
Dynamic Application-Aware Resource Management
Using Software-Defined Networking:

Implementation Prospects and Challenges
Thomas Zinner∗, Michael Jarschel∗, Andreas Blenk§, Florian Wamser∗, Wolfgang Kellerer§

∗Institute of Computer Science University of Würzburg, Germany.
Email: {zinner,michael.jarschel,florian.wamser}@informatik.uni-wuerzburg.de

§ Institute for Communication Networks, Technische Universität München, Germany.
Email: {andreas.blenk,wolfgang.kellerer}@tum.de

Abstract—Today’s Internet does not provide an exchange of
information between applications and networks, which may result
in poor application performance. Concepts such as application-
aware networking or network-aware application programming
try to overcome these limitations. The introduction of Software-
Defined Networking (SDN) opens a path towards the realization
of an enhanced interaction between networks and applications.
Hence, a more dynamic and demand-based allocation of network
resources to heterogeneous applications can be realized. The
implementation of the resource management action, however,
may have an impact on the data transport and application qual-
ity. This paper summarizes resource management mechanisms
provided by current SDN approaches based on OpenFlow and
exemplary evaluates implementation prospects and challenges.

Keywords-Application-Aware Networking, QoE-Aware Net-
working, SDN, Resource Management

I. INTRODUCTION

Today’s Internet does not feature a direct information
exchange between applications and the network. Due to the
varying requirements of the heterogeneous applications run-
ning on top of the network, this may result in a poor user-
perceived quality of applications in certain situations. To
overcome this limitation, applications must become network-
aware, and networks must become application-aware.

Application-aware networking is traditionally realized using
special purpose monitoring systems or network elements.
For example, packets are classified within the ISP’s network
and processed according to the application requirements as
specified in generic policies [1]. Other options are specialized
entities like media-aware network elements [2]. Thus, the
network is able to adjust application quality and optimize
the allocation of the available network resources for a large
number of heterogeneous and among themselves competing
applications.

Network-aware applications measure the network perfor-
mance and act based on the results. Typical examples of

This work has been performed in the framework of the CELTIC EUREKA
project SASER-SIEGFRIED (Project ID CPP2011/2-5), and it is partly funded
by the BMBF (Project ID 16BP12308). The authors alone are responsible for
the content of the paper.

such applications are Skype [3] or MPEG-DASH [4], which
perform adjustments on the application layer to overcome
network problems, e.g., by adapting the used video codec
or video quality, or, for Skype, by performing re-routing on
the application layer. Each network-aware application tries to
maximize their quality based on the available resources, but
may also behave egoistically trying to supersede competing
traffic and, thus, to increase its share of available resources.

The introduction of Software-Defined Networking
(SDN) [5] opens a path towards the realization of an
enhanced interaction between networks and applications. By
introducing an external and programmable network control
plane, SDN creates a flexible, adaptable, and open interface
to the network data plane. Via the ”Northbound-API”
[6] applications may provide information to the network
control plane, which then can control the data plane. In
particular, such an application-aware control plane can be
leveraged to augment the network control to improve the user
perceived Quality-of-Experience (QoE) by changing, e.g.,
the forwarding behavior of switches, or by allocating more
network resources to specific flows. Such management actions
are possible on short time scales and in small networks on a
per-flow basis.

A more dynamic and demand-based allocation of network
resources to heterogeneous applications is seen as one pos-
sibility to achieve a network-wide QoE fairness [7], [8].
The implementation of dynamic resource management actions,
however, may influence the behavior of the data transport and
the application quality.

The contribution of this paper is twofold. First, we sum-
marize different resource management mechanisms provided
by current SDN approaches based on the OpenFlow protocol,
version 1.0 to 1.4. Then, we evaluate the impact of dynamic
resource allocation on a per-flow basis for an access net-
work with two applications competing for limited network
resources. We show the potential to increase the QoE of
the involved applications and highlight possible side-effects
affecting the end-to-end performance.

The rest of the paper is organized as follows. We discuss
the background of this paper and related work in Section II.978-1-4799-0913-1/14/$31.00 c© 2014 IEEE

c ©
2
0
1
4

IE
E

E
.

P
er

so
n

a
l

u
se

o
f

th
is

m
a
te

ri
a
l

is
p

er
m

it
te

d
.

P
er

m
is

si
o
n

fr
o
m

IE
E

E
m

u
st

b
e

o
b

ta
in

ed
fo

r
a
ll

o
th

er
u

se
s,

in
a
n
y

cu
rr

en
t

o
r

fu
tu

re
m

ed
ia

,
in

cl
u

d
in

g
re

p
ri

n
ti

n
g
/
re

p
u

b
li
sh

in
g

th
is

m
a
te

ri
a
l

fo
r

a
d

v
er

ti
si

n
g

o
r

p
ro

m
o
ti

o
n

a
l

p
u

rp
o
se

s,
cr

ea
ti

n
g

n
ew

co
ll
ec

ti
v
e

w
o
rk

s,
fo

r
re

sa
le

o
r

re
d

is
tr

ib
u

ti
o
n

to
se

rv
er

s
o
r

li
st

s,
o
r

re
u

se
o
f

a
n
y

co
p
y
ri

g
h
te

d
co

m
p

o
n

en
t

o
f

th
is

w
o
rk

in
o
th

er
w

o
rk

s.
T

h
e

d
efi

n
i-

ti
v
e

v
er

si
o
n

o
f

th
is

p
a
p

er
h

a
s

b
ee

n
p

u
b

li
sh

ed
in

IF
IP

/
IE

E
E

In
te

rn
a
ti

o
n

a
l

W
o
rk

sh
o
p

o
n

Q
u

a
li
ty

o
f

E
x
p

er
ie

n
ce

C
en

tr
ic

M
a
n

a
g
em

en
t

(Q
C

M
a
n

),
2
0
1
4
,

1
0
.1

1
0
9
\/

n
o
m

s.
2
0
1
4
.6

8
3
8
4
0
4
.

Switch

Switch

SDN Network Control Plane

Application Control Plane

Switch

Southbound API

Northbound API

Fig. 1. SDN Interfaces

Section III highlights the investigated scenario and provides
details on the conducted experiments. The results of our
measurement study are presented in Section IV. Finally, the
paper is concluded in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we give an introduction to Software-Defined
Networking and discuss previous works on application-aware
networking.

A. Introduction to Software-Defined Networking

The goal of SDN is to increase flexibility and innovation in
the network and, thus, to improve the efficiency of network
operation and the service quality as well as lead to reduce
of CAPEX and OPEX. This is facilitated by the removal
of the network control plane from the distributed network
devices to a logically-centralized control entity, which en-
ables the introduction of new open interfaces between the
application, the data-plane, and the control plane [6]. With
these interfaces, the network control plane can be realized
as a freely programmable software, which can essentially be
described as an operating system for the network. The network
operating system, often called ”controller”, is responsible for
all forwarding decisions within the network it controls. The
network devices forward the traffic according to the rules set
by the controller.

Figure 1 illustrates the relationship of involved control
planes and interfaces. The ”Southbound-API” represents the
interface between data- and control-plane. Current SDN im-
plementations often use the OpenFlow protocol [9] as a
realization of this interface. The OpenFlow protocol handles
the communication between the individual network devices
and the controller. Each of the network devices maintains a
set of ”flow rules” matching individual network flows in so
called ”flow tables”. The term ”flow” refers in this context to
packets matching a general set of header fields either out of
layers 2 to 4 of the ISO/OSI stack or headers defined by the
operator of the network. Additionally, a flow rule contains a
set of one or more actions that define how a packet matching
the rule should be handled as well as flow statistics.

When a packet reaches an OpenFlow-enabled SDN switch,
it is buffered and the packet header is checked against the rules
in the flow table. In case of a successful match, the action(s)
specified in the rule are executed. If there is no matching rule
in the flow tables, the packet is either dropped or an OpenFlow
”packet-in” message containing the packet header is sent to the
controller for processing. The controller calculates the action
the network element should take with regard to the packet
and communicates it. Furthermore, the controller can specify
a flow rule and send it to the network element(s). This way
all following packets of the flow are treated the same way by
the network and the controller does not need to be involved
any longer.

The controller can also introduce new flow rules or modify
existing ones without being triggered by an incoming packet.
For example, the controller may adhere to a pre-programmed
schedule or implement a network policy. This is where the
flexibility of SDN comes into play. Where traditional network
devices would have to be reconfigured by an administrator,
SDN enables the automatic and seamless implementation of
changes in the forwarding behavior of the network. These
changes can be triggered by external entities via the other
key SDN interface - the ”Northbound-API” [6]. This interface
makes application-awareness in the network feasible as it
opens up a communication channel between the applications
using the network and the controller, which can then utilize
information provided by the applications to adapt its policy
and the network traffic on different levels of granularity.

B. Previous Works on Application-Aware Networking

In [10], Wamser et al. describe a method to leverage appli-
cation information from YouTube video streaming to enhance
the quality of this particular application in an access network.
They use an external entity called ”network advisor” to adapt
the forwarding inside the network. Jarschel et al. [11] im-
plement this concept using an OpenFlow-based SDN system,
which yields similar results but simplifies the implementation
significantly.

Google [12] exploits its knowledge about the applications
running inside its global data center backbone to optimize
and schedule the bandwidth usage inside the network with
a centralized SDN-based traffic engineering system. The ap-
plications are categorized into priority classes according to
their importance. In case of an overload situation, e.g. due
to a failure, low priority packets are discarded. This way
Google can maintain a bandwidth utilization on the data center
interconnection links close to 100%.

Das et al. [13] show how the routing of aggregates can be
improved using QoS parameters of applications in conjunction
with an SDN approach. In [14], Jeong et al. introduce a
QoS-aware extended Network Operating System (NOS) for
Software Defined Networks. It is based on the IETF ForCES
vision of SDN and leverages a variety of legacy networking
protocols as well as virtualization techniques like MPLS.
Egilmez et al. present a framework for enhancing OpenFlow
networks to dynamically reroute QoS flows for scalable video

stream in [15]. However, none of these approaches take the
effects of dynamic rerouting on the behavior of individual TCP
flows into account.

In [16] Jarschel et al. demonstrate that in a data center
environment it is possible to maintain the service quality of a
video stream during the live migration of the virtual machine
hosting the service by using the SDN Northbound-API to
receive an advance notification for the migration from the
cloud management system.

Georgopoulos [7] et al. introduce an SDN-based framework
for QoE-guided fair scheduling of traffic in networks with
limited resources and evaluate it using video as sample ap-
plication.

C. OpenFlow Resource Management Capabilities

There are several ways to manage resources in an
OpenFlow-based SDN as shown in Table I. The most flexible
way are the per-flow meters introduced with OpenFlow 1.3.
They allow the assignment of a fixed rate limit to individual
flows. This enables a granular adjustment of individual flows
inter- and intra-application. However, a lot of state information
is required to maintain a queue for each individual flow. In
particular, if the number of flows is large. Therefore, the
implementation of this feature in hardware is still an open
challenge.

The second way is the OpenFlow priority queue feature
introduced with OpenFlow 1.0. It allows the assignment of
flows to a forwarding queue with certain QoS parameters
and queuing disciplines, e.g., a minimal forwarding rate or
weighted fair queuing. The implementation and configuration
of these queues is outside the scope of OpenFlow itself and
therefore depends on the device or software. Here, it is no
longer possible to discern between individual flows but only
classes of flows that are assigned to the same queue.

The simplest method is the redirection of traffic away from
one link to another in case multiple paths exists. No resource
management is enforced on the links and therefore all flows
are treated equally. The assignment of flows to the links is
done according to the controller’s policy, e.g. by assigning a
class of flows to a dedicated link.

All methods have in common that the resource management
for each flow can be changed by the controller network-wide,
i.e., for heterogeneous hardware also from different vendors,
on the fly. E.g. the assignment of a link, traffic class, or
flow rate is not fixed and can be adapted live depending
on the situation. Since flows can be aggregated in arbitrary

Method OF Version Granularity Limiting Factor
flow meters 1.3 flow-level fixed-rate

priority queues 1.0 class-based bandwidth-share
traffic redirection any link-based link bandwidth

TABLE I
OPENFLOW RESOURCE MANAGEMENT METHODS

Access

Network

Internet

Client 2

Internet

Gateway

Wireless

Network

Gateway

Wireless

Access

Point

Iperf

Server

Bottleneck

Link

Network Controller

Client 1

Software-Defined

Traffic Shaper

Queues

Services
Iperf and

Apps

App

Status

Fig. 2. Measurement Setup

granularity, SDN is such an attractive candidate to realize
application-aware networking.

III. APPLICATION-AWARE NETWORKING FOR VIDEO
STREAMING

Today’s application data is transmitted on a best effort basis.
However, applications and users may show a highly dynamic
behavior that leads to strongly varying, i.e., dynamic demands
for network resources. Based on SDN, we propose a dynamic
resource management for a multi-user scenario. In particular,
the resource management considers application demands and
may enhance the perceived user quality.

A. Scenario Description

In the investigated scenario, we assume that a large file
download and a progressive video streaming application,
YouTube, compete for resources on a bottleneck link. YouTube
provides a good application quality as long as the playback
buffer is sufficiently filled. If the buffer is empty, the video
playback is interrupted and stalling occurs. Accordingly, we
monitor the buffer state and increase the allocated network
resources if necessary. If the buffer is sufficiently filled, i.e.,
a threshold is exceeded, the same amount of resources is
allocated to each flow. We set up a small testbed as described
in the next subsection in order to emulate the SDN behavior
for the dynamic resource allocation use case.

B. Measurement Setup

All measurements were conducted within the setup that
is illustrated in Figure 2. The setup can be split into two
parts, the access network and the Internet. The access network
consists of our own implementation of a network controller,
two clients, two wireless mesh nodes and an Internet Gateway
(IGW).

The clients are connected via a multihop wireless network to
the Wireless Network Gateway (WNG). WNG is connected via
a fixed link with the Internet Gateway (IGW). The controller
is connected via wired links to the mesh nodes and IGW.
As the wired link between WNG and IGW represents the
bottleneck in our scenario, a Software-defined Traffic Shaper
(SDTS) is installed on IGW and controls the uplink to WNG.
Additionally, the rate of the link between WNG and IGW can
be configured.

0

10

20

30

40

50

queue length [packets]

du
pl

ic
at

ed
 p

ac
ke

ts

10
00

p
75

0p
50

0p
25

0p
10

0p 75
p

50
p

25
p

10
p 5p 3p 2p 1p

7.2 Mbps
3.6 Mbps

2.4 Mbps

1.2 Mbps

(a) Number of duplicated packets caused by mov-
ing the flow to a queue with higher priority.

0

2

4

6

8

queue length [packets]

th
ro

ug
hp

ut
 [M

bp
s]

10
00

p
75

0p
50

0p
25

0p
10

0p 75
p

50
p

25
p

10
p 5p 3p 2p 1p

2.4 Mbps

3.6 Mbps

7.2 Mbps

1.2 Mbps

(b) Perceived throughput on application layer.

0

1000

2000

3000

4000

queue length [packets]

re
tr

an
sm

itt
ed

 p
ac

ke
ts

10
00

p
75

0p
50

0p
25

0p
10

0p 75
p

50
p

25
p

10
p 5p 3p 2p 1p

7.2 Mbps

3.6 Mbps

2.4 Mbps

1.2 Mbps

(c) Overall number of packet retransmissions oc-
curing by moving a flow to a higher priority.

Fig. 3. Amount of duplicate packets, amount of retransmissions, and achieved bandwidth of TCP Cubic for 1.2, 2.4, 3.6, and 7.2 Mbps.

In order to evaluate the transport layer performance, both
clients are using Iperf [17] to generate TCP traffic. The
performance of TCP CUBIC is analyzed as it is the most
used TCP version by web servers [18]. In order to evaluate
the application performance, both clients can run either a
video streaming application, i.e. YouTube, or a file sharing
application. Both services are accessed via the Internet. In case
of file sharing, files with different sizes can be downloaded
from a simple file server. An application monitor is installed
on the clients to extract current application information. This
information is sent to the controller via the access network.
The controller commands IGW to prioritize network flows,
which are passing IGW. On IGW, SDTS receives and executes
the commands.

C. Evaluated Queuing Strategies and Performance Metrics

In the following, we explain our implementation of a
priority queuing approach (PRIO) and a weighted fair queuing
approach (WFQ).

1) PRIO: Three queues with descending priority are in-
stalled on IGW. If the highest priority queue contains packets,
it is always served first. The queues do not have a minimum
guaranteed data rate. The queue length, given in packets, is
configured before each experiment and is varied between 1
and 1000 packets of a size of 1500 bytes.

2) WFQ: Two queues are installed on the IGW. Each queue
has a minimum guaranteed data rate and a maximum data rate.
The maximum data rate is given by the ceil parameter. The
queue’s size is 1000 packets for all measurements. If a queue
does not use all allocated resources, the remaining resources
are allocated to the remaining queue.

3) Metrics: The analysis of the measurements are based
on transport layer metrics and application layer metrics. On
the transport layer, throughput, retransmission and duplicated
packets are used to evaluate the performance. On the applica-
tion layer, the buffered playtime of videos is used to investigate
the application performance.

IV. MEASUREMENT RESULTS

First, we highlight the influence of the proposed resource
management mechanisms on the TCP protocol namely the

throughput and the occurrence of duplicated or retransmitted
packets. A detailed investigation of WFQ showed no no-
ticeable impact on these metrics. Thus, we omit WFQ and
discuss PRIO for a single flow in the following. We conduct
multiple runs to get statistically significant results. Each run
lasts in total 40 seconds. After ten seconds the flow priority
is increased, and after twenty seconds it is decreased again.
We vary the size of the priority queues between 1 and 1000
packets and investigate its impact on the performance metrics
mentioned above. Figure 3 depicts the results for rate limits
of 1.2 Mbps, 2.4 Mbps, 3.6 Mbps, and 7.2 Mbps. The results
are plotted with 95% confidence intervals. The x-axis of the
subfigures depicts the adjusted queue length.

Figure 3(a) depicts the impact of the queue size on the
number of duplicated packets. It can be seen that the influence
of different rate limits on the average number of duplicated
packets is negligible and keeps rather constant for queue sizes
larger than 50 packets. With a decreasing queue size, the
average amount of duplicated packets decreases and converges
to 1 packet. The increased number of duplicated packets for
larger queues is introduced by the change of the prioritization
queue. Packets get stuck in the lower prioritized queue, are
transmitted delayed and lead to out-of-order packet delivery at
the destination possibly affecting the application. To minimize
the impact of a queue change the queues should be kept as
small as possible.

Figure 3(b) shows the impact of different queue sizes on the
average throughput. The dashed lines illustrate the theoretical
maximum. The average throughput remains constant for all
queue size and rate limits despite the link rate of 7.2 Mbps.
In this case, the throughput remains constant for queue sizes
larger than 2 packets, however, it drops for a queue size of
1 packet. Although the throughput roughly remains constant
for smaller queue size, the average number of retransmissions
increases, i.e., packet loss occurs. This is depicted in Figure
3(c). For each rate limit, the average amount of retransmissions
keeps roughly constant for a queue size bigger than 50
packets. Between 50 packets and 10 packets, the number of
retransmissions decrease slightly, however, for queue sizes
less than 10 packets the number of retransmissions, i.e the

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

time [seconds]

th
ro

ug
hp

ut
 [M

bp
s]

WFQ

PRIO

Fig. 4. Comparison of the behavior of two competing flows over time for
PRIO and WFQ.

packet loss as well, increases rapidly. To summarize, a small
queue size leads to packet loss and retransmitted packets, and
might decrease the throughput. However, a large queue induces
out-of order delivery caused by the prioritization. For values
between 10 and 50 packets these effects are minimized for
the investigated scenario. Hence, we choose a queue size of
10 packets for the further evaluation.

A. Comparison of the Adaptation Dynamics

In this subsection, we take a closer look on the reaction
times of TCP on resource management actions. For that, we
investigate two concurrent TCP flows and adjust the available
resources on a per flow basis. Both flows have the same
priority for the first ten seconds. After that, one flow is pri-
oritized for the following twenty seconds. Finally, both flows
are put back to the same priority. For PRIO, this sequence
is implemented with priority queues. For WFQ, we change
the rate configuration for a flow, while always a minimum
rate of 5 kbps is guaranteed per flow to avoid starvation. The
results are illustrated for an overall rate of 2.4 Mbps, i.e.,
the ceil parameter is set to 2.4 Mbps. In total, we conducted
100 runs to get statistical evidence. The throughput trend per
flow is depicted in Figure 4. Within the first ten seconds, the
throughput is shared equally between both flows, independent
from the traffic management mechanism. Between 10 sec and
30 sec, the throughput of the prioritized flow increases while
the throughput of the other flow decreases. Further, it can be
seen that the behavior of both flows is similar for PRIO and
WFQ, and that the adaptation requires roughly ten seconds.
Due to the minimum rate guarantees, the low priority flow
performs slightly better in case of WFQ. After 30 sec, both
flows have the same priority again. As illustrated in Figure
4, the fair usage of the available bandwidth is reached much
faster for WFQ as for PRIO. Hence, we can conclude that a
faster and more accurate bandwidth allocation to the flows can
be achieved with the WFQ mechanism.

B. Impact on the Application Layer for the Example of
YouTube

This subsection aims at understanding the impact of the
proposed mechanisms PRIO and WFQ on the application

1000 1050 1100 1150 1200
0

5

10

15

20

25

time [seconds]

bu
ffe

re
d

pl
ay

tim
e

[s
ec

on
ds

]

PRIOWFQlower bound

upper bound

(a) Buffered playtime over time.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

buffered playtime b [seconds]

P
(x

 ≤
 b

)

PRIO

WFQ

(b) CDF of the buffered playtime.

Fig. 5. Impact of both resource management algorithms on the buffered
playtime of an YouTube video.

performance. As use case we investigate a high load scenario
with a YouTube and a downloading user. As performance
metric the buffered playtime of the YouTube is chosen, and the
interference of the resource management mechanisms on the
application are evaluated. The test video is ”HOME 2009 The
Full Movie”, with a resolution of 480p. The overall measured
video bitrate including meta data and container overhead is
1189 kbps. Taking the additional transmission overhead into
account we end up with an average required bit rate of
1240 kbps. As cross-traffic we emulate a file download which
runs over the whole duration of the experiment, 1.5 hours. The
maximum rate of the IGW is set to 1.5 Mbps, i.e., only the
YouTube flow results in a network load of ρ ≈ 0.83%.

PRIO contains three queues with priorities ranging from 1,
the highest priority, to 3, the lowest priority. While file traffic is
always mapped to queue 2, the YouTube video traffic belongs
either to queue 1 or queue 3.

WFQ provides one class for file traffic and one class for
YouTube traffic. Ceil parameter and rate of the YouTube
videos class is either set to 5 kbps or to 1.5 Mbps. The
minimum rate is chosen in order to make the WFQ setup
comparable to the PRIO setup, i.e., to guarantee a maximum
of the available capacity in order to prioritize the video. The
minimum rate of the file class is always 5 kbps, the ceil
parameter is set to 1.5 Mbps.

For the prioritizing mechanism of the YouTube video, we
set a lower bound at 10 sec and an upper bound at 20 sec.
If the buffer state is lower than 10 sec, the video priority is
higher than the download traffic, i.e, the video uses nearly
the whole available capacity. If the buffer state is higher than
20 sec, the video gains a lower priority than the download.

The results of this experiment are illustrated in Figure 5. An
extract of the buffer state for 200 sec is depicted in Figure 5(a).
For both, WFQ and PRIO, the buffered playtime oscillates
between the lower bound of 10 sec and the upper bound
of 20 sec. However, the control delay may cause threshold
underruns as illustrated in the Figure. In case of PRIO, these
underruns get worse than for WFQ. The conditional cumula-
tive probability of the buffered playtime P (x < b|b < 10s) is
illustrated in Figure 5(b). It reveals that in case of the WFQ
algorithm, the minimal buffered playtime for the customer

Home is available at http://www.youtube.com/watch?v=jqxENMKaeCU,
last accessed at 08/01/2014

is always larger than 5 seconds, i.e., the video playback is
never disturbed. However, in case of PRIO, smaller buffered
playtimes occur, and the video playback may stall.

We can conclude that WFQ performs better, since it allows
a faster and more accurate adaptation of the allocated flow
resources. PRIO requires an appropriate dimensioning of the
queue sizes and introduces TCP retransmissions.

V. CONCLUSION

Software-Defined Networking (SDN) can provide an en-
hanced interaction between networks and applications, and
a more dynamic and demand-based allocation of network
resources to heterogeneous applications. In this paper, we
highlighted available resource management actions provided
by the standardized communication interface between data
and control plane and its realization in OpenFlow. We then
evaluated the impact of two of the resource management
actions in a specific scenario. We showed that a demand-based
allocation of network resources based on the state of QoE-
critical applications like YouTube video streaming is possible.
However, managing network resources with an SDN based
resource management may influence the TCP control loop and
result in short-time performance degradations. The intensity of
this degradation depends on parameters of the used shaping
and TCP algorithm. Therefore, the impact of the dynamic
resource allocation has to be analyzed and well understood
before it can be applied in an SDN environment.

REFERENCES

[1] T. V. Lakshman, K. Sabnani, and T. Woo, “Softrouter: An open ex-
tensible platform for tomorrow’s internet services.” Bell Labs, Alcatel-
Lucent.

[2] R. Kuschnig, I. Kofler, M. Ransburg, and H. Hellwagner, “Design
options and comparison of in-network h.264/svc adaptation,” J. Vis.
Comun. Image Represent., vol. 19, pp. 529–542, Dec. 2008.

[3] T. Hoßfeld and A. Binzenhöfer, “Analysis of skype voIP traffic in
UMTS: End-to-end qos and qoe measurements,” Computer Networks,
vol. Vol 52/3 pp 650-666,, 2008.

[4] ISO/IEC, Information technology - Dynamic adaptive streaming over
HTTP (DASH) - Part 1: Media presentation description and segment
formats, Apr. 2012. ISO/IEC 23009-1:2012(E).

[5] Open Networking Foundation, “Software-defined networking: The new
norm for networks,” 2012.

[6] T. Zinner, M. Jarschel, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “A
Compass Through SDN Networks,” Tech. Rep. 488, University of
Würzburg, Oct. 2013.

[7] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “To-
wards network-wide qoe fairness using openflow-assisted adaptive video
streaming,” in Proceedings of the 2013 ACM SIGCOMM Workshop on
Future Human-centric Multimedia Networking, (New York, USA), 2013.

[8] F. Wamser, D. Hock, M. Seufert, T. Zinner, and P. Tran-Gia, “Demon-
strating the Benefit of Joint Application and Network Control Within a
Wireless Access Network,” Apr. 2013.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, p. 69, 2008.

[10] F. Wamser, D. Hock, M. Seufert, B. Staehle, R. Pries, and P. Tran-Gia,
“Using Buffered Playtime for QoE-Oriented Resource Management of
YouTube Video Streaming,” Transactions on Emerging Telecommunica-
tions Technologies, vol. 24, Apr. 2013.

[11] M. Jarschel, F. Wamser, T. Höhn, T. Zinner, and P. Tran-Gia, “SDN-
based Application-Aware Networking on the Example of YouTube Video
Streaming,” in 2nd European Workshop on Software Defined Networks
(EWSDN 2013), (Berlin, Germany), Oct. 2013.

[12] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al., “B4: Experience with
a globally-deployed software defined wan,” in Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM, pp. 3–14, ACM, 2013.

[13] S. Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh, D. Getachew,
and P. D. Desai, “Application-aware aggregation and traffic engineering
in a converged packet-circuit network,” in Optical Fiber Communication
Conference and Exposition (OFC/NFOEC), pp. 1–3, IEEE, 2011.

[14] K. Jeong, J. Kim, and Y.-T. Kim, “Qos-aware network operating
system for software defined networking with generalized openflows,” in
Network Operations and Management Symposium (NOMS), 2012 IEEE,
pp. 1167–1174, IEEE, 2012.

[15] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “An optimization
framework for qos-enabled adaptive video streaming over openflow
networks,” Multimedia, IEEE Transactions on, vol. 15, no. 3, pp. 710–
715, 2013.

[16] M. Jarschel and R. Pries, “An OpenFlow-Based Energy-Efficient Data
Center Approach,” ACM SIGCOMM, 2012.

[17] National Laboratory for Applied Network Research (NLANR) and
Applications Support Team DAST, “Iperf,” March 2008.

[18] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP Congestion
Avoidance Algorithm Identification,” July 2011.

