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Abstract—The Software Defined Networking (SDN) concept
introduces a paradigm shift in the networking world towards
an externalized control plane which is logically centralized.
When designing an SDN-based WAN architecture, it is of vital
importance to find a feasible solution to the controller placement
problem, i.e., to decide where to position a limited amount of
resources within the network. In addition to time-independent
constraints regarding aspects like scalability, resilience, and con-
trol plane communication delays, dynamically changing network
conditions like traffic patterns or bandwidth demands need to
be considered as well. Consequently, such dynamic environments
call for a regular and fast recalculation of placements in order
to adapt to the current situation in a timely manner. While
an exhaustive evaluation of all possible solutions can be per-
formed within a practically feasible time frame for small and
medium-sized networks, such an approach is out of scope for
large problem instances which have significantly higher time
and memory requirements. Therefore, this work investigates a
specialized heuristic, which takes into account a particular set
of optimization objectives and returns solutions representing the
possible trade-offs between them. Due to its low computation time
and acceptable margin of error, this heuristic can be employed by
automatic decision systems operating in dynamic environments.

Index Terms—SDN, Controller Placement, Latency, Multiob-
jective Optimization.

I. INTRODUCTION

Within the domain of communication networks, the Soft-
ware Defined Networking (SDN) paradigm has caused a shift
towards an architecture whose key characteristics are the
separation of control and data plane as well as a logically
centralized control plane. This is achieved by moving control
plane functions from individual network devices to a dedicated
controller software running on commodity hardware. Commu-
nication between this centralized control plane and the data
plane is then performed via the southbound API [1] which
is implemented by protocols like OpenFlow [2]. Furthermore,
the scalability and resilience of an SDN infrastructure can be
enhanced by physically distributing the logically centralized
control plane as proposed by concepts like HyperFlow [3] and
ONOS [4].

A physically distributed control plane introduces additional
challenges which have to be addressed. This includes the num-
ber of SDN controllers required for a targeted performance or
resilience level, but also the appropriate placement of these
controllers based on the relevant objectives for the given use
case. These objectives cover aspects like load balancing among

controller instances and communication delays between the
involved control and data plane instances in heterogeneous
network environments. Furthermore, operators often need to
cope with dynamically changing network conditions [5] which
require a periodic recalculation of viable placements in order
to adapt to these changes in an appropriate manner. Therefore,
the time consumption of a placement algorithm constitutes one
of its key performance indicators.

The controller placement problem for the SDN domain was
first introduced in [6], where an optimization regarding the
latency from nodes to their assigned controller is performed.
This optimization is equivalent to the facility location problem,
a task which is known to be NP-hard. The authors perform an
exhaustive evaluation of all possible placements in order to
analyze the characteristics of the optimal solutions.

Our previous work [7] investigates an extended version of
the controller placement problem which deals with multiple
optimization objectives, e.g., resilience considerations and
inter-controller latencies. In realistic environments, such per-
formance objectives are often competing, thus there is usually
no definite solution that satisfies all goals optimally. Rather,
a trade-off between the competing objectives that fits the par-
ticular use case needs to be chosen. While such an exhaustive
evaluation can be executed within a practically feasible time
frame for small and medium-sized problem instances, such
an approach is out of scope for large problems, which have
significantly higher time and memory requirements.

Previous research [8] shows that large instances of the
controller placement problem can be handled efficiently by
employing heuristics from the domain of multiobjective com-
binatorial optimization. Such heuristics allow trading off be-
tween the accuracy and the solving time in order to provide
fair solutions in a timely manner. For example, the Pareto
simulated annealing heuristic proposed in [8] yields results
within tens of seconds for problem instances whose exhaustive
evaluation takes tens of minutes while producing an average
error below 2%. However, such generic heuristics do not
take advantage of the use case specific set of optimization
objectives.

This work explores the potential of heuristics, which are
designed to leverage a use case specific subset of objectives.
In particular, we investigate the applicability of a specialized
k-Medoids [9] algorithm for the controller placement problem,
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and discuss its impact on the optimization accuracy and the
required computational effort.

The remainder of this paper is structured as follows. Sec-
tion II provides the formal problem statement, the specialized
heuristic algorithm proposed in this work, and an overview
of the evaluation setup. Evaluation results are presented in
Section III. After that, Section IV covers related work and
Section V concludes the work.

II. METHODOLOGY

In this section, we formally define the graph-based con-
troller placement problem and introduce the necessary no-
tation. Then, we describe in detail the proposed Pareto ca-
pacitated k-Medoids (PCKM) heuristic algorithm. Finally, we
outline the methodology that is used in the evaluation.

A. Problem Statement

In this work, the network under study is represented by a
graph G = (V,E) with node set V and edge set E. This net-
work consists of a total of n nodes that correspond to network
elements, i.e., switches and controllers, that are connected via
links. Furthermore, shortest path latencies between each pair
of nodes are stored in a distance matrix D. In particular, entry
di,j contains the latency between nodes i and j. The entries
of D are normalized with the graph’s diameter.

Given k, the number of controllers to be placed in the
network, the goal of the optimization task lies in determining
locations for k controllers Pk =

{
P ∈ 2V

∣∣ |P| = k
}

so that
objective functions fi (i ∈ {1, . . . , J}) are minimized. These
functions map placements to numeric values corresponding
to their performance with respect to the individual objectives
like latency or imbalance. As discussed in Section I, there are
usually multiple competing objectives for which practically
feasible trade-offs need to be found. These trade-offs can be
captured by analyzing the set of Pareto optimal solutions.
Formally, a placement x is considered Pareto optimal, if and
only if there is no placement y such that ∀i fi(y) ≤ fi(x) and
fi(y) < fi(x) for at least one i. The set of all Pareto optimal
solutions is referred to as Pareto frontier.

In order to quantify the loss of accuracy caused by using
the heuristic approach, we adopt a measure from [10] that
quantifies the distance between the actual and the estimated
Pareto frontier. In the following, R denotes the original
Pareto frontier that is used as reference, and M represents
the estimate provided by the heuristic approach. Before we
define the distance between two Pareto frontiers, a distance
metric for placements is introduced. According to Equation 1,
c(x, y) defines the distance between two placements as the
maximum weighted difference between individual objective
values achieved by the placements. The weight wj corresponds
to the inverse of objective fj’s range and is used for normal-
ization, i.e., wj = (maxx∈R fj(x)−minx∈R fj(x))

−1 and
thus, c(x, y) ∈ [0, 1]. Adding zero to the argument of the
maximum asserts that no negative distance is returned. With
this distance metric, it is possible to define measures for the
distance between two Pareto frontiers, of which one is known

to be better than the other and is therefore used as reference.
The metric δ is shown in Equation 2 and measures the average
distance between each element in R and its closest element
from M .

c(x, y) = max
j=1,...,J

{0, wj(fj(x)− fj(y))} (1)

δ(R,M) =
1

|R|
∑

y∈R

{
min
x∈M

{c(x, y)}
}

(2)

While there are many important criteria that need to be
considered when planning an SDN architecture, this work
focuses on two particular criteria for which an optimization
algorithm is developed. On the one hand, minimizing the
average latency between the nodes and their controller reduces
the delays appearing in the southbound communication. Given
a placement P ∈ 2V and a distance matrix D, the average
node to controller latency πavg latency is defined according to
Equation 3. This implicitly assumes a node to controller
assignment based on shortest path latencies. However, it is
also possible to explicitly define an assignment A : V → V
that maps each node to a specific controller. In such a case, the
calculation of the average latency follows Equation 4. On the
other hand, minimizing the load imbalance among controllers
produces a more robust network and also assures that each
controller behaves in a similar fashion. For each placement P
and controller p, the total number of nodes that are assigned to
p is defined as np. The imbalance metric πimbalance captures the
difference in np for the two controllers with the lowest and
highest amount of assigned nodes, respectively. Equation 5
provides a formal definition of this imbalance metric.

πavg latency(P) =
1

|V |
∑

v∈V

(
min
p∈P

dv,p

)
(3)

πavg latency(P, A) =
1

|V |
∑

v∈V

dv,A(v) (4)

πimbalance(P) = max
p∈P

np −min
p∈P

np (5)

Although the developed optimization algorithm does not
optimize any other criteria, an evaluation of its performance
with respect to additional objectives illustrates the differences
between this specialized approach and more generic heuristics.
There are three further objectives under study. Similarly to
πavg latency, the πmax latency measure considers the maximum
node to controller latency and thus offers a worst case anal-
ysis. Furthermore, another kind of latency is relevant in the
context of a distributed control plane, i.e., the latency among
controllers who need to communicate in order to maintain a
synchronized state. Again, average and maximum values are
calculated for this objective.



B. Pareto Capacitated k-Medoids

The heuristic algorithm proposed in this work combines
ideas from several graph theoretical algorithms in order to
construct an approximation of the Pareto frontier with respect
to two objective functions. These functions include the aver-
age node to controller latency and the imbalance regarding
controller load. When considering only the node to controller
latency, a clustering based approach is sufficient as it provides
the location of controllers as well as an assignment from nodes
to controllers which minimizes the latency between them.
However, such algorithms do not take into account the amount
of nodes assigned to each controller and thus might return
arbitrarily bad results with respect to πimbalance. Therefore, the
k-Medoids clustering algorithm [9] is enhanced with a capacity
bound ρ which restricts the number of nodes that can be
assigned to a single controller. By iteratively increasing the
bound ρ, the maximum resulting imbalance can be influenced
and thus, different trade-offs between the two objectives can
be explored and summarized in a Pareto frontier. While the
parameter ρ primarily affects the minuend of Equation 5, i.e.,
maxp∈P np, it also has an effect on the resulting imbalance
metric. This is caused by the fact that the capacity bound
implicitly limits the range of values πimbalance can attain. In
contrast to other clustering algorithms such as k-Means [11],
the centers returned by the k-Medoids algorithm coincide
with the input graph’s nodes. Therefore, it is chosen as the
foundation for the proposed heuristic.

Algorithm 1 illustrates the capacitated k-Medoids approach.
In addition to the distance matrix D, the network size n, and
the number of controllers k, the algorithm receives the capacity
bound ρ. First, the unmodified k-Medoids algorithm is applied
to the problem instance (line 2). However, instead of assigning
each node to its closest controller, a latency minimal balanced
assignment of nodes to controllers is determined. Finding such
an assignment corresponds to finding a cost minimal perfect
matching in a bipartite graph which is constructed in lines
3 and 4 of the algorithm. The first partition, N , consists of
n vertices representing the network’s nodes, while controllers
are placed in the second partition, which is referred to as F . In
order to enforce the desired capacity limit of controllers, each
controller is replicated

⌈
n
k

⌉
+ ρ times. Thus, a value of ρ = 0

corresponds to the tightest bound, i.e., the number of instances
per controller prohibits configurations in which one controller
manages significantly more nodes than another controller.

Next, a complete bipartite graph is created by adding an
edge between each pair of nodes from the two partitions. Edge
weights in this graph correspond to the entries in the distance
matrix D. Consequently, a cost minimal perfect matching in
the resulting bipartite graph yields an assignment of nodes to
the controllers provided by the k-Medoids algorithm. As this
assignment does not necessarily match the one intended by the
k-Medoids algorithm, a shift of centers inside the partitions
defined by the assignment might improve the latency in each
partition without affecting imbalance. Hence, in each cluster,
each node is considered as the new center. If this relocation

improves the sum of latencies inside the cluster, it is accepted.
Afterwards, the last two steps (i.e., calculating assignments
given centers and calculating centers given clusters) are re-
peated until convergence with respect to the latency is reached.
This process corresponds to the while loop in lines 7 to 12 of
Algorithm 1.

The final output consists of C, the cluster centers and
A, the assignment of each node to its center. Due to the
fact that the exhaustive evaluation assumes an assignment
that is based on the minimization of shortest path latencies,
the capacitated k-Medoids algorithm can produce placements
that are not analyzed by the exhaustive approach. However,
this does not have a negative impact on the results of the
performance evaluation as the distance measure defined in
Equation 1 defaults to zero when the estimate performs better
than the reference solution.

Algorithm 1 Capacitated k-Medoids
1: input: D, n, k, ρ
2: C = kMedoids(D,n, k) (= {c1, . . . , ck})
3: N = {1, . . . , n}
4: F =

{
c11, c

2
1, . . . , c

�n
k �+ρ

1 , c12, . . . , c
�n

k �+ρ

k

}

5: (A, costs) = match(N,F,D)
6: (C ′, costs′) = recalculateCenters(A)
7: while costs′ < costs do
8: C = C ′

9: F =

{
c11, . . . , c

�n
k �+ρ

k

}

10: (A, costs) = match(N,F,D)
11: (C ′, costs′) = recalculateCenters(A)
12: end while
13: return (C,A)

For a single value of ρ, Algorithm 1 calculates a placement
which minimizes the average node to controller latency while
respecting the imbalance constraint introduced by ρ. However,
the goal of this work is to develop an algorithm capable of
providing insights into the available alternatives and their asso-
ciated trade-offs with respect to different objectives. Therefore,
Algorithm 2 combines the results of multiple runs of the
capacitated k-Medoids algorithm with different values of ρ
into a Pareto frontier of possible solutions. Additionally, parts
of the k-Medoids heuristic rely on random numbers. Thus,
the quality of results can be further improved by running the
algorithm multiple times for each configuration. In total, there
are two parameters that control the runtime and performance
of the Pareto capacitated k-Medoids (PCKM) algorithm. First,
P, the set of values for the capacity bound ρ, and second,
nr, the number of times the capacitated k-Medoids routine
is called for each ρ ∈ P. The placements that are obtained
during these |P| · nr iterations are stored in the set S which
is constructed in line 5 of the algorithm. Finally, the Pareto
optimal placements are determined by evaluating the elements
in S with respect to the two metrics under consideration and
deriving their Pareto frontier.



Algorithm 2 Pareto Capacitated k-Medoids
1: input: D, n, k, P, nr

2: S = ∅
3: for all i ∈ {1, . . . , nr} do
4: for all ρ ∈ P do
5: S = S ∪ capacitatedKMedoids(D,n, k, ρ)
6: end for
7: end for
8: S = {s ∈ S | s ∈ paretoFrontier(evaluate(S))}
9: return S

C. Evaluation Methods

The performance evaluation of the developed Pareto ca-
pacitated k-Medoids (PCKM) algorithm focuses on two main
aspects. First, an analysis of the algorithm’s runtime for differ-
ent sets of parameters and the distance between the resulting
and the actual Pareto frontier provides the data required for
quantifying the achieved trade-off between time and accuracy.
Second, the specialized heuristic proposed in this work is
compared to the generic Pareto simulated annealing discussed
in Section I as well as to a baseline algorithm that is based on
randomly guessing placements. This comparison also explores
the consequences of specialization by calculating Pareto fron-
tier distances with respect to the subset of objectives optimized
by the Pareto capacitated k-Medoids approach as well as with
respect to a larger set of objectives. Both parts of the evaluation
are carried out on a set of real world network topologies from
the Internet Topology Zoo [12]. In order to provide reference
values for the time and accuracy assessment, an exhaustive
evaluation of placements is performed for each of the selected
networks and desired number of controllers beforehand.

Investigated problem instances are chosen based on two
factors. First, an exhaustive evaluation of the search space
corresponding to the problem instance should not exceed the
available memory of the used machine. We motivate this by the
fact that problem sizes beyond this threshold cause phenomena
like page thrashing which in turn make the comparison unfair.
Second, the computation times for an exhaustive evaluation of
the chosen instances tend to be in the order of magnitude
of several to tens of minutes. Such runtimes exceed the
constraints that often appear in practice. Hence, these scenarios
correspond to use cases which can be made tractable by
employing heuristics. Overall, more than 60 graphs from the
Internet Topology Zoo are evaluated. Their sizes range from 25
to 50 nodes and the experiments cover numbers of controllers
between 5 and 15, resulting in state spaces that contain
between one and 100 million distinct possible placements. All
algorithms are implemented in Matlab and run on a server
equipped with an Intel Xeon CPU at 2.10 GHz and 128 GB
of memory running the 64-bit version of Ubuntu 13.10 and
Matlab version R2014a.

In addition to the absolute runtimes of all investigated
algorithms and parameter sets which are recorded via Mat-

lab’s timeit1 function, the relative time consumption of
the heuristics are computed. While absolute runtimes provide
insights into the time scales which can be achieved by using
heuristics, statements about the relative time consumption
allow for a hardware independent comparison of algorithms.
The relative runtime of a heuristic approach is defined as the
ratio of the heuristic’s computation time and the time required
for an exhaustive evaluation.

As discussed in Section II-B, the performance of the Pareto
capacitated k-Medoids algorithm with respect to runtime and
accuracy can be controlled with two input parameters. On the
one hand, nr, the number of algorithm runs per configuration,
controls the number of placements investigated and can be
used to gather more reliable results. In this paper, we use
nr = {2, 4, . . . , 10}. Increasing nr beyond 10 did not show
significant improvements regarding the algorithm’s accuracy.
It is worth noting that nr is not the number of experiment
repetitions used in the performance evaluation, but rather
an input parameter to the PCKM algorithm that controls its
runtime. On the other hand, the parameter P controls the range
of capacity bounds that are evaluated in order to construct
the two dimensional Pareto frontier. Two options regarding
the choice of P are analyzed. First, P = {0, 1, . . . , 9}, which
covers 10 consecutive values for ρ and aims at thoroughly an-
alyzing the trade-off between latency and imbalance. Second,
P = {0, 2, . . . , 18}, which also contains 10 distinct values for
ρ but targets covering a wider range of trade-offs.

In order to provide a context for PCKM’s performance, it
is compared with two additional algorithms. These include
the Pareto simulated annealing (PSA) heuristic [8], [10] as
well as an algorithm that evaluates a given number of ran-
domly generated placements and calculates the Pareto frontier
of the resulting set of solutions. Due to the fact that the
performance and the runtime of the different mechanisms
depends on their input parameters, the following methodology
is used in order to achieve a fair comparison. For a given
set of input parameters of the PCKM approach, the average
runtime is determined. Afterwards, the input parameters of the
alternative algorithms are tweaked in such a fashion that their
runtime equals that of PCKM. Hence, the comparison allows
statements about the different algorithms’ performance when
equipped with a particular time budget. In order to obtain
statistically significant results, 10 repetitions are performed
and evaluated for each combination of algorithm, network
graph, and set of input parameters.

III. RESULTS

This section presents results of the performance evalua-
tion setup outlined in Section II-C. On the one hand, the
influence of the parameter choice on the performance of
the Pareto capacitated k-Medoids algorithm is investigated.
On the other hand, a comparison of the Pareto capacitated
k-Medoids (PCKM) mechanism with the Pareto simulated

1http://www.mathworks.com/help/matlab/ref/timeit.html



annealing heuristic as well as a baseline approach based on
random guessing is presented.

Figure 1 illustrates the results obtained when using the
proposed evaluation scheme. It shows the cumulative distri-
bution of the Pareto frontier distance δ with respect to the two
objectives optimized by the algorithm, i.e., the average node
to controller latency and the controller imbalance. The x-axis
shows increasing values of δ and the y-axis represents the
fraction of scenarios in which the PCKM approach achieves
a distance of at most δ. While the capacity range P is repre-
sented by the line style, with the fine grained capacity range
{0, 1, . . . , 9} as solid lines and the coarse grained capacity
range {0, 2, . . . , 18} as dashed lines, the number of repetitions
nr is represented by the lines’ color and takes on values 2, 6,
and 10.
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Fig. 1: CDF of the algorithm’s error with respect to average
latency and imbalance for different numbers of repetitions nr

and capacity ranges P

There are three main observations. First, an increase in nr

leads to an increase in accuracy. Increasing nr not only affects
the total number of placements analyzed by the algorithm, but
also adds diversity to the solution as the k-Medoids subroutine
starts its optimization from a different set of centers in each
iteration. Second, the accuracy gains between consecutive nr

values decrease for higher nr. For example, the 90% quantiles
of the distance in case of P = {0, 1, . . . , 9} take on values of
roughly 5%, 3.4%, and 3.2% for nr = 2, 6, 10, respectively.
This phenomenon hints at a converging behavior, i.e., the
accuracy doesn’t improve significantly beyond a particular
value of nr. Third, the fine grained capacity range yields a
higher accuracy than its coarse grained counterpart for all the
scenarios covered in this work. This behavior stems from the
fact that the reference Pareto frontier usually contains many
distinct imbalance values in the lower range while the coverage
of higher values is rather sparse. Hence, P = {0, 1, . . . , 9} is
used for the remainder of this work.

In order to determine input parameters for the alternative
algorithms that are used in the performance comparison, the
absolute runtimes of the PCKM algorithm are measured for the
different configurations. Figure 2 presents the distributions of

these runtimes. Differently colored curves represent different
values of the number of repetitions nr. When the number of
repetitions nr is increased from 2 to 10 in steps of 2, the
median runtime increases from roughly 0.5 seconds to 2.7
seconds in almost equidistant steps. This behavior is in line
with the fact that each repetition is performed independently
of the other, and thus nr affects the total runtime in a linear
fashion. However, the interquantile range also increases with
nr in the analyzed scenarios. This can be explained by the
varying runtimes of consecutive repetitions of the k-Medoids
algorithm. For each repetition, the number of iterations spent
inside the k-Medoids routine can differ. Increasing nr implies
a wider interval of possible values for the sum of these
iterations and thus a higher variance is observed.
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Fig. 2: CDF of the absolute time consumption of the Pareto
Capacitated k-Medoids algorithm for different numbers of
repetitions nr

The contributed algorithm is compared with three reference
algorithms by means of Pareto frontier distances. The results
are depicted in Figures 3 and 4. In addition to PCKM, a
two dimensional version of the Pareto simulated annealing
algorithm (PSA2D) and an algorithm based on random guess-
ing (RND) are analyzed.

Before aggregated results are presented in Figure 4, Figure 3
illustrates the different algorithms’ behavior by displaying the
Pareto frontiers returned during a single run of each algorithm
and comparing them to the reference Pareto frontier obtained
with the brute force approach. For this example, the Sinet
topology is chosen. In this network of 47 nodes, 5 controllers
are to be placed within a time budget of one second. The Pareto
frontiers are determined with respect to the two objectives
that are being optimized, i.e., the average node to controller
latency and the controller load imbalance. X- and y-positions
of individual points show the values of the objective functions
achieved by the corresponding placements. Additionally, the
imbalance metric is normalized with the number of nodes
in the topology. As a visual aid, each set of Pareto optimal
points is connected with line segments which are not part of
the Pareto frontier. Different algorithms are represented with
different colors and marker shapes.



There are four main observations. First, the Pareto frontier
returned by the PCKM algorithm has the highest cardinality of
all discussed approaches. This corresponds to a thorough cov-
erage of the different possible trade-offs between the optimized
objectives and is achieved by PCKM’s iterative approach with
respect to the capacity limits. By imposing different imbalance
constraints, the resulting latency is varied and the search
space is explored in a systematic fashion. Second, PCKM
discovers a solution that is not captured by the reference
Pareto frontier. In contrast to the brute force approach, PCKM
is not restricted to assigning nodes to controllers based on
latency and thus explores a larger search space than the
other algorithms. Third, PSA2D is also characterized by the
diversity of solutions, i.e., the trade-offs between objectives
are reflected in the resulting Pareto set. However, the available
time budget is not sufficient to achieve convergence, so that
some regions contain only few solutions or feature outliers.
These phenomena can be observed in the sparse coverage of
the 0.2 to 0.3 range of the imbalance metric, where PSA2D
yields only two solutions, as well as the rightmost outlier with
respect to the latency objective. Finally, the placements found
by the RND approach are scattered throughout the objective
space. While the mechanism finds one Pareto optimal solution
by chance, its result set also features an extreme outlier. This
demonstrates the high variance and thus low reliability of the
RND algorithm.

While the preceding discussion is focused on one individual
run, Figure 4 presents the algorithms’ performance in an
aggregated fashion. Furthermore, not only the Pareto frontier
distance regarding the two objectives optimized by PCKM and
PSA2D is presented, but also the distance from a five dimen-
sional Pareto frontier is taken into account. The extended set
of criteria contains the maximum node to controller latency as
well as the average and maximum latency among controllers.
Such an analysis provides insights into the strategies that are
employed by the different algorithms in order to explore the
search space and find feasible solutions.

While the different algorithms are represented by differently
colored curves, the line style indicates the kind of distance
measure under investigation. All three subfigures of Figure 4
display cumulative distributions of these distances, each result-
ing from different algorithm parameters obtained according to
Section II-C.

A comparison between the algorithms’ performance with
respect to the Pareto frontier distance regarding the average
node to controller latency and imbalance shows that the PCKM
algorithm consistently outperforms the PSA2D heuristic for
all three time constraints that were used in Figures 4a, 4b,
and 4c. This demonstrates the gain achieved by utilizing a
specialized heuristic over a generic method given the same
time budget on identical hardware. Moreover, the distance
in case of the RND algorithm is significantly higher than
those of PCKM and PSA2D as the RND approach does not
systematically explore the solution space but rather evaluates
random placements. Although the small absolute differences
between achieved Pareto frontier distances for PCKM and
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Fig. 3: Exemplary Pareto frontiers obtained with the algo-
rithms discussed in this work. Settings: Sinet topology (47
nodes), 5 controllers, and a time budget of 1 second.

PSA2D might suggest that utilizing PCKM over PSA2D
provides only a slight improvement, the relative increase is
significant. For example, when inspecting the 90% quantiles
of the distributions in Figure 4b, PCKM achieves a distance
of 3% with respect to the subset of optimized criteria while
PSA2D produces an error of 5%. Hence, choosing PCKM
corresponds to a relative gain of 40% in terms of accuracy.

When extending the distance measure to take into account
additional objectives representing the maximum and aver-
age inter-controller latency and maximum node to controller
latency, two phenomena are observed. First, the absolute
distance values increase for all algorithms. Such a behavior
is expected as none of the algorithms explicitly optimizes for
the additional objectives and the available time budget is not
increased to accommodate for the increased complexity, either.
Furthermore, the relative order of algorithms with respect to
the achieved distance changes. In the context of all three
time settings, the PSA2D mechanism provides the highest
accuracy, i.e., the lowest distance values. The reasons for
PSA2D’s advantage in this domain are twofold. On the one
hand, it generally explores a larger number of placements than
PCKM which results in a higher chance of coming across
solutions which are viable with respect to the newly added
optimization goals. On the other hand, the PSA2D approach
follows a more systematic path through the solution space than
RND, which lowers the chance of visiting the same placement
multiple times. Due to having the lowest amount of evaluated
placements, PCKM falls short of RND when the extended
distance measure is of interest.

IV. RELATED WORK

This section gives an overview on related work. First, related
work on the underlying mathematical problem is provided,
followed by related work on the controller placement in SDN
networks. Finally, work related to the different optimization
algorithms discussed in this paper is given.
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(a) One second, corresponding to nr = 2
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Fig. 4: Comparison of algorithms’ performance with respect
to different distance types given different time constraints

A. Facility Location Problem

As already mentioned and indicated by Heller et al. [6],
the topic of general controller placement is well explored.
In particular, the very basic version of controller placement
according to the latency of nodes to their controller is also
well discussed in the context of choosing the best location

for plants, warehouses, or any other facilities in a given
network topology. The problem is therefore also known as
plant, facility, or warehouse location problem and it is a typical
example for a Mixed Integer Linear Program provided, e.g.,
with the IBM ILOG CPLEX [13] software. If the objective
is to minimize πmax latency, the problem is called k-centers
problem, if the objective is πavg latency, it is called k-median or
k-mean problem. Further references to this general problem
are provided in Heller’s work [6]. Overviews on different
aspects of the facility location problem and on different
methodological approaches are also given in [14] in general
and in [15] with the focus on “uncertainty” regarding, e.g.,
uncertain traffic demands or latencies. These works however
have a rather general and theoretical focus. They do not
address the particular issues of controller placement in SDN
networks with respect to multiple criteria and a focus on
resilience. The following overview on related work focuses on
variants of the controller placement problem which are closely
related to the problems discussed in this paper.

A variant of the problem similar to the node to controller
balancing discussed here has been introduced by Archer et
al. [16] as load-balanced facility problem. The objective is
similar to πimbalance. However, the authors address this problem
in a different context concerning particular questions arising
in the area of computer graphics. Furthermore, they provide
only approximations to the problem regarding their particular
optimization goals. In the context of load balancing, also the
term capacitated and uncapacitated facility problem can be
found, see, e.g., [17] and contained references. The capacitated
version assumes that the maximum number of nodes that can
be assigned to a single controller is limited.

Different authors, among others Khuller et al. [18] and
Chaudhuri et al. [19], look at variants called fault tolerant or
p-neighbor k-center problems. The works focus only on the
theoretical methodology of the problem and provide approxi-
mation algorithms.

B. Controller Placement in SDN Networks

Recently, apart of Heller et al. mentioned before [6], more
and more authors have addressed facility location in the con-
text of controller placement in SDN networks. Bari et al. [5]
address dynamic controller provisioning, i.e., controller place-
ments changing over time depending on the current number of
flows in the network. They propose an Integer Linear Program
formulation of their “Dynamic Controller Provisioning Prob-
lem” as well as two different heuristic algorithms to solve it
for larger problem instances. The authors focus their metrics
on flow setup time and minimal communication overhead
regarding state synchronization. Controller or network failure
issues or a combination of multiple criteria such as, e.g.,
πimbalance or πmax latency are not addressed by their work. Zhang
et al. [20] address a resilient optimization of the controller
placement problem considering the outage of nodes, links,
or connections between nodes and controllers. They do not
reassign nodes to new controllers if the connection to the
original controller fails, but assume these nodes are controller-



less and thus not able to communicate with other nodes
anymore. They propose a placement heuristic and simulation
with the objective of minimizing the amount of lost node to
node routes due to link and node failures and controller-less
nodes.

The works of Hu et al. [21], [22] go in a similar direction.
They introduce and compare different heuristic approaches to
increase the resilience of software defined networks against
connection failures between nodes and controllers. Ros et
al. [23] again consider something similar and aim at maximiz-
ing the reliability of the controller placement. They heuristi-
cally search for the minimum number of controllers assigned
to each node and the controllers’ placement to reach a certain
reliability threshold as, e.g., “five nines”. All these works [20]–
[22] focus only on resilience against network failures and
do not consider any additional metrics such as πimbalance or
πmax latency. In particular, the trade-off between their metrics
and other objectives, such as πmax latency, is not addressed.
Furthermore, compared to the evaluation of the entire solution
space, no guarantee for the optimality of the presented results
can be given.

C. Use Cases for the Facility Location Problem in the Context
of SDN and NFV

The incentive for runtime optimization of controller place-
ment in SDNs and migration of functions in Network Func-
tions Virtualization (NFV) comes from the varying usage
patterns of modern data centers. The network workloads and
communication patterns dynamically change due to constant
virtual machine placement and scaling of the resources [24].
In this section, we review the most common SND- and NFV-
related use cases for the facility location problem.

As the authors of [25], [26] observe, proper placement
of network functions increases the network performance by
minimizing optical-electrical-optical conversions in a “network
function chaining” scenario. In that scenario, it is assumed
that intra-data center networks use optical technologies in
the core layer and the incoming traffic flows are steered
through a number of virtual network functions in a predefined
order. It is beneficial to locate the chained network functions
within a single electrical domain to minimize the amount of
conversions. This use case fits well in the “network stretching”
use case [27] where location-agnostic networks are considered.
In this use case, network workloads span multiple data centers
connected by optical medium and enterprise services can be
freely migrated from one data center to another. The location
agnosticism implies that also the virtualized functions need to
migrate as the environment adapts. Additional incentives for
the necessity of placement optimization of SDN controller or
network function are presented in [6], [28].

D. Multi-criteria Optimization Algorithms

For a given combination of objectives, there are various
approaches for multi criteria facility location in literature, e.g.,
[29]–[34] and references within. However, most of these works
investigate optimization approaches for specific predefined

sets of objectives rather than providing generic heuristics.
Algorithms dealing with the aforementioned capacitated fa-
cility location problem, for example, consider the equivalent
of the πavg latency and πimbalance metrics used in this work.
Metaheuristics like the Pareto Simulated Annealing (PSA)
[10] mechanism, on the other hand allow adding arbitrary
objectives into the evaluation and are not limited with respect
to the number of objectives that are taken into account
during optimization. The only requirement is a function that
maps elements of the search space to their performance
regarding a particular objective. Furthermore, techniques from
the domain of evolutionary algorithms [35], [36] or genetic
algorithms [37] in particular are also capable of performing
multiobjective optimization.

V. CONCLUSION

Designing the control plane of an SDN-based architecture
poses several challenges to network operators. Even when the
required number of entities in the control plane is known
beforehand, their locations have a significant impact on nu-
merous performance aspects of the network. This results in the
multiobjective optimization task that is known as the controller
placement problem. Its solution contains sets of controller
locations that represent possible trade-offs between different
objectives like control plane communication delays or the
balanced load distribution among controller instances. While a
brute-force approach to this placement problem is practically
feasible for small and medium-sized problem instances, the
time and resource demands of large problem instances call
for alternative mechanisms. Such mechanisms usually involve
heuristics that sacrifice accuracy or optimality guarantees for
significantly faster runtimes.

This article works towards quantifying the trade-off that
results from employing various heuristics as well as providing
guidelines with respect to algorithm choice for different use
cases. In particular, a specialized heuristic that optimizes a
particular set of objectives is compared to a generic heuristic
capable of optimizing arbitrary sets of criteria. The results of
an evaluation featuring over 60 real world network topologies
demonstrate that the effort for developing a specialized heuris-
tic pays off as its optimization accuracy has a lead over the
generic approach. In addition to the gains in terms of accuracy,
specialized algorithms can provide guarantees with respect to
certain objectives’ values, a property that might be important
in a practical context.
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