
Text Categorization for Deriving the Application
Quality in Enterprises using Ticketing Systems

Thomas Zinner1, Florian Lemmerich2, Susanna Schwarzmann1,
Matthias Hirth1, Peter Karg3, and Andreas Hotho1,4

1 University of Würzburg, Institute of Computer Science, Würzburg, Germany
2 GESIS - Leibniz Institute for the Social Sciences, Cologne, Germany

3 kubus IT, München, Germany
4 L3S Research Center, Hannover, Germany

Abstract. Today’s enterprise services and business applications are of-
ten centralized in a small number of data centers. Employees located at
branches and side offices access the computing infrastructure via the inter-
net using thin client architectures. The task to provide a good application
quality to the employers using a multitude of different applications and
access networks has thus become complex. Enterprises have to be able to
identify resource bottlenecks and applications with a poor performance
quickly to take appropriate countermeasures and enable a good applica-
tion quality for their employees. Ticketing systems within an enterprise
use large databases for collecting complaints and problems of the users
over a long period of time and thus are an interesting starting point to
identify performance problems. However, manual categorization of tickets
comes with a high workload.
In this paper, we analyze in a case study the applicability of supervised
learning algorithms for the automatic identification of relevant tickets, i.e.,
tickets indicating problematic applications. In that regard, we evaluate
different classification algorithms using 12,000 manually annotated tickets
accumulated in July 2013 at the ticketing system of a nation-wide operat-
ing enterprise. In addition to traditional machine learning metrics, we also
analyze the performance of the different classifiers on business-relevant
metrics.

1 Introduction

Today’s enterprise IT infrastructure is undergoing a significant change. Employees
are working with an increasing number of different applications resulting in indi-
vidual configurations of their personal computers. In order to reduce maintenance
of the equipment, and to simplify the installation and management of diverse
applications, companies move away from the traditional personal computer ar-
chitecture, where each user has her own computer running all applications for
daily work. Instead, companies try to manage many devices and applications
centrally to keep end user devices as simple as possible. In that direction, thin
client architectures provide an universal and basic terminal for user interaction
while all applications requiring complex computations as well as data storage are
carried out in the data center.

N
O

T
IC

E
:

T
h

is
is

th
e

a
u

th
o
r’

s
v
er

si
o
n

o
f

a
w

o
rk

a
cc

ep
te

d
fo

r
p

u
b

li
ca

ti
o
n

b
y

S
p

ri
n

g
er

.
C

h
a
n

g
es

re
su

lt
in

g
fr

o
m

th
e

p
u

b
li
sh

in
g

p
ro

ce
ss

,
in

cl
u

d
-

in
g

ed
it

in
g
,

co
rr

ec
ti

o
n

s,
st

ru
ct

u
ra

l
fo

rm
a
tt

in
g

a
n

d
o
th

er
q
u

a
li
ty

co
n
tr

o
l

m
ec

h
a
n

is
m

s,
m

a
y

n
o
t

b
e

re
fl

ec
te

d
in

th
is

d
o
cu

m
en

t.
C

h
a
n

g
es

m
a
y

h
a
v
e

b
ee

n
m

a
d

e
to

th
is

w
o
rk

si
n

ce
it

w
a
s

su
b

m
it

te
d

fo
r

p
u

b
li
ca

ti
o
n

in
1
7
th

In
te

rn
a
ti

o
n

a
l

C
o
n

fe
re

n
ce

o
n

B
ig

D
a
ta

A
n

a
ly

ti
cs

a
n

d
K

n
o
w

le
d
g
e

D
is

co
v
er

y

(D
a
W

a
K

2
0
1
5
),

2
0
1
5
.

T
h

e
fi

n
a
l

p
u

b
li

ca
ti

o
n

is
a
v
a
il
a
b

le
a
t

S
p

ri
n

g
er

v
ia

h
tt

p
:/

/
d

x
.d

o
i.
o
rg

/
1
0
.1

0
0
7
\/

9
7
8
-3

-3
1
9
-2

2
7
2
9
-0

2
5
.

Although the overall maintenance of such an architecture is simplified com-
pared to a purely decentralized architecture, some additional dependencies are
introduced. Beside the thin client the user is interacting with, the transport
network and the data center have a huge impact on the application performance
and therewith on the productivity of the employees. Thus, it is of high importance
for an enterprise to quickly identify slow-running applications and services, to
perform a root-cause analysis, and then to improve the performance of these
applications and services. A possible information source in an enterprise environ-
ment collecting complaints, problems and corresponding solutions are ticketing
systems, i.e., central operational database systems used for the management of
individual issues.

In this paper, we deduce the problematic applications and the application
quality in an enterprise environment by using data from an internal ticketing
system of a German company. Around 20.000 employees, working in ≈ 400 branch
offices mostly located in small- to medium-sized cities, generate up to 1000 tickets
per day. The proposed approach is challenging in the way, that the relevant tickets
indicating performance problems have to be identified in a huge set of support
tickets. A manual classification cannot be considered due to the huge amount of
tickets submitted. For that reason, we present an automatic approach to identify
relevant tickets based on machine learning. In that regard, we evaluate different
classification algorithms using 12,000 manually annotated tickets accumulated in
July 2013. From an enterprise perspective, the correct classification of a single
ticket is not crucial as long as temporal trends and locally occurring performance
problems are identified. Therefore, the classifier results are not only investigated
by traditional machine learning metrics such as F1-score, precision and recall, but
also with respect to more business-relevant performance metrics. As an additional
contribution of this paper, an anonymized version of the pre-processed dataset
(as a tf-idf matrix) will be made publicly available with this paper5.

The remainder of the paper is structured as follows: First, Section 2 reviews
related work. Next, Section 3 introduces the utilized dataset and outlines the
applied methodology, i.e., pre-processing procedures, classification algorithms and
performance metrics. Afterwards, Section 4 discusses advantages and limitations
of the applied approach. Finally, Section 5 concludes the paper with a summary
and an outlook on future research directions.

2 Related Work

This section provides a brief overview of relevant related work. First, previous
approaches to deducing business application quality are presented. After that,
we shortly discuss text categorization with a special focus on ticket systems.

2.1 Identification of Application Quality via Tickets

User satisfaction with application quality – also called Quality-of-Experience
(QoE) – can be defined as the degree of delight or annoyance of the user of an

5 https://github.com/lsinfo3/dataset ticketing system Dawak 2015

application or service. It results from the fulfillment of his or her expectations
with respect to the utility and / or enjoyment of the application or service in
the light of the user’s personality and current state [15]. Hence, this metric is of
purely subjective nature.

Typically, user satisfaction is evaluated by adjusting the application behavior
while conducting a user survey. This allows to link objectively measurable param-
eters like the applications response time with user satisfaction. Examples for such
evaluations are Staehle et al. [19] or Casas et al. [3]. Both works aim at a better
understanding of the influence of varying technical parameters on the QoE. In
both cases, the tests were conducted in dedicated labs with students and not in a
working environment with employees. Additionally, such a methodology does not
scale well in a complex IT system with a huge number of different applications.

To gain a global view of the user satisfaction in a business environment,
existing user feedback can be used, e.g., from support tickets. In this direction,
Mockus et al. [17] examined the satisfaction of a user group within the first
three months after installation of a new software release. They evaluated service
interactions like software defect reports and requests for assistance. In their study,
they examined the impact of occurring problems and their frequencies. On the
basis of their results, they detected predictors for customer perceived user quality.
Chulani et al.[5] analyzed the relationship between development and service
metrics (number of defects discovered, time to resolve a defect, severity of defects,
etc.) and customer satisfaction survey metrics (overall customer satisfaction,
top attributes customers look for in a product, etc.). With this knowledge, they
improved the user satisfaction by handling specific reports earlier, i.e., reports
that concern problems related to an attribute, of which users thought is important,
but simultaneously is not satisfying.

2.2 Text categorization of support tickets

Text categorization with classification algorithms is a well explored standard task
for text mining and text analytics, one of its main applications being text filtering,
cf. [20]. While machine learning techniques for text filtering have been successfully
applied in various domains, e.g., spam filtering [10] and filtering of unsuitable
content [4], the use of machine learning techniques in the context of support ticket
systems for enterprises is only little explored. In that direction, Wei et al. applied
conditional random fields to automatically extract individual units of information
from ticket texts [21]. Kreyss et al. [14] applied text mining categorization
technology to analyze data from the IBM Enterprise Information Portal V8.1
containing more than 15,000 product problem records. They used a proven
software quality category set to categorize these problem records into different
areas of interest. Medem et al. [16] used the free text of network trouble tickets,
for analyzing general trends in network incidents and maintenance activities.
Diao et al. used an hybrid approach of automatically learned and manually edited
rules in order to improve an automated system for classifying support tickets in
failure classes [7]. Recently, Altintas and Tantuk proposed an extension of an
issue tracking system that aims at automatically assigning tickets to the relevant

person or department [2]. By contrast, this work focuses on filtering support
tickets that are of high relevance to the target application in order to derive
information about the application quality in a thin client environment.

In this paper, we do not aim at contributing algorithmic advances to the
field of text categorization, but apply standard techniques to our application
domain, that is, the automatic classification of support tickets for enterprises.
Therefore, we only outline the applied algorithms in Section 3.2, and refer to
overview articles for more detailed explanations, see e.g., [20, 12].

3 Automatic Classification of Ticket Data

3.1 Dataset

We propose to utilize user feedback from support tickets to estimate the overall
QoE of employees in a large scale business. Ticketing systems like OTRS6

provide a central point for collecting and maintaining service and help requests
in companies. Tickets cover issues ranging from simple password reset requests
to notifications about severe system failures. In our case, we are interested
in finding tickets indicating annoying system behavior, e.g., long application
response times. Automatic approaches are required for filtering these tickets,
since several hundreds to thousand tickets may be created daily.

The investigated setting origins from a German company with about 400
branch offices. For this company about 10,000 tickets are submitted consistently
each month. In this work, we focus on a subset of this data consisting of around
12000 tickets, that is, all tickets submitted in July 2013. These tickets were
manually categorized with a binary label. 303 tickets were labeled as positive
examples, i.e., tickets reporting application quality issues and thus indicating a
reduced user-perceived application quality. In the following, we use this labeled
dataset as gold standard for our evaluations.

The following information is available for each ticket: Each ticket has an unique
ticket-id that can be used for identification and a generation date indicating when
the ticket was submitted. It further contains details about the reported issue.
These allow the user to describe his issues in free text form. Additionally, also
information about the affected site of the company was included.

3.2 Methodology

As common practice in text mining suggests, we utilize a vector space approach,
cf. [18], with bag-of-words representations of the detailed ticket text. To transform
the set of support tickets, we first applied standard tokenizing procedures as
pre-processing. Additionally, stop words, i.e., very common words, were removed
according to a dictionary. Furthermore, also tokens consisting of a single letter
and tokens consisting of more than 25 letters were removed. In the vector represen-
tation, each document (ticket) d ∈ D of our dataset D is represented as a feature

6 http://www.otrs.com/

vector x(d) = (xd,1, . . . xd,m)T , where each element of the vector corresponds to
a specific term in the document corpus. For the experiments presented in this
paper, vector elements were constructed as tf–idfs (term frequency – inverted

document frequency) statistics, that is, x(xd,t) = freq(t, d) · log |D|
|d∈D:t∈d| . Here,

freq(t, x) describes the frequency of the term t in the document d, |D| the number
of documents in the dataset, and |d ∈ D : t ∈ d| the number of documents that
contain the term t. In doing so, high values of xd,t indicate that the term t is
specifically often used in the document d. In addition, each document in our
data was manually provided a binary label y(d), indicating the relevance of a
document (ticket) to the user performance.

To categorize tickets with an unknown label, we employ several well established
techniques for text classification, cf. also [12]. In particular, we evaluate the effects
of the following classification methods:

– Naive Bayes. This probabilistic classifier uses the well-known Bayes formula
under the assumption of independence of features (terms) [9]. Even though
this assumption is of course not realistic, the Naive Bayes classifier has been
shown to perform relatively well for text classification in practice [8, 13].

– K-Nearest-Neighbor (KNN). To classify a new instance, this method avoids
building an explicit model, but retrieves the k most similar documents
according to a distance metric instead and classifies the new document with
the majority label in this neighborhood [6, 1].

– Support vector machines (SVM). Support vector machines in their most basic
form classify new instances by computing a hyperplane in the vector space
that separates positive and negative instances and maximizes the distances
from the hyperplane to the closest positive and negative examples [13]. Since
SVMs can handle large sets of features well, they are especially suited for
text classification. To enhance performance of SVMs kernel methods have
been proposed that transform the vector space into higher dimension. In
that direction, we consider in particular the anova kernel, see [11], which was
chosen after some initial experiments.

3.3 Metrics

To measure the classification performance of classifiers, we considered two kinds of
evaluation metrics, that is, standard metrics from machine learning, and business
relevant metrics that are more directly concerned with impact in practice.

Machine learning metrics Since the target label distribution in our corpus is
heavily biased towards negative examples, i.e., documents that are not labeled
as performance relevant, a high accuracy could be achieved by simply classifying
all documents as negative. Therefore, we focus on the well known precision
and recall framework. In particular, the precision is the fraction of correctly
classified documents in the set of all documents that were classified as positive
(performance relevant):

precision =
|positive examples ∩ examples classified as positive|

|examples classified as positive| .

By contrast, recall denotes the percentage of performance relevant tickets which
are correctly identified as such:

recall =
|positive examples ∩ examples classified as positive|

|positive examples| .

Since there is usually a trade-off between these measures, the F1 score, i.e., the
harmonic mean between precision and recall, is commonly used as an overall
performance metric:

F1 = 2 · precision · recall
precision + recall

.

Business-relevant metrics Although text classifiers may yield a good perfor-
mance with respect to scores like F1, precision, and recall, they are not able
to find all relevant tickets in general. From an enterprise view that might be
fine, as long as the algorithms are capable of detecting major issues in the
companies infrastructure. Of particular interest in our application context is to
identify performance problems at specific branch offices (sites), and to preserve
trends regarding the tickets per day. To measure classifier performances for these
applications, we introduce two business-relevant metrics, namely:

– relative amount of identified sites (rais): This metric depicts which share of
relevant branch offices with face application performance degradations are
identified by the classifier. It can be computed as:

rais =
correctly identified sites with performance relevant tickets

all sites issuing performance relevant tickets
.

This reflects the traditional recall measure on a site level. Performance
problems reported for a branch office may be due to local incidents at the
branch location like disturbances of the local network or the aggregation
network.

– trend preservation: This metric highlights if the trend of identified tickets
on a per-day basis independent of the specific office is preserved. This can
be formalized using the well-known Pearson’s correlation coefficient. Several
tickets per day, possibly from different branch offices, are an indicator for
large-scale incidents, probably in a data center or the wide-area network.

4 Evaluation

The next section presents experimental results for different classifiers in our
application. We first present results based on classical machine learning metrics,
then we discuss classifier performance with respect to the proposed business
relevant metrics. All experiments were conducted in the RapidMiner7 environment
using additional scripts for pre- and postprocessing. Unless stated otherwise,

7 https://rapidminer.com

we used the default parameters provided by RapidMiner. As an exception, we
determined C = 10 as the best parameter setting for the SVMs after initial
experiments. Similarly, we focused on the Euclidean distance as the distance
metric for the KNN variations after initial experiments with other distance
measures, e.g., the cosinus distance8.

4.1 Performance of Machine Learning Algorithms

In this subsection, we investigate the performance of several classifiers with respect
to the performance metrics precision, recall and F1-score. For that purpose, we
defined a training set consisting of the first 80% of the data set (in chronological
order) and a fixed-size test set consisting of the last 20% of the data. The split
was done with the rational, that available performance tickets are gathered and
annotated to train a classifier. The trained classifier is then applied to newly
generated tickets. Since the acquisition of correctly labeled training data is
costly (in working hours) as it requires manual annotation of tickets, we are also
specifically interested in how many labeled tickets are required by a classifier
to achieve a certain performance. Therefore, we analyzed the impact of using
only a randomly sampled subset of the training data. Results for the mean F1

score as well as 80%-confidence intervals resulting from the analysis of at least
10 different samples are shown in Figure 1 and Table 1. It can be observed that
support vector machines overall outperform Naive Bayes as well as K-nearest-
neighbor (KNN) approaches. While Naive Bayes is clearly outmatched, KNN
shows competitive performance if enough training data is available and if it is
well parametrized. The best performance of KNN was achieved by k = 25, higher
as well lower parameters for k lead to worse results. However, using less training

8 Due to space constraints we do not report on initial experiments performed for
parameter optimization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Relative sample size of training data

F
1−

sc
or

e

KNN (k=25)

KNN (k=35)
KNN (k=11)

KNN (k=1)
naive Bayes

SVM (linear)SVM (anova)

Fig. 1: Impact of differently sized random samples of the training set. In addition
to the mean F1-score (as shown by different line types and colors), confidence
intervals from runs with multiple random samples are shown for different classi-
fiers.

Table 1: F1-Score, Precision, and Recall for different sample sizes
F1 Precision Recall

Sample Size 40% 100% 40% 100% 40% 100%

Naive Bayes 27.5% 25.6% 19.9% 17.4% 44.9% 48.7%
KNN (N=1) 30.9% 33.3% 43.6% 47.6% 30.1% 25.6%
KNN (N=11) 57.9% 57.1% 83.2% 94.1% 44.9% 41.0%
KNN (N=25) 50.6% 68.8% 81.6% 95.4% 37.6% 53.8%
KNN (N=35) 39.0% 61.5% 87.5% 76.9% 26.2% 51.2%
SVM (linear) 63.4% 64.9% 73.6% 65.7% 56.0% 64.1%
SVM (anova) 62.4% 72.7% 83.9% 88.8% 49.9% 61.5%

data, SVMs clearly show the best classification results in linear as well as anova
kernel variations. While these variations show similar F1 scores for smaller sets of
training data, the anova kernel version leads to better results for the full training
data set. This difference seems to be specifically caused by a better precision of
the classification, see Table 1. The overall superiority of support vector machines
in our application is in line with previous findings for classifying text data, see [8,
13]. Based on these results, we focused on the support vector machines and KNN
with k = 25 for further experiments.

In a second series of experiments, we assume a scenario where tickets are
labeled in chronological order, e.g., on a per day basis. This follows the intuition
that manpower for manual annotation of tickets may be available in some time
intervals, but not continuously. Varying training set sizes are again evaluated
on a fixed-size test set consisting of the (chronologically) last 20% of the data.
Results for the F1 score are shown in Figure 2 and Table 2. It can be seen that
the SVMs achieve a good F1 score already for ≈ 40% of the training set. For
a similar F1 score, a training set size of 80% is required when using the KNN
approach. Details on the F1 score, precision, and recall are provided in Table 2.
Hence, we can conclude a training set that contains ≈ 1/3 of the whole data set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

Relative sample size of training data

F
1−

sc
or

e

KNN

SVM (anova)

SVM (linear)

Fig. 2: Impact of differently sized subset of the training set in chronological order
on the F1-score. The investigated classifiers are highlighted with different colors.

Table 2: F1-Score, Precision, and Recall for different subset sizes (40% and 80%
of the training set).

F1 Precision Recall
Sample Size 40% 80% 40% 80% 40% 80%

KNN (N=25) 4.8% 59.6% 50.0% 94.4% 2.5% 43.5%
SVM (linear) 55.3% 66.6% 69.2% 72.7% 46.1% 61.5%
SVM (anova) 51.8% 72.4% 93.3% 83.3% 35.8% 64.1%

Table 3: Precision for all sites and precision for sites with exactly one relevant
ticket within the test data set.

Training set size: 1/3 of data Training set size: 2/3 of data
raisall raisoneticket raisall raisoneticket

KNN (N=25) 11.1% 2.9 % 50.0 % 31.3%
SVM (linear) 56.8% 25.7% 64.2% 43.8%
SVM (anova) 48.1% 22.9% 66.1% 43.8%

is sufficient to train a SVM model that performs well in tests on the last 20%
of the data. In the following, we evaluate the impact of all classifiers on the
business-relevant metrics for two training set sizes, namely ≈ 1/3 and ≈ 2/3 of the
available data.

4.2 Impact of different Algorithms on Business-Relevant Metrics

This subsection highlights the performance of the presented approach with
respect to the business-relevant metrics identified sites and trend preservation.
The classifiers are trained with data sets of either the first 1/3 or the first 2/3 of the
data set. The relative number of identified sites reporting performance problems
(raisall) are summarized in Table 3. This table additionally shows this measure
restricted to those sites that reported exactly one performance problem, noted
as raisoneticket. For all cases, a training set of 2/3 of the data results in better
identification ratio. Also, SVM classifiers outperform the KNN classifier in both
settings. For the smaller training set, rais decreases considerably when using
KNN, resulting in a poor detection of sites with application problems. Although
the precision of the SVMs is reduced compared to a larger training data set, the
overall detection rate remains good. However, a reliable detection of issues at
specific sites cannot be guaranteed.

The results for the identification of relevant tickets on a per day basis are
illustrated in Figure 3. Figure 3a depicts the quality of the different approaches
for 2/3 as testing data, respectively day 10-31. Figure 3a depicts the quality of
the different approaches for 1/3 as testing data, respectively day 19-31. None
of the analyzed approaches is capable of identifying all relevant performance
tickets per day, however, global trends are mostly preserved in most scenarios.
For a training set size of 1/3, depicted in Figure 3a, the KNN classifier performs
poorly. Several days with reported performance issues are not identified. Both

10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25

30

Days

P
er

fo
rm

an
ce

 T
ic

ke
ts

KNN

SVM (anova)

Gold standard

SVM (linear)

(a) Training set size: 1/3 of data

21 22 23 24 25 26 27 28 29 30 31
0

5

10

15

20

25

30

Days

P
er

fo
rm

an
ce

 T
ic

ke
ts

Gold standard

SVM (linear)

KNN

SVM (anova)

(b) Training set size: 2/3 of data

Fig. 3: Identification of relevant tickets on a per-day basis for the different
classifiers (illustrated in different colors) and comparison with the gold standard.

SVM classifiers perform better, whereas the SVM with linear kernel performs
best. Further, the SVM with linear kernel is the only one capable to identify the
single performance ticket occurring on day 29. In case of a training set size of 2/3,
illustrated in Figure 3b all approaches perform better, with the SVM with linear
kernel performing best, and the SVM with anova kernel performing worst. The
SVM with anova kernel is not capable to detect the single performance ticket on
day 29, while both other approaches detect this ticket. The trend preservation
is quantified using Pearson’s correlation coefficient, as shown in Table 4. It can
be observed, that the SVMs perform very well for our data set with respect to
the business-relevant metrics. Although the KNN approach achieves a similar
result quality in case of a large training data set, it clearly underestimates the
performance problems for small training set sizes. Overall, the applied classifiers
preserve the temporal trend of relevant tickets very well.

Table 4: Quantification of the trend preservation with Pearson’s correlation
coefficient.

KNN (N=25) SVM (linear) SVM (anova)

Training set size: 1/3 of data 36.7% 90.1 % 89.8 %
Training set size: 2/3 of data 90.3% 96.5 % 97.4 %

5 Conclusions

This paper featured a case study that investigated the performance of machine
learning techniques for the task of identifying relevant support tickets, i.e., tickets
that indicate problematic applications in a thin client architecture environment.
To this end, we evaluated the performance of several classification algorithms
on over 12,000 manually annotated tickets in different scenarios and differently
sized training sets. Besides traditional machine learning metrics such as F1-
score, precision and recall, also business relevant metrics derived from our target
application were analyzed. As a result, supervised learning methods are overall
well suited to identify application problems based on ticket data. Even though
classifiers cannot categorize each individual ticket accurately, major issues at
specific sites and general trends can be detected. Comparing different classifiers,
support vector machines outperformed other evaluated techniques in our data
set. For reproducibility and further studies, the pre-processed data sets will be
made publicly available in an anonymized form.

In the future, we plan to explore the combination of standard machine learning
classifiers with manually created keyword lists in order to further increase the
classification accuracy. In addition, the full integration of automatic classification
within business processes will allow for a continuous annotation of support tickets.
Finally, the binary classification of tickets could be extended into a ticket ranking
system that will allow to analyze the most important tickets first.

Acknowledgement

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under
Grants HO TR 257/41-1. The authors alone are responsible for the content.

References

1. David Aha. Lazy learning. Springer Science & Business Media, 1997.
2. Mucahit Altintas and A. Cuneyd Tantug. Machine learning based ticket classifica-

tion in issue tracking systems. In Proc. of International Conference on Artificial
Intelligence and Computer Science (AICS 2014), 2014.

3. Pedro Casas, Michael Seufert, Sebastian Egger, and Raimund Schatz. Quality of
experience in remote virtual desktop services. In Proc.of the Workshop on Quality
of Experience Centric Management (QCMAN), Ghent, Belgium, May 2013.

4. K.V. Chandrinos, Ion Androutsopoulos, G. Paliouras, and C.D. Spyropoulos. Auto-
matic web rating: Filtering obscene content on the web. In Research and Advanced
Technology for Digital Libraries, volume 1923 of Lecture Notes in Computer Science,
pages 403–406. Springer Berlin Heidelberg, 2000.

5. Sunita Chulani, P. Santhanam, Darrell Moore, Bob Leszkowicz, and Gary Davidson.
Deriving a software quality view from customer satisfaction and service data. In
European Conference on Metrics and Measurement, 2001.

6. Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27, 1967.

7. Yixin Diao, Hani Jamjoom, and David Loewenstern. Rule-based problem classifi-
cation in it service management. In Proc. of IEEE International Conference on
Cloud Computing (CLOUD’09), pages 221–228. IEEE, 2009.

8. Susan Dumais, John Platt, David Heckerman, and Mehran Sahami. Inductive
learning algorithms and representations for text categorization. In International
Conference on Information and Knowledge Management, pages 148–155. ACM,
1998.

9. Irving John Good, Ian Hacking, R. C. Jeffrey, and H̊akan Törnebohm. The
estimation of probabilities: An essay on modern bayesian methods. Synthese,
16(2):234–244, 1966.

10. Thiago S. Guzella and Walmir M. Caminhas. A review of machine learning
approaches to spam filtering. Expert Systems with Applications, 36(7):10206–10222,
2009.

11. Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Kernel methods
in machine learning. The Annals of Statistics, 36(3):1171–1220, 06 2008.

12. Andreas Hotho, Andreas Nürnberger, and Gerhard Paaß. A brief survey of text
mining. In Ldv Forum, volume 20, pages 19–62, 2005.

13. Thorsten Joachims. Text categorization with support vector machines: Learning
with many relevant features. Springer, 1998.

14. Jutta Kreyss, Steve Selvaggio, Michael White, and Zach Zakharian. Text mining
for a clear picture of defect reports: A praxis report. In Proc. of International
Conference on Data Mining, Melbourne, USA, November 2003.

15. Patrick Le Callet, Sebastian Möller, Andrew Perkis, et al. Qualinet white paper on
definitions of quality of experience. European Network on Quality of Experience in
Multimedia Systems and Services (COST Action IC 1003), 2012.

16. Amelie Medem, Marc-Ismael Akodjenou, and Renata Teixeira. Troubleminer:
Mining network trouble tickets. In Proc. of Symposium on Integrated Network
Management, Long Island, USA, June 2009.

17. Audris Mockus, Ping Zhang, and Paul Luo Li. Predictors of customer perceived
software quality. In Proc. of International Conference on Software Engineering, St.
Louis, USA, May 2005.

18. Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–620, 1975.

19. Daniel Schlosser, Barbara Staehle, Andreas Binzenhöfer, and Björn Boder. Im-
proving the qoe of citrix thin client users. In Proc. of International Conference on
Communications, Cape Town, South Africa, May 2010.

20. F. Sebastiani. Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1–47, 2002.

21. Xing Wei, Anca Sailer, Ruchi Mahindru, and Gautam Kar. Automatic structuring
of it problem ticket data for enhanced problem resolution. In Integrated Network
Management, 2007. IM’07. 10th IFIP/IEEE International Symposium on, pages
852–855. IEEE, 2007.

