machine running a combination of TShark, the console
version of Wireshark [12], and several filter rules based on
regular expressions. The DPI informs the controller about
the nature of the flow. If a particular flow is a YouTube
video, the controller will redirect the flow to another less
congested link.

Application-Aware Path Selection: Finally, in this ex-
periment, we leverage the information YoMo provides us
with as input for the controller. The experiment is identical
to the previous one, except that 50 TCP flows are generated
to create a high load scenario and the machine used for DPI
in the previous experiment is now used to receive application
information containing the current YouTube buffer level and
flow information. We call this machine the ”application sta-
tion”. When the buffer level gets below a certain threshold,
the application station informs the controller that an action
is required for a particular flow in order to maintain the QoE
for the user.

IV. MEASUREMENT RESULTS

In this section, we discuss the measurement results of our
experimental investigation. All experiments were repeated
five times. However, for the sake of visualization, only
one representative run is depicted. Each experiment has a
duration of 420 seconds. The used video1 has a mean data
rate of 2.6 Mbps with standard deviation of 250 kbps.

A. Reference Experiment

The upper curve in Figure 3 shows the pre-buffered
playtime of the YouTube player at the client in seconds
over the duration without interfering traffic. It can be seen
that a pre-buffered playtime of about 55 seconds is reached
within the first 10 seconds. Thus, 55 seconds playback can
be achieved without further data. While the video is played
out, the buffer decreases but is constantly refilled so that
the buffer maintains a stable level. This is as expected
for the reference experiment. The buffer level never drops
significantly and, most importantly, it never reaches zero,
which would cause the video to stall.

B. Reference Experiment with Interfering Traffic

The repetition of the reference experiment with interfering
traffic yields a different result as is illustrated in Figure 3,

1YouTube Video: ”Waterfall” 90mins ”Sleep Video” Bull Creek;
http://www.youtube.com/watch?v=WZtn2n51Xrw
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Figure 4. Buffered Playtime (5 Links, 20 Additional TCP Flows, Round-
Robin Path-Selection)

which again shows the pre-buffered playtime in seconds over
time. Up to the point when the interfering traffic starts, the
behavior is exactly the same as in the reference experiment.
However, with the reduced bandwidth available, the buffer
level continuously falls as the video is played out until it
is emtpy and the video stalls at about the 140s mark. At
about 200s the YouTube player automatically reduces the
default resolution of 480p to 360p, and therewith the video
bit rate. This enables the video to be played out again with
less stalling albeit in a lower quality. The buffer, however,
does not recover and stays at a low level of about 10s pre-
buffered playtime.

C. Round-Robin Path Selection

The approach of balancing the flows across multiple links
in a round robin fashion should naively improve the situation
for the YouTube user compared to the one link scenario.
However, this is not necessarily the case with heterogeneous
traffic as is shown in Figure 4. After the initial undisturbed
phase, the YouTube buffer once again can not maintain its
high level. However, this time it is not immediately emptied
and the video keeps playing. As the controller assigns all
flows in a round robin-fashion but can not tell, which flow
is an ”elephant” and which is a mouse, the bandwidth
distribution can be very uneven. This eventually also comes
to haunt our YouTube video at about 270s after the start of
experiment when it has to share its link with multiple high
bandwidth flows. Subsequently, the buffer is drained and the
video stalls yet again.

D. Bandwidth-Based Path Selection

Taking the used bandwidth per flow into account is the
next logical step from our round-robin approach that suffered
from uneven bandwidth distribution. However, it fares little
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Figure 5. Buffered Playtime (5 Links, 20 Additional TCP Flows,
Bandwidth-Based Path-Selection)

0 50 100 150 200 250 300 350 400
0

20

40

60

time [s]

pr
e−

bu
ffe

re
d 

pl
ay

tim
e 

[s
]

Figure 6. Buffered Playtime (5 Links, 20 Additional TCP Flows, DPI-
Based Path-Selection)

better in terms of YouTube streaming performance as can be
seen in Figure 5. This is due to fact that all flows, except the
YouTube flow, are ”elephants” and try to use the maximum
bandwidth available. When the interfering traffic starts at 60
seconds, the buffer begins to decrease. While this is not as
swift as in the one-link scenario, it steadily decreases and
eventually reaches a stalling event. At this point YouTube
switches again to a lower resolution and the video is able
to recover.

E. Deep Packet Inspection

The previous experiments show, that network information
alone is not sufficient to provide the YouTube user with a
good performance. However, using deep packet inspection,
we can identify the YouTube traffic in the network and
prioritize it. This approach yields the desired success as is
shown in Figure 6. The YouTube pre-buffered playtime be-
haves the same way as in our reference scenario without any
interfering traffic. However, the overall usage of the available
network resources is reduced as depicted in Figure 7. Here,
the used bandwidth in Mbps over time is shown. Initially,
there is a spike up to the maximum utilization of 10 Mbps on
Link1. This is due to the YouTube buffer ramping up. After
about 20 seconds the deep packet inspection has identified
the traffic as YouTube video and notified the controller,
which redirects the video to its own dedicated Link2. When
the interfering traffic starts at 60s, it remains on Link1, not
able to influence the YouTube stream. Since the DPI can not
provide application state information all links are reserved
for YouTube streams, which in this case results in a network
resource utilization of just about 15 percent on average.
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Applicaton-Aware Path-Selection)

F. Application-Aware Path Selection

While the deep packet inspection approach has already
enabled us to provide a good experience to the user, we
also wasted a lot of bandwidth as the dedicated link for the
YouTube video is only slightly used after the initial ramp-up
of the buffer and the other dedicated links remain empty. It
would be beneficial for the network only to use the extra
resources when there actually is a problem and return to
normal operation when it no longer persists. This is where
the benefits of the SDN northbound interface come into play.
By leveraging this interface, we can implement application-
state awareness in the network. The benefits can be seen
in Figure 8. With all traffic on one link, the buffer level
of the YouTube video starts to decrease, like we have seen
in IV-B. When it reaches a threshold of 20s pre-buffered
playtime, the controller is triggered and it redirects the
YouTube traffic to a less-loaded link. However, this time
this is not a dedicated link. It can be used by other traffic.
Therefore, once the YouTube video has reached a buffered
playtime of 35 seconds, the controller can use more capacity
on the link for other traffic until the video again reaches its
lower playtime threshold. As we can see in Figure 9, all
links in this experiment are fully loaded. Despite of this,
the YouTube user still experiences a good quality using the
Application-Awareness approach.

G. Resource-Overhead

All in all, two OpenFlow switches are required for these
approaches in addition to the controller. For deep packet
inspection and application-aware networking another ma-
chine is required to gather information about the running
applications. Furthermore, all of the described methods to
improve the performance for the YouTube user cause a
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Figure 9. Used Bandwidth (5 Links, 50 Additional TCP Flows,
Application-Aware Path-Selection)

certain overhead on the control plane. In the following, we
describe said overhead for each approach and determine its
efficiency in terms of resource consumption. As a gauge for
the efficiency ρ of resource utilization, we use the ratio of
bandwidth used on average once the interfering traffic has
started,

ρ =
Mean(UsedBandwidth)

AvailableBandwidth
.

Round-Robin Path Selection: The simplest solution with
round-robin flow scheduling also has the least overhead.
Here, only the OpenFlow Packet-In, Packet-Out and Flow
Mod messages have to be transmitted via the control chan-
nel. No additional traffic and components are necessary. For
this approach all resources are used, therefore ρ ≈ 1.

Bandwidth-Based Path Selection: For the band-
width-based approach, more overhead in terms of control
channel traffic is required compared to the round-robin
approach. The controller needs to periodically query the
flow table counters in the switches to determine the current
bandwidth utilization of each flow and link. Additionally, the
balancing of bandwidth usage causes more flow redirection
operations, which increases the number of sent Flow Mod
packets and the CPU load on the switches. Again all
available resources are used with ρ ≈ 1.

Deep Packet Inspection: The deep packet inspection
approach requires an additional, potentially heavy loaded,
computing resource in the control plane to perform the
packet analysis. Furthermore, the first ten packets of each
flow have to be mirrored. We use the control channel for this.
The bandwidth utilization on the control channel in the DPI
case shows an increase of bandwidth utilization to just under
1 Mbps when packet mirroring occurs at the beginning of the
experiment. This is double the required bandwidth used by
normal reactive flow setups, which peak at about 0.5 Mbps.
However, compared to the bandwidth-based approach, no
real-time querying of the switches is necessary. A general
problem of DPI is also that the application signatures have to
be constantly updated, which requires additional expenses.
As there is no access to the application state in this approach,
all links except one have to be dedicated lines for potential
YouTube flows. As in our scenario only one YouTube flow is
actually transmitted a lot of bandwidth is left unused leading
to a ρ of just 0.15. Using only one line for YouTube flows
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would increase the bandwidth usage to ρ ≈ 0.85 which is
still less compared to the other scenarios.

Application-Aware Path Selection: Like DPI, the
application-state-aware approach also requires an additional
computing instance to receive and filter the application
information for the controller. While this method puts no
significant overhead on the control channel, it requires the
exchange of information of the application station instance
and the served clients. This may cause a significant amount
of traffic, if the application state changes constantly. Further-
more, an additional software component is required at the
client to monitor the application. This can be a part of the
application itself or, as is the case with us, be a plugin for
the software that should be monitored. With the benefit of
application state information, all resources can once again
be used leading to a ρ ≈ 1.

H. Quantifying the Results

Figure 10 shows the cumulative distribution functions of
the pre-buffered playtime for five experiment runs of our
approaches once interfering traffic has started. For the sake
of readability the confidence intervals are only drawn for the
experiment without flow management. As can be seen, they
are very small and this is also true for the other approaches.
The approach without any flow management performs the
worst in terms of playtime, having about 70 percent of the
time a pre-playtime below 20 seconds. The Bandwidth-based
and Round Robin approaches fare little better, but at the
cost of a reduced video quality. The Round-Robin approach
seems to outperform the Bandwidth-based approach, but
this is because the video stalls earlier and so the Round
Robin approach benefits much sooner from the reduced
video size. Deep Packet Inspection and the Application-
Awareness approach show by far the best performance with
a pre-buffered playtime of 50 seconds and above for about
90 and 80 percent of the time, respectively. However, taking
the conserved bandwidth and smaller resource overhead into
account, the Application-Aware SDN approach appears to be
the most viable.

V. CONCLUSION

In this paper we have shown the benefits of combining
application-state information with SDN network control for
network management for the example of YouTube stream-
ing. We have seen that users can benefit profoundly from this
approach compared to purely QoS-based methods. However,
the improved performance comes at a cost of resource over-
head. Generally, more signaling and computing is required to
profit from the advantages in QoE. Currently, to achieve this,
reactive flow setup with OpenFlow is required, which limits
the applicability of this approach to smaller networks such as
the scenario described in this paper. Still, with the ongoing
trends towards Network Functions Virtualization and the
increasing use of network processors, this may change in
the future. Therefore, we aim to improve our approach
by investigating more applications and their requirements
as well as further network resource management strategies
beyond path selection.
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