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Abstract—The high signaling load in today’s UMTS networks
has recently lead to severe problems and network outages of
several hours, so called Signaling Storms. The reason is that cer-
tain network access patterns of popular smart-phone applications
trigger frequent connection re-establishments, which are signaled
to the network via the radio resource control (RRC) protocol. As
a consequence of the network agnostic implementation of smart-
phone applications, entities of the mobile network operator may
experience overload, while energy consumption at the smart-
phones is mutually determined.

The aim of this work is to study the impact of traffic charac-
teristics on the power consumption of the smart-phone and the
signaling messages in the mobile network. For that purpose, we
first develop a simple model for the RRC states of a smart-phone.
Second, we estimate the resulting power drain and the signalling
traffic of the smart-phone. Then, we investigate the applicability
of our model by comparing analytical with simulation results
for real-world smart-phone traffic measurements. Finally, we
evaluate the effect of network parameter optimization on traffic
with different statistical characteristics. Our counter-intuitive
results show that in particular bursty traffic patterns are suitable
for UMTS networks while periodic patterns may cause increased
power consumption and signaling overload – in contrast to
classical queueing systems.

Index Terms—Signaling Storm, Energy Consumption, Smart-
Phone Application, Radio Resource Control, 3G Networks

I. INTRODUCTION

The popularity of mobile broadband Internet access and the
usage of smart-phone apps has grown tremendously during
the last years. Apple reported that 10 billion apps have been
downloaded from the App Store, while the Android market had
around 150,000 apps available with about 350,000 downloads
every day [1]. A success driver is the easy development of such
an app compared to the early days of mobile phones. Today
free or cheap development kits exist for each popular mobile
platform which enable non-professionals or private users to
create their own apps.

On the one hand, the easy development process of these
smart-phone apps leads to huge number of diverse apps and
enthusiastic popularity among end-users. On the other hand,
this fosters a network-unaware implementation of the apps. As
a result, the behavior of some apps does not take into account
particular properties of mobile environments such as a limited
battery capacity of the mobile phone, i.e. user equipment
(UE) and utilization of wireless resources, e.g., the reservation
of dedicated channels for long times. In today’s 3G UMTS
networks, the allocation of dedicated and shared channels are
controlled by the radio resource control (RRC) protocol [2].

This protocol defines a set of RRC states that the UE can take.
The states have an important impact not only on the uplink
and downlink transmission capacity that the UE can use, but
also on the battery consumption of the UE. In addition, the
RRC states depend on the demand to send or receive data.
Therefore, the network access pattern of the used app has
a crucial impact on the use of mobile network and battery
resources.

In [3] increased control plane signaling is investigated due
to frequent RRC state transitions. They identify excessive
signaling overhead (both in RAN and in the CN) since occa-
sional, very small update messages are sent. Especially, social
networking applications on smart-phones are found to cause
significant amount of signalling messages in 3G networks due
to frequent status update messages on application layer. The
authors highlight that traffic patterns from various applications
yield to completely different signaling traffic in the mobile
network. The 3GPP recently published a technical report [4]
about use cases and potential network requirements to reduce
the signaling overhead.

Our contribution is to investigate the trade-off between
smart-phone energy consumption and the 3G signaling load.
To estimate the impact of the network access pattern of
a smart-phone on the consumption of wireless and battery
resources, we develop a simple model for the RRC states of
a UE in a 3G UMTS network. Our model assumes that the
app sends and receives data packets according to a renewal
process for a known distribution of the inter-packet time. From
this information, we derive exactly the state distribution of
the UE, i.e., the probability that the UE is in a specific state,
and the frequency of state transitions. In addition, we model
the consumption of wireless and energy resources for a given
network access pattern. Based on real-world measurements of
network traffic emerging from smart-phone apps, we compare
analytical and simulative results to investigate the applicability
of our model. As major contributions, we first provide a
model for power consumption and signaling load emerging
from smart-phone apps, and then identify characteristics of
resource-efficient network access patterns.

The paper is structured as follows. Section II provides a
background on 3G UMTS networks, the RRC protocol, and
related work on measurements of relevant RRC parameters.
The analytical model to quantify the trade-off between energy
consumption and signaling load is derived in Section III.
Numerical results and their implications are discussed in
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Section IV. Section V concludes this work.

II. BACKGROUND ON UMTS AND THE RRC PROTOCOL

In general, a 3G UMTS mobile communication network
consists of three components: user equipment (UE) like smart-
phone or USB data stick, radio access network (RAN), and
the core network (CN). The connection between UE and CN
is established by the RAN. Within the RAN, the base station
and the radio network controller (RNC) are responsible for
radio resource control, packet scheduling, handover control,
etc. The RNC is the controller for a set of base stations
that are connected to it. The CN is the backbone network
which forwards the user data to external networks such as
the Internet or the public switched telephone network. It also
provides support for other additional functions such as billing,
authentication, or location management.

In UMTS networks, the radio resources in the RAN between
base station and UE are controlled and managed with the help
of the RRC protocol [2]. All the RRC procedures rely on
protocol states which are defined to trigger certain protocol
actions for different situations. If the UE is switched on and
no connection to the mobile network is established, the UE is
in idle state. In contrast, if the UE wants to send data, radio
resources are allocated by the base station for the handset and
the UE will go into FACH or DCH state. A corresponding
channel for data transmission is assigned to the UE. The
FACH and the DCH state can be distinguished in that way
that in DCH state a high-power dedicated channel for high
speed transmission is allocated whereas in FACH state a shared
access channel for general sporadic data transmission is used.
FACH significantly needs less power than DCH.

The possible transitions between the different states are
defined by the network operator and the RRC protocol stack.
Typically, the following state transitions are included: idle !
FACH, FACH ! DCH to switch from lower radio resource
utilization and low UE energy consumption to another state
using more resources and energy, and DCH ! FACH, FACH
! idle, DCH ! idle to switch to lower resource usage and
energy consumption. According to [5], [6], the transitions are
triggered by user activity and radio link control buffer level. A
transition from DCH to FACH usually occurs when the buffer
is empty and a threshold for a release timer is exceeded. The
reverse direction is done if the buffer level oversteps a certain
threshold value for a predefined time period. The UE goes into
idle state if the RNC detects overload in the network or no
data was sent by the UE for a certain time.

In literature, the configuration of the inactivity timers used
of the RRC protocols have been investigated in detail. In [5]
a measurement tool for RRC protocol states is presented. It is
used to determine RRC state transition parameters, channel
setup delays, and paging delay by measuring the one-way
round trip time of data packets. The results are validated by
monitoring the energy consumption in different RRC states.
One outcome is that there are significant differences in UMTS
network configurations. DCH release timer as well as the
inactivity timer value to go into idle state were measured. The

values range from 1.2 s for DCH release timer to more than
one minute for the idle timer. Similar results are presented
in [6]. There, the values range from 5 s to 12 s. Additionally,
they also determined the exact RRC state transitions for two
networks such as idle ! FACH ! DCH or idle ! DCH
directly without state FACH.

III. A SIMPLE PERFORMANCE MODEL FOR 3G RRC
STATES

This section introduces the performance model for quanti-
fying energy consumption against signaling load. After pre-
senting the system description, we derive the state distribution
and the average frequency of state transitions for a two-
state model (idle, DCH), e.g. for proprietary fast dormancy
implementations of smart-phone vendors [7]. Afterwards, we
extend the model to include FACH for regular 3G networks.
Finally, we define simple metrics for signaling load and energy
consumption.

A. System Description and Basic Assumptions

We consider a smart-phone that sends and receives a se-
quence of data packets via a 3G UMTS network. The arrival
process of the packet transmissions determines the RRC states
of the smart-phone. However, the direction of packets (up-
/downstream) has no impact on the RRC states, the states
depend only on traffic activity. This is also the reason why we
do not consider the packet size in our model. In real UMTS
networks very small packets might be treated differently
for RRC states, but we neglect this for simplicity reasons.
Furthermore, the actual RRC state transitions are complex
procedures depending on implementation details of the smart-
phone, the used UMTS release, and the configurations by the
network operator. In order to keep our model simply, but
realistic, we reduce the set of standardized RRC states and
the state transition triggers in the following ways.

In a first step we consider only a basic scenario with two
RRC states: idle and DCH (cf. left part of Fig. 1). The UE
switches to DCH to transmit or receive data and after an
inactivity period of duration TDCH it switches back to idle.
The motivation for the two states RRC scenario is twofold.
First, it serves for illustration purposes. We derive the model
step-by-step in this simple scenario to explain the ideas behind

Inactivity  
timer TFACH 

FACH DCH 

Idle 

Activity 
detection 

Inactivity timer TDCH  

Activity detection 

Three state scenario 

Idle 

Activity 
detection 

Inactivity  
timer TDCH  

DCH 

Two state scenario 

Fig. 1: Simplified RRC state transitions diagrams of the two
state and the three state scenario.



the equations. The scenario is of practical relevance since
proprietary implementations of the fast dormancy concept [7]
exist, where UE decides to switch to idle shortly after the
transmission of a packet without using any other RRC state.
Furthermore, this model is very similar to the one found
in Long Term Evolution (LTE) systems. In LTE, we only
distinguish between connected and disconnected states.

In a second step we consider three RRC states (cf. right
part of Fig. 1). The reason is that regular smart-phones are
advised by the network to switch from state DCH to FACH
after a certain inactivity period or when RRC buffers fall below
certain thresholds. When the thresholds are exceeded, the UE
is advised to switch back to DCH state. Otherwise, the UE
switches to idle after an additional timeout TFACH. However,
we abstract from the RRC buffer thresholds in our model and
consider only traffic activity since the thresholds in current
networks are likely to be exceeded even for a single packet
larger than 500 byte [8]. In addition, this permits to neglect the
influence of the packet sizes in the model. A further motivation
to include the FACH state is that the power drain of the UE
is significantly smaller than in DCH state [6].

In our model we aggregate both packets sent and received
by the UE in in the packet arrival process, which is assumed
to be a renewal process, i.e. a process with identical and
independently distributed inter-arrival times, described by the
random variable A (cf. Fig. 2). Thus, the probability that the
time between two consecutive packets is at most t is P(A 
t) = A(t). We challenge this assumption by measurements of
packet traces in Section IV-A.

B. The Case of Two RRC States

1) State Distribution: First, we are interested in the state
distribution P(S = s), i.e., the fraction of time that the UE
spends in state s 2 {idle,DCH} for a given inter-packet time
A. For this purpose, we define an observation interval TObs
(cf. Fig. 2) that is orders of magnitude larger than the average
inter-packet time E[A]. In addition, we take the position of an
outside observer who observes the state s at a random point in
time t⇤, uniformly distributed within the observation interval.
Then the state distribution P(S = s) is the probability that
the observer sees the UE in state s at t⇤. We calculate this
distribution according to

P(S = s) =
Z •

0
q(t) ·P(S = s|A = t)dt , (1)

where q(t) is the probability density that t⇤ falls into an
interval of length t and P(S = s|A = t) is the probability that
the UE is in state s under the condition that t⇤ is within an
interval of length t .

We start with the derivation of q(t). This probability density
has to be proportional to a(t) and to t , where a(t) is the
probability density function of the random variable A. There-
fore, we have that q(t) = a(t) · t · c0 with the proportionality
constant c0. Due to

R •
0 q(t)dt = 1, we have c0 = 1/E[A],

which leads to
q(t) =

a(t) · t
E[A]

. (2)

A 

Time 

TDCH 

Time 

DCH 

Idle 

TObs 

Packet arrival process 

State process 

TDCH TDCH 

Signaling process 

DDCH Didle 

Connection 
establishment 

Connection 
tear-down 

Time 

Fig. 2: Relation of packet arrival process (described by the
random variable A), state process, and signaling process in
the two state scenario.

Next, we derive the conditional probability P(S = s|A = t)
that t⇤ falls within a period with state s under the condition
the that the inter-packet time is A = t . We use the fact that t⇤

is uniformly distributed within t and calculate the probability
P(S = idle) by case differentiation:

P(S = idle|A = t) =

(
0, if t  TDCH
t�TDCH

t , otherwise.
(3)

The calculation for S = DCH is very similar:

P(S = DCH|A = t) =

(
1, if t  TDCH
TDCH

t , otherwise.
(4)

2) Average Frequency of State Transitions: Next, we esti-
mate the average frequency of state transitions resulting from
a given packet arrival process. For that purpose, we consider
again the observation interval TObs and focus on the state
transitions from idle to DCH since every switch from DCH to
idle corresponds to a switch vice-versa. The expected number
of observed packets during TObs is E[nP] = TObs/E[A]. Fur-
thermore, the probability that time between two consecutive
packets exceeds the timer TDCH is

P(A > TDCH) = 1�P(A  TDCH) = 1�A(TDCH). (5)

The number of state transitions nidle!DCH during TObs directly
corresponds to the number of inter-packet times exceeding
TDCH since an active connection is torn down after an inactivity
period of TDCH. Therefore, the expected number is

E[nidle!DCH] = E[nP] ·P(A > TDCH)

=
TObs

E[A]
· (1�A(TDCH)). (6)

Hence, the expected frequency of state transitions is

E[ fidle!DCH] =
1�A(TDCH)

E[A]
. (7)

The same holds also for the state transitions from DCH to idle
and hence E[ fDCH!idle] = E[ fidle!DCH].



C. Extension for Three RRC States

In this section, we consider three states: idle, DCH, and
FACH. We assume that the UE switches from idle to DCH
whenever it transmits or receives data. After an inactivity
of TDCH the UE switches to FACH, and after an additional
inactivity of TFACH, it switches to idle (cf. right part of Fig. 1).

1) State Distribution: The state distribution P(S = s) for
the three states s 2 {idle,FACH,DCH} can be derived in the
same way as for the scenario with two states. Therefore, we
present only the conditional probabilities (which differ from
the two state case) and use Eq. (1) for the calculation of the
distribution. We start with S = idle:

P(S = idle|A = t) =

(
0, if t  TDCH +TFACH
t�(TDCH+TFACH)

t , otherwise.
(8)

For the case of S = FACH, we have:

P(S = FACH|A = t) =

8
><
>:

0, if t  TDCH
t�TDCH

t , if TDCH < t  TDCH +TFACH
TFACH

t if t > TDCH +TFACH
(9)

The probability for the DCH state P(S = DCH|A = t) does
not differ from the two state scenario (cf. Eq. (4)).

2) Average Frequency of State Transitions: In contrast to
the two state scenario, we have to consider a larger number
of state transitions. These are the transitions from idle to
DCH, from DCH to FACH, from FACH to DCH, and from
FACH to idle. Other transitions do not occur. We first calculate
the frequency of state transitions from DCH to FACH. This
transition happens every time when the inter-packet time A
exceeds the timer TDCH. Therefore, the derivation is the same
as presented above:

E[ fDCH!FACH] =
1�A(TDCH)

E[A]
. (10)

E[ fFACH!idle] =
1�A(TDCH +TFACH)

E[A]
. (11)

Furthermore, all state transitions from FACH to idle cor-
respond to a switch from idle to DCH and there-
fore E[ fidle!DCH] = E[ fFACH!idle]. Finally, we calculate
E[ fFACH!DCH]. This happens when TDCH < A  TDCH +TFACH.
Therefore, we have

E[ fFACH!DCH] =
A(TDCH +TFACH)�A(TDCH)

E[A]
. (12)

Other state transitions do not occur in our scenario (cf. Fig. 1).

D. Modeling Signaling Intensity and Power Drain of the UE

We assume that every state transition involves signaling
traffic. In order to quantify signaling load on an abstract level,
we define the signaling intensity SI of an application (i.e.,
of a given distribution for A) as the average number of state
transitions required for the transmission of a single data packet.

SI =
E[ fST ] ·TObs

E[nP]
= E[ fST ] ·E[A] (13)

where E[ fST ] is the sum of all state transitions. Consequently,
SI 2]0,2] for the two state scenario since every packet can at
most cause two state transitions (in the three state scenario it
is SI 2]0,3]). This metric is intended to quantify the relation
between transmitted data packets and the involved RRC state
transitions, which all incur mobile network signaling. The
metric can be extended to capture more details, such as
the number and type of signaling messages exchanged for a
specific state transition. Since we use this metric for more
qualitative analysis of source traffic produced by smart-phone
applications, we stick to the definition above allowing for an
illustrative understanding of the numerical results.

Next, we model the battery drain of the UE due to the
UMTS transmission unit. We assume three power levels PDs,
one for every state s and calculate the average power drain
PD based on the state distribution, which in turn depends on
the packet arrival process A.

PD = ÂPDs ·P(S = s) (14)

with s 2 {idle,DCH} or s 2 {idle,FACH,DCH} depending on
the scenario. This is a user-centric metric and gives insights
into how efficient the transmission process uses the battery.

IV. NUMERICAL EXAMPLES AND THEIR IMPLICATIONS

First, we validate our performance model by comparing
the analytical results with simulations based on measured
packet traces of two real smart-phone applications. Then, we
investigate the impact of traffic patterns on signaling load and
power drain and derive high-level implications of the model.

A. Model Validations
In order to assess the applicability of our performance

model, we first have to check whether real-world application
traces can be modeled as renewal process, which was our main
assumption for the model. We use the Lewis-Robinson-Test
[9], which is a hypothesis test with null hypothesis H0 that
the tested process is a renewal process. To this end, we use
exemplary the measurement results for two different types of
applications: Twitter and Mail. According to this test, the null
hypothesis cannot be rejected for both of our packet traces at a
significance level of 95%. Although this assumption may not
be true for all applications, our results show that at least the
considered applications can be modeled as a renewal process.
More details on the measurement setup can be found in [10].

Next, we compare our analytical performance results with
RRC protocol simulations using measured application and
TCP traces which are described in detail in [10]. In order to
produce analytical results that correspond to the real applica-
tions, we extract the empirical distributions of the inter-packet
time A from the traces for both applications and use these
distributions as input for Eq. (2). In Fig. 3a and Fig. 3b we
compare the accuracy of the results obtained by the presented
method to the values obtained from simulations for the two
measured applications. We observe that the accuracy for both
power drain (PD) and signaling intensity (SI) is very high.
In Fig. 3a the results for the Mail application obtained by the
model completely align with those obtained by the simulation.
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Fig. 3: Validation of the performance model with 3G simulations (a),(b). Numerical results for signaling intensity (c),(d) and
power drain (e) depending on application traffic pattern. Trade-off between power drain against signaling load (f).

B. Impact of Traffic Patterns on Signaling Intensity

First, we focus on the signaling intensity SI of traffic
patterns and check the impact of the average inter-packet time
E[A] and the timer configuration. The signaling intensity SI,
i.e., the average number of state transitions required for the
transmission of a single packet, is an abstract measure for the
signaling load produced by a specific traffic pattern.

1) Impact of the Average Inter-Packet Time E[A]: Some
applications, for example those downloading or streaming of
videos, send and receive large amounts of data within short
time frames. In contrast, other applications such as social
network clients send and receive small amounts of data every
few minutes over the time span of some hours or days. In this
section we study the impact of average inter-packet times E[A]
and the burstiness of the traffic pattern, i.e., the coefficient
of variation cA =

p
Var[A]/E[A] on the signaling load. For that

purpose, we use the simple two state scenario, set the timer
TDCH = 10 s, consider only the first and the second moment of
the inter-packet time A, and assume that A follows a lognormal
distribution, where both moments can be varied independently.

In Fig. 3c, we vary the average inter-packet time E[A] in
six orders of magnitude and investigate the resulting signaling
intensity SI for different coefficients of variation cA. We
observe that cA has no impact on SI for very small inter-
packet times E[A] < 10�1 s. The reason is that the UE stays
in state DCH for all the time since no inter-packet times
A > TDCH occur. In addition, the impact of cA is small for
very large values of E[A] > 103. There, the UE switches to

state DCH and back to state idle for the transmission of
every packet. Therefore, the signaling intensity SI approaches
the value 2. For values in between these two extremes, the
coefficient of variation cA has a considerable impact on the
signaling intensity SI. More periodic traffic (small values of
cA) make the increase of SI from 0 to 2 very sharp at the
value E[A] = TDCH, while this increase is more smooth for
larger values of cA. This is because for nearly periodic traffic
it is crucial whether the timer value TDCH is smaller or larger
than E[A]. For larger values of cA this dependency is weaker.

Next, we focus on the impact of the timer value TDCH with
respect to the burstiness of the traffic. We use the same setting
as before, but fix the average inter-packet time E[A] = 4 s.
While there are differences in E[A] among users in real world
settings, measurement studies have revealed that across all
users 95% of the packets are received or transmitted within
4.5 seconds of the previous packet [11]. Therefore, the order
of magnitude of E[A] = 4 s is of practical relevance. The
signaling intensity SI is shown in Fig. 3d with respect to the
timer value TDCH and the burstiness cA of the traffic pattern.
Obviously, larger timers lead to less frequent state transitions
and therefore to less signaling load. We observe in addition
that the impact of the timer is crucial for nearly periodic traffic.
If the average inter-packet time for nearly periodic traffic is
larger than the timer, then every packet transmission involves
a state transitions from idle to DCH and a transition back.
In contrast, no transitions are required if the average inter-
packet time is longer than the timer. With increasing values



of cA the impact of the timer is reduced. This means that for
bursty traffic patterns the timer value is of less importance
with respect to the generated signaling load.

C. Impact of Traffic Patterns on Power Drain PD of the UE

In this section we study the impact of the traffic patterns
on the power drain PD of the UE. This metric quantifies how
resource-efficient specific traffic patterns and timer configura-
tions are for the battery of the UE. For the power drain in the
different RRC states, we use the radio network power mea-
sured in a commercial UMTS network [6]: PDDCH = 800 mW,
PDFACH = 460 mW, and PDidle = 0 mW. We investigate the
impact of the average inter-packet time, the impact of the
timer configuration and validate our model with simulations.
In Section IV-B1 we have seen that no state transitions occur
for very small and very large average inter-packet times E[A].
Thus, traffic patterns with very small and very large inter-
packet times E[A] have also no impact on the power drain
of the UE regardless of the burstyness represented by the
coefficient of variation cA.

To study the impact of the timer configuration TDCH, we
use the same setting as for the signaling load: lognormal
distribution of inter-packet time A, E[A] = 4 s, two state
scenario. The numerical values (c.f. Fig. 3e) show that longer
timeouts lead to a higher power drain PD. This is reasonable
since the UE stays longer in the power intensive DCH state
in these cases. However, we observe that the burstiness of the
traffic pattern has also a considerable impact on the power
drain PD. The reason is that bursty traffic patterns send a lot
of traffic during short periods when the UE is in state DCH
anyway. During the following off-periods that UE can save
energy in idle state. Hence, we conclude that longer timeouts
and smaller coefficients of variation cA (more periodic and less
bursty traffic) lead to a higher power drain of the UE.

D. Trade-off: Energy Consumption vs. Signaling Load

In Fig. 3f, we show the effect of network parameter
optimization using the timer TTDCH on traffic patterns with
varying coefficient of variation. We see that optimizations
may decrease signaling by large amounts while only having
very little impact on power consumption for one specific kind
of traffic. The same timer setting could increase the power
consumption for another kind of traffic while only offering
little benefit with regard to the generated signaling intensity.

In [10] we discuss this effect in more detail suggest alterna-
tives to network parameter optimization. One such alternative
would be the use of Network Function Virtualization. Here,
network entities are realized in software and deployed in
the cloud, allowing for dynamic scaling. However, while this
alleviates some of the symptomes it does not solve the general
problem of network unaware applications or reduce the UE
power consumption. To remedy this problem in the long term,
the Future Internet should allow applications to incorporate
information about the network state in the application logic,
enabling cooperation between app and network. One such
approach is Economic Traffic Management [12]. Here, the

stakeholders cooperate by exchanging information in order to
reach a joint optimization goal. This concept could be applied
by ensuring that the hardware vendor provides interfaces to the
application developer allowing traffic to be sent at times when
power use and incurred signaling cost would be minimal.

V. CONCLUSION

In this work we developed a simple model in order to
estimate the signaling load and power drain of smart-phone
applications with respect to their network access patterns. We
tested the applicability of our model with simulations based
on packet traces of two popular smart-phone applications. Our
results show that different access patterns have a considerable
impact on the required resources of the mobile phone and the
network. We identified bursty traffic pattern as particularly
resource-efficient with respect to energy consumption and
signaling load. In contrast, nearly periodic traffic is likely
to cause signaling overload due to frequent connection re-
establishments, especially when the connection timeout is
slightly below the inter-packet time. Optimization of network
parameters may on one hand decrease the signaling occuring
in the network, but can on the other hand increase the power
consumption to unacceptable levels for the end-users.
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