
The Impact of Adaptation Strategies on Perceived Quality
of HTTP Adaptive Streaming

Sebastian Egger†∗
†AIT Austrian Institute of Technology

Innovation Systems - Technology Experience
Modecenterstrasse 17 / Objekt 2

A-1110, Vienna, Austria
sebastian.egger@ait.ac.at

Bruno Gardlo∗
∗FTW

Donau-City-Strasse 1
A-1220, Vienna, Austria

gardlo@ftw.at

Michael Seufert‡
‡Institute of Computer Science

University of Würzburg
Am Hubland, D-97074 Würzburg, Germany
seufert@informatik.uni-wuerzburg.de

Raimund Schatz∗
∗FTW

Donau-City-Strasse 1
A-1220, Vienna, Austria

schatz@ftw.at

ABSTRACT
Changing network conditions like bandwidth fluctuations
and resulting bad user experience issues (e.g. video freezes)
pose severe challenges to Internet video streaming. To ad-
dress this problem, an increasing number of video services
utilizes HTTP adaptive streaming (HAS). HAS enables ser-
vice providers to improve Quality of Experience (QoE) and
resource utilization by incorporating information from dif-
ferent layers. However, these adaptation possibilities of HAS
also introduce new perceivable impairments such as the fluc-
tuation of audiovisual quality levels over time, which in turn
lead to novel QoE-related research questions. The main con-
tribution of this paper is the formulation of open research
questions as well as a thorough systematic user-centric anal-
ysis of different quality adaptation dimensions and strate-
gies. The underlying data has been acquired through two
crowdsourcing and one lab study. The results provide guid-
ance w.r.t. which encoding dimensions are combined best for
the creation of the adaptation set and what type of adap-
tation strategy should be used. Furthermore it provides in-
sights on the impact of adaptation frequency and the true
QoE gain of adaptation over stallings.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: Evaluation
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1. INTRODUCTION
Nowadays, streaming video is the most dominant applica-

tion in the Internet. This dominance will even rise from 57%
in 2012 to 69% in 2017 according to [3]. Two thirds of this
traffic will then be delivered by content delivery networks
like YouTube, Netflix, or comparable services.The major dif-
ference to traditional video streaming is the use of HTTP
streaming over TCP as delivery method. In contrast to video
streaming over UDP, where packet losses resulted in audio
and video distortions, the packet retransmission character-
istic of TCP results in practical no packet losses but rather
long delivery delays. In video services, these long delays
translate in temporal impairments such as stalling (i.e., the
interruption of playback due to empty playout buffers) or
long initial delay, in case large playout buffers have to be
initially filled.

Recently, several of aforementioned services have switched
to HTTP adaptive streaming (HAS) [20] as its default deliv-
ery/playout method. HAS requires the video to be available
on the server in an adaptation set that consists of video rep-
resentations of different bitrates, and split into small chunks
each containing a few seconds of playtime. After filling the
playout buffer with the initial bitrate the client starts the
video playout. Further, it measures the current bandwidth
and/or buffer status and requests the next chunks of the
video in an appropriate bit rate, such that stalling is avoided
and the available bandwidth is utilized best. In terms of user
perceived quality, this delivery method results in perceivable
quality switches for the end user, in addition to initial delay
and stallings.

This trend can not only be observed with YouTube and
Netflix, which are prominent examples, but nowadays an
increasing number of video applications employ HAS, as
it has several more benefits compared to classical stream-
ing. First, offering multiple bit rates of video enables video
service providers to adapt the delivered video to the users’
demands. As an example, a high bit rate video, which is
desired by home users typically enjoying high speed Inter-
net access and big display screens, is not suitable for mobile
users with a small display device and slower data access.
Second, different service levels and/or pricing schemes can
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be offered to customers. For example, a user can increase
or decrease the video quality during playback if desired, and
can be charged in the end of a viewing session taking into
account the consumed service levels [21]. Third and most
important, the current video bit rate, and hence the de-
manded delivery bandwidth, can be adapted dynamically to
changing network and server/CDN conditions. If the video
is available in only one bit rate and the conditions change,
either the bit rate is smaller than the available bandwidth
which leads to a smooth playback but spares resources which
could be utilized for a better video quality, or the video bit
rate is higher than the available bandwidth which leads to
delays and eventually stalling, which degrades the Quality
of Experience (QoE) severely (e.g., [?, 19]). Thus, adaptive
streaming is assumed to improve QoE of video streaming.
However, from a perceptual point of view there are no clear
results or guidelines regarding the performance of different
adaptation algorithms in terms of perceived quality.

2. RELATED WORK
Recent work on the performance analysis of HAS solutions

can be differentiated along technical and perception based
quality assessment. Technical analysis such as [2]mainly
concentrate on optimal switching decision strategies for op-
timization of bandwidth utilization or other network related
parameters. The perception based analysis set out to anal-
yse the QoE impact of adaptation parameters and dimen-
sions, and the QoE performance of existing implementations
and adaptation strategies. Throughout this paper we are go-
ing to concentrate on perception based results.

For proper assessment of video QoE in HAS systems it
is important to understand the differences to more classical
video QoE results and assessment methodologies which are
rather based on signal fidelity. The authors in [1] have shown
that adaptation strategy related parameters (stalling, repre-
sentation switches) have considerable influence on resulting
QoE and more importantly, that they have to be consid-
ered on a larger time scale (up to some minutes) than video
encoding related parameters (resolution, frame rate, quanti-
zation parameter, bit rate) which only influence in the order
of a few seconds. In addition to those larger time scales,
also impairments, such as stalling and quality switches, have
not received much attention in more traditional quality as-
sessment methodologies for subjective testing [12]. Hence,
proper assessment methodologies that consider such require-
ments are missing.

Similar to non-adaptive HTTP streaming, waiting time
related impairments like initial delay and stalling are of con-
siderable interest in HAS systems as well [4]. The work in [9]
has analysed the trade-off between those two impairments
directly. In the context of HAS, studies on optimal segment
length and buffer size [24], also identified initial delays as
an impairment type to be considered. Concerning stalling
events during the video playout, it is generally assumed that
they decrease QoE severely and that quality adaptation per-
forms better. However, empirical evidence for this assump-
tion is sparse. The data in [17] even suggests that a low
number of stalling events is not rated worse than throughput
equivalent quality adaptation towards lower quality. Even
more interestingly there are to the best of our knowledge
no results available that systematically assess the trade-offs
between such waiting time related impairments and quality
switching.

Results reported in [15] showed that quality switches in
active adaptation are perceived as a degradation itself. How-
ever, often quality switches are inevitable due to changing
bandwidth conditions. If the throughput conditions are very
volatile, the questions arises if the adaptation algorithm
should immediately switch or better try to hold certain qual-
ity levels for a longer time in order to minimize the impair-
ment caused by the switching itself. In that respect [25] in-
vestigated the adaptation of image quality for layer-encoded
videos. They found that the frequency of adaptation should
be kept as small as possible. On the other hand, the results
in [18] showed that higher switching frequencies are not pe-
nalized in terms of QoE if the duration spent on high quality
is sufficiently long. If a variation cannot be avoided, its am-
plitude should be kept as small as possible. Thus, a stepwise
decrease of image quality is rated slightly better than one
single decrease as shown in [25]. Also [7] compared smooth
to abrupt switching of image quality. They confirmed that
down-switching is generally considered annoying. Abrupt
up-switching, however, might even increase QoE as users
might be happy to notice the visual improvement.

Whereas, the above mentioned works rather address the
client side switching logic, also on the server side certain de-
cisions have to be taken in the content preparation stage.
For the encoding of the different representations three di-
mensions can be considered: spatial, temporal, quantization
as well as combinations thereof. A number of studies has
analysed related trade-offs for the spatial and temporal di-
mension [5,16,23]. Although the setups as well as the used
content differed largely between the different studies their
results converge in the way that a combination between the
two dimensions performs better than one-dimensional en-
coding for videos of identical resulting bit rate. In [22],
trade-offs between resolution and frame quality are investi-
gated. They found that a small resolution (without upscal-
ing) and high image quality is preferred to a large resolution
and low frame quality for a given bit rate. [14] compared dif-
ferent combinations of resolution, frame rate, and pixel bit
rate, which resulted in similar average video bit rates. They
found that at low bit rates a larger resolution is preferred
and thus frame rate should be decreased. At high bit rates,
frame rate is more important and pixel bit rate should be
decreased to achieve a high perceived quality.

Summarizing, several research questions are still open for
video QoE in HAS: RQ1: What is the QoE trade-off be-
tween quality adaptation and an equivalent stalling event?
RQ2: Does more frequent quality switching result in worse
QoE than less frequent quality switching? RQ3: What
is the QoE gain of smooth quality switching over abrupt
switching? RQ4: What is the optimal combination of con-
tent encoding dimensions for generating the adaptation set?

3. STUDY DESCRIPTION
In order to investigate the presented research questions,

three successive studies were designed. As guideline for
the content preparation we selected a mobile access sce-
nario which covers a bandwidth range in which five band-
width levels exist (5: 2300 kbps, 4: 1400 kbps, 3: 700 kbps,
2: 350 kbps, and 1: 128 kbps). It is assumed that the band-
width varies along these levels, and thus, the video bit rate
has to be adapted to the new bandwidth by a single adap-
tation step. The video bit rate is always kept equal to the
bandwidth level. The adaptation of the video bit rate is



done either in the spatial or image quality domain. Ad-
ditionally, stalling can happen in case of buffer underflow.
Several works, e.g., [14], already found that the content influ-
ences the perceived quality. Therefore, we will not explicitly
investigate this influence factor in this work but use three
different content classes (action, cartoon, and sports) for the
experiments. Hence, each bar represents the average across
these content classes throughout this paper.

For each video bit rate level the test videos were prepared
beforehand with the FFmpeg encoder. As starting point
(reference) H.264 videos in 720p were used. For each en-
visaged bitrate level the respective video chunks were pro-
duced according to the encoding settings given in Table 1.
The chunk lengths (4 sec, 5 sec and 10 sec cf. Table 1) were
chosen to be inline with current HAS solutions [13]. The re-
sulting video chunks were then used as basis for the longer
video sequences according to the quality switching patterns
displayed in Figure 1 and used in the three studies (cf. Ta-
ble 2).

Level QP FR Resolution Target Bitr.

ref 5 29 25 1280x720 2300

sp
a
ti
a
l 4 29 25 896x504 1400

3 29 25 512x288 700
2 29 25 256x144 350

co
m
p
r. 4 33 25 1280x720 1400

3 40 25 1280x720 700
2 47 25 1280x720 350

multi s-s-c 2 36 25 512x288 350
multi c-c-s 2 40 25 768x432 350

Level CRF FR Resolution Target Bitr.
ref 5 26 25 1280x720 2400

sp
a
ti
a
l

4 26 25 854x480 1250
3 26 25 640x360 800
2 26 25 426x240 430
1 26 25 256x144 195

Table 1: Video encoding parameters for all chunks used in
the discussed studies. The upper part of the table corre-
sponds to the chunks used in CS Study 1 and the laboratory
study (chunk length = 10 sec), whereas the lower part cor-
responds to the chunks used in CS Study 2 (chunk length =
5 sec for all quality profiles except the switching frequency
profiles where the chunk length was 4 sec).

Regarding the difference between quality adaptation and
stalling: In case of video stallings the quality does not change
if the bandwidth condition changes, but the download time
for a given video part changes. Therefore, if the bandwidth
drops, the download takes longer than the video playout
time which results in a stalling event. The required stalling
duration for a bandwidth change is computed as the dif-
ference between download time and playout time. Stalling
events with these durations were then introduced in the mid-
dle of the video clips.

Durstalling =
bitratehigh · (tstall)

bitratelow
− (tstall) (1)

To compute the proper stalling duration Equation (1) can
be used, with bitratehigh being the initial bitrate that would
lead to a stalling event, bitratelow being the bitrate the sys-
tem would switch down to in order to prevent a stalling event

Figure 1: Different ypes of quality switching used across the
studies. Qi and Qi+k correspond to the (quality) levels as
described in Table 1

and tstall the point in time where the stalling would happen
(assumed in the middle of the clip length). For example, a
bandwidth drop from level 5 to level 4 in the middle of a 20 s
video clip would be equivalent to constant quality on level 5
and a stalling event of 2300 kbps·10 s

1400 kbps
− 10 s = 6.4 s.

Through the remainder of the paper we will us the follow-
ing notation to describe the quality levels contained in each
adaptation pattern (cf. Figure 1): A) for abrupt switching
(spatial) 2-5 describes a quality switch from (quality) level
1 to level 5 in the middle of the video file, B) smooth switch-
ing (spatial) 2-5 contains one chunk on level 2, one chunk
on level 3, one chunk on level 4 and one chunk on level 5) C)
for high and low frequency switching 2-5-2 denote a quality
alternation between level 2 and level 5. In case of low fre-
quency switching only two quality switches occur, whereas
for the high frequency case six quality switches take place.
For both cases the video duration is 70 sec.

For the combination of encoding dimensions (RQ4) we
produced two different versions of the multidimensional com-
bination. For quality level 2 the first one (multi s-s-c) as-
sumed two spatial quality degradations (720p→504p and
504p→288p) followed by an image compression quality degra-
dation (from 288@QP29→288@QP36) resulting in a 288p
video with QP36 and a resulting bitrate of 350 kbit/s. The
second one (multi c-c-s) assumed two image compression
quality degradations (720p@QP29→720p@QP33 and
720p@QP33→720p@QP40) with a further spatial quality
degradation (720p→432p) resulting in a 432p video with
QP40 and a resulting bitrate of 350 kbit/s. For the cre-
ation of the video chunks in CS Study 2 we used slightly
different encoding parameters as the lower part of Table 1
shows. However, as we compare results regarding their QoE
performance always within a study, this does not harm the
validity of the conclusions drawn later in the paper.

Type Study Level differences
Abrupt switching 1,2,3 1,2,3,4
Smooth switching 2,3 2,3,4

High frequency switching 2,3 1,2,3,4
Low frequency switching 2,3 1,2,3,4

Stalling 1 1

Table 2: Distribution of adaptation patterns per study

3.1 Study 1: Single quality switch
Currently there is little basic understanding what factors

influence overall QoE quality adaptation. Thus, the first
study took a bottom-up approach and asked users to rate
short video clips which had only one single quality adapta-
tion step (cf. abrupt switching in Figure 1) or a correspond-



ing stalling event (cf. stalling in Figure 1). The main goal
of this study was to obtain a general overview of the impact
of different adaptation types, resulting in a large number
of conditions to be tested. Therefore, the study was con-
ducted via crowdsourcing as described in [10]. To ensure
arrival and playout of non-distorted videos, the video under
to be evaluated was downloaded to the local cache of the re-
spective crowd worker. After the successful download of the
video the playout was started. For the computation of the
crowd workers reliability we included consistency questions
throughout the test as described in [10].

For the actual test we used more quality levels and combi-
nations as described in Table 11, resulting in 85 different test
conditions. For three content classes this equaled 255 dif-
ferent test clips. The campaign was run for six months and
10737 ratings were collected. 32% of the ratings were sub-
mitted from participants which were classified as reliable2.
Thus, 3483 reliable ratings of test conditions could be used,
resulting in around 40 valid ratings per test condition.

3.2 Study 2: Multiple quality switches
In the follow-up crowdsourcing campaign, the focus was

on multiple adaptation steps within a video clip. To limit
the number of conditions, only spatial adaptation was con-
sidered for the two content classes sport and action. The
influence of smooth switching was investigated by compar-
ing step-wise (abrupt) and stair-wise (smooth) adaptation
in 20 s video clips (cf. abrupt and smooth switching in Fig-
ure 1). Moreover, the influence of adaptation frequencies
was tested by comparing clips containing either 2 or 6 qual-
ity switches (cf. high and low frequency switching in Fig-
ure 1). All in all, 46 test conditions were created in the
same way as for the first campaign.

In this campaign, a new online reliability computation as
introduced in [6] was used. This resulted in a lower num-
ber of unreliable ratings (compared to study 1) and hence
reduced campaign execution times. Within 25 days, 1593
ratings could be collected. 86% of the ratings were consid-
ered reliable which results in 1377 ratings, i.e., around 30
ratings per condition.

3.3 Study 3: Laboratory Study
In order to confirm the results from the crowdsourcing

studies in a controlled test environment, a lab study was
conducted. 34 participants (16 male, 18 female with a mean
age of 38,1 years) rated 60 conditions. The encoding settings
for the chunks were identical as for the CS Study 2 (cf. Ta-
ble 1). In terms of resulting quality profiles, abrupt switch-
ing, smooth switching and high and low-frequency switching
profiles as described in Figure 1 were used. Additionally, the
multidimensionally encoded clips were used.

4. RESULTS
The results of the aforementioned studies are presented

in bar plots that depict differences between the different
switching strategies and statistical results of our analysis
of variance (ANOVA) in the related tables.

1due to space limitations we only include the clip settings
and discuss the results relevant for comparison with the
other studies presented in this paper
2This number seems pretty low for conventional QoE test-
ing, however such low numbers are common in crowdsourc-
ing studies as described in [10].

RQ1: What is the QoE trade-off between quality
adaptation and an equivalent stalling event? To quan-
tify QoE differences between quality adaptation and stalling
events , we compare pairs consisting of a video with a quality
switch (compression or resolution) and a video with stalling.
The duration of the stalling event equals the additional play-
out (or download) time caused by the lower bitrate after the
switch (cf. Section 3) In Study 1 we considered only quality
switches based on resolution changes from level 5 (reference)
to level 4 and 3. Figure 2 depicts the results, where each
quality switch is compared to the corresponding stalling pat-
tern. These results show that a quality switch with a magni-
tude of one level (5→4 and 4→3) yields comparable results
as the respective stalling impaired video. The used quality
switches of only one quality level might seem to be of lim-
ited amplitude only, however we decided to use these quality
switches as larger quality switches would result in very long
stalling events. E.g. a quality switch from 5→3 would result
in a stalling of approx. 22 sec, which is pretty high for videos
of 20 sec length.

Figure 2: Stalling vs. adaptation: stalling event is not worse
than quality adaptation

Seq. 5-4[s] 5-4[c] 4-3[s] 4-3[c]

F 0.002 0.091 0.090 0.930
P 0.961 0.764 0.764 0.339

Table 3: Statistical test results for crowdsourcing study 1
(CS1) shown in Figure 2

RQ2: Does more frequent quality switching re-
sult in worse QoE than less frequent quality switch-
ing? In order to answer this research question we compared
video sequences with two quality switches to sequences with
6 quality switches but the same video duration (cf. high and
low frequency switching in Figure 1). In addition the am-
plitude of the quality switch was varied. In Study 1, quality
switches were achieved by changing video resolution whereas
in Study 2 uses changes in compression settings. The results
in Figure 3 show that more frequent switching did not lead to
worse QoE ratings in both studies. These results are contra-
dictory to results presented in [25] and [18] so far. Our most
plausible explanation is the fact that for our experiments
the chunk lengths were 10 sec (Study 3) and 4 sec (Study 2),
whereas [25] and [18] used considerably lower chunk lengths.
Hence, even the high-frequent switches in our studies were
not really annoying the subjects.

RQ3: What is the QoE gain of smooth quality
switching over abrupt switching? For this compari-
son, abrupt switches were achieved by one switch in the



Figure 3: Switching frequency has no (measureable) nega-
tive impact

Crowdsourcing Study 2 Laboratory Study

Seq. 4-3-4 4-2-4 3-4-3 2-4-2 5-3-5 3-5-3 5-2-5 2-5-2 5-1-5 1-5-1
F 0.02 0.01 1.65 0.02 1.44 0.29 1.49 1.36 0.17 0.48
P 0.891 0.912 0.203 0.881 0.234 0.591 0.227 0.247 0.896 0.489

Table 4: Statistical test results for Figure 3

middle of the video, whereas smooth switches were imple-
mented through several smaller quality switches of one level
only throughout the video duration. Surprisingly, smooth
switching does not yield statistically significant better QoE
results as can be seen in Figure 4. Only for down switching
(5-2 in CS 2 and 4-2 in the Lab) smooth switching performs
slightly better in terms of QoE compared to abrupt switch-
ing. These results are in contrast to several results from
related work such as [18]. We explain that by the fact that
the switching period was rather long in our videos (4 sec in
Study 1 and 10 sec in Study 1) compared to switching pe-
riods in the related work. We chose these chunk lengths as
they are typical for current HAS implementations.

RQ4: What is the optimal combination of con-
tent encoding dimensions for generating the adap-
tation set? In our studies, the single-dimension videos were
created with achieving the bitrate target by only reducing
the respective dimension. In contrast, the multi-dimension
videos used a combination of two dimensions to reach the bi-
trate target. Independent of the direction or the amplitude
of the switch, Figure 5 shows that the multi-dimensional
adaptation results in better QoE scores across both study
contexts. As already mentioned at the beginning of this sec-
tion, one can observe that that the crowdsourcing results
tend to be less critical than the lab results which featured
lower scores on average. Our results provide a good indi-
cation that for the creation of the adaptation set, a combi-
nation of multiple encoding dimensions yields best results.
However, these results are only a first indication and further
studies are needed to answer this question sufficiently.

An additional finding from Figure 5 is that identical video
samples from both studies (3→2 and 2→3) show that the re-
sults form Study 3 (light brown and orange bars) are rated
considerably worse than in the CS Study 2 (darker bars).
These differences are based on the fact that crowd workers
seem to be less critical in terms of media quality as also
shown in [8, 10]. This is explained by the fact that for lab
QoE assessments trainings of the subjects before the actual
tests take place as recommended e.g. in [12] and [11], which
leads to user ratings that are well distributed along the scale.
This is not possible in the crowdsourcing studies: here, such
trainings cannot be implemented due to the limited number

Figure 4: Smooth switching does not provide significantly
better QoE than abrupt switching

Crowdsourcing Study 2 Laboratory Study

Seq. 5-1 5-2 1-5 2-5 4-2 2-4
F 0.54 1.13 0.01 0.18 1.95 0.03
P 0.466 0.289 0.915 0.669 0.168 0.881

Table 5: Statistical test results for Figure 4

of video sequences that can be used for each session as re-
quired to avoid loss of crowd worker attention and ensure
reliable results [10]. Hence, rating scale usage is not as well
distributed as in Study 3. In terms of absolute MOS values
such differences can be critical. As we are comparing re-
sults of different adaptation strategies only within studies in
terms of their perceived quality, this effect does however not
harm the validity of the conclusions drawn within this paper
regarding QoE differences between switching strategies.

5. CONCLUSION
In this paper we have investigated the QoE impact of

temporally changing quality in the context of http adap-
tive video streaming services. In order to cover the most
relevant parts of the fairly large ’haystack’ of different adap-
tation combinations we have conducted three complemen-
tary studies in crowdsourcing and lab contexts. In terms of
quality profiles we included abrupt quality switches, smooth
quality switches, high and low frequency switching as well
as respective stalling conditions.

The results of this systematic approach provide new in-
sights on user perception of time-varying video quality as
well as on optimal adaptation strategies: In terms of con-
tent preparation our results show that a multi-dimensional

Figure 5: Multi-Dimension Adaptation performs better



Crowdsourcing Study 2 Laboratory Study

Seq. 3-2 3-2 2-3 3-2 2-3 2-4 4-2 2-4 4-2
F 0.16 6.58 0.07 1.49 3.48 4.8 9.55 5.36 9.87
P 0.688 0.012 0.878 0.226 0.066 0.032 0.003 0.024 0.003

Table 6: Statistical test results for Figure 5

adaptation strategy yields better QoE scores for identical
video bitrates than single-dimensional strategies. In con-
trast to the widespread assumption that smooth switching
performs better in terms of QoE, the presented results re-
veal that smooth switching performs only slightly better in
the case of adapting towards lower quality.

Another unexpected result was the finding that frequent
quality adaptation is not perceived considerably worse than
videos where are less often quality changes happen. This
might be based on that fact that we used chunk lengths
typically used in current HAS implementations of 4 sec and
10 sec, which are considerably longer than those mostly used
in related work.

Finally, the comparison between QoE perception of videos
with quality adaptation vs. videos with one stalling of ac-
cording length showed that, against the common assumption
that stalling is always perceived much worse, in the tested
cases stalling performed equally well with video adaptation
in terms of resulting QoE.

The presented results are a first thorough analysis of sev-
eral different impairment profiles very likely to appear in
real-world HTTP adaptive streaming scenarios. They pro-
vide guidelines for QoE optimal adaptation strategies and
additionally have revealed some new insights that have to be
further analysed. In terms of quality adaptation vs. stalling,
quality switches of larger amplitude together with longer
stallings or multiple short stalling events would be a mean-
ingful extension of the presented results. Similarly, addi-
tional quality switching amplitudes and periods are needed
for better understanding the relationship between frequent
quality adaptation and resulting QoE.
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