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Abstract. The Network Function Virtualization (NFV) paradigm en-
ables new flexibility and possibilities in the deployment and operation
of network services. Finding the best arrangement of such service chains
poses new optimization problems, comprising a combination of place-
ment and routing decisions. While there are many algorithms on this
topic proposed in literature, this work is focused on their evaluation and
on the choice of reference for meaningful assessments. Our contribution
comprises two problem generation strategies with predefined optima for
benchmarking purposes, supplemented by an integer program to obtain
optimal solutions in arbitrary graphs, as well as a general overview of con-
cepts and methodology for solving and evaluating problems. In addition,
a short evaluation demonstrates their applicability and shows possible
directions for future work in this area.
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1 Introduction

In modern networks, operators apply various network functions to their traffic
flows, either due to their specific requirements or due to the network’s policy in
general. Packets are monitored, modified, or even dropped to perform these func-
tions, such as firewalls, deep packet inspection, load balancers, and core gateways
in LTE networks. Traditionally, they are implemented by special hardware mid-
dleboxes with high performance guarantees, but they also suffer from high costs,
low flexibility, low scalability, and vendor dependence. These problems are ad-
dressed by the Network Function Virtualization (NFV) paradigm [1]. Hardware
middleboxes are replaced by software instances, running in virtualized environ-
ments on cheap, vendor independent commercial-off-the-shelf (COTS) machines.

With the newly attained flexibility, new optimization problems arise in the
context. In particular, the Virtual Network Function Chain Placement (VNFCP)
problem deals with the orchestration of Virtual Network Functions (VNFs) in the
network: (a) how many VNF instances are needed, (b) where are they located,
and (c) which traffic flow is using which instance. Thereby, various constraints
are considered, such as bandwidth and resource limitations. The optimization



objective usually involves the maximization of profit or the minimization of costs,
for example by reducing the number of instances.

As the VNFCP problem is NP-hard [2], most publications rely on heuristics
and approximations for productive use, featuring varying objectives, constraints,
and levels of detail. However, assessing the quality of attained solutions is no triv-
ial task in itself. For example, comparing the performance of two heuristics with-
out knowing an optimal reference placement only yields limited expressiveness.
In order to overcome these problems, this work investigates different approaches
towards the performance evaluation of VNFCP algorithms. In particular, it dis-
cusses the generation of parameterized artificial problem instances with known
optimal solutions, providing an independent reference for comparison.

The remainder of this work is structured as follows. Section 2 formally in-
troduces a common variant of the VNFCP problem. In Section 3, different ap-
proaches for its solution are reflected with special regard to their respective
evaluation techniques. In addition, Section 3.1 includes an Integer Linear Pro-
gram (ILP) that obtains optimal solutions for small problem instances. Section 4
proposes artificial problem generation by means of two concrete strategies, whose
results are demonstrated in Section 5. Related work on the evaluation of network
optimization heuristics is addressed in Section 6. Finally, in Section 7, we discuss
remaining challenges and conclude the paper.

An exemplary implementation of the presented ideas, such as the ILP and
the problem generation strategies, is also available on GitHub1.

2 Virtual Network Function Chain Placement

This section presents a brief overview of the VNFCP problem. Note that, as
different approaches consider different details of the problem, this work only
provides a generic definition of the most commonly used models. For further
details, please refer to the corresponding publications in Section 6.1, and in
particular to [3] for a more detailed version of this specific model.

2.1 Input and Output Models

The input model usually comprises three components. The network is repre-
sented by an undirected graph G = (V,E). Nodes v ∈ V may have computa-
tional resources vcpu ∈ R, while links e ∈ E have bandwidth and delay properties
ebw, ed ∈ R. The available network function types t ∈ T require a certain amount
of resources tcpu ∈ R and possess similar attributes as links: tbw, td ∈ R. Finally,
each traffic request r ∈ R consists of source and destination nodes rsrc, rdst ∈ V ,
bandwidth and maximum latency requirements rbw, rd ∈ R, and a sequence of
network functions rc ∈ T |rc| which represent the requested function chain.

The output model contains the set of placed VNF instances z ∈ I which
possess a type ztype ∈ T and location znode ∈ V . In addition, for every traffic

1 https://github.com/lsinfo3/vnfcp-benchmarking



demand r ∈ R, the assigned route rpath ∈ V |rpath| and the used instances rinst ∈
(I∪{∅})|rpath| are given. Hereby, rinst has the same length as rpath, and ∅ indicates
that no VNF is applied at the respective location of the route.

2.2 Constraints

The considered constraints can be split into two categories. On the one hand,
consistency between different variables must be ensured. For example, the lo-
cation of the i-th instance in rinst must equal the i-th node in rpath, or more
fundamentally, for each subsequence (vi, vi+1) in rpath, there must be an edge in
the network graph, i.e., {vi, vi+1} ∈ E. On the other hand, resource and delay
requirements must be met. This includes CPU capacities vcpu on nodes, band-
widths ebw on links, capacities tbw of the instances z ∈ I, and maximum flow
latencies as defined by rd. Further details are omitted in this work, as they differ
between different approaches.

2.3 Objectives

The range of considered objectives varies greatly among existing work in litera-
ture. Typical atomic objective functions include the number of placed instances,
the amount of consumed computational resources, the number of active nodes,
cumulative delay and number of hops for all requests, and the number of vi-
olated service level agreements. These may either be considered individually,
consolidated by applying weights, or be treated by a multi-objective optimizer.

Note that the choice of objective functions determines the optimal solutions.
In order to assess the quality of placements, they need to be specified beforehand.

3 Approaches for Solutions and their Assessment

This section outlines different strategies to solve the VNFCP and common ways
to evaluate their performance.

3.1 Exhaustive Optimization

The most evident approach is to compute an exact solution to a given optimiza-
tion problem, or the exhaustive Pareto frontier in a multi-objective context. This
strategy is sometimes implemented in a simple brute force manner, but more fre-
quently realized by Integer Linear Programs (ILPs) for performance reasons.

Given their exact results, a qualitative evaluation is not necessary for ex-
haustive approaches. They always provide the best results with regard to their
respective optimization objective. However, since the VNFCP problem is NP-
hard, these methods are usually limited in applicability. Hence, they can be
evaluated with respect to the supported details of their model, their required
computational resources, and the runtime of an optimization, while also con-
sidering the supported scale of problem input. More importantly, the results of
these exhaustive solvers can be used as a reference for the evaluation of faster,
empirical approaches, as explained in Section 3.3.



Table 1. Variables and indices used in the ILP formulation.

Index Description

r ∈ {1, ..., |R|} Traffic request.
f ∈ {1, ..., |rc|+ 1} Function in the chain of a request.
n ∈ {1, ..., |V |} Node in the network graph.
e ∈ {1, ..., |E|} Edge in the network graph.
t ∈ {1, ..., |T |} Type of the respective network function.
i ∈ {1, ..., |R|} Instance of the respective type on the respective node.

Variable Description

cr,f,n ∈ {0, 1} Indicates whether function f of request r is served in node n.
zr,f,i ∈ {0, 1} Indicates whether function f of request r is served on the i-th

instance of its type.
ar,f,e ∈ {0, 1} Indicates whether edge e is used by function f of request r.

mr,f,n,i ∈ {0, 1} cr,f,n ∧ zr,f,i
mt,n,i ∈ {0, 1} max(r,f)∈{(r,f) | funct. f of req. r is of type t}{mr,f,n,i}

mt,n ∈ N
∑|R|

i=1 mt,n,i

Example ILP. In the following, an example ILP is presented that primar-
ily minimizes CPU utilization. It can be adjusted and used on small problem
instances for the evaluation of heuristics with similar problem models.

Variables. The program is based on three types of decision variables: cr,f,n
and zr,f,i indicate the location and number of an instance, and ar,f,e indicates
the path of a request r, with f being the number of the corresponding function in
the request’s chain, n being a node in the network graph, e being an edge, and i

the number of the instance on the respective node. In addition, several auxiliary
variables are used to ease the definition of constraints and objectives: mr,f,n,i

indicates whether the i-th instance of its type on node n is used for function f

of request r. Similarly, mt,n,i indicates whether any request with a function of
type t uses this instance. Finally, mt,n contains the number of instances of type t
on node n. All used variables and indices are summarized in Table 1.

Note that each subpath from function f − 1 to function f is modeled sepa-
rately, with f = |rc| being the last function, and f = |rc| + 1 representing the
destination of the traffic request. The latter is only used by the variables ar,f,e
for the last subpath.

Objective. The primary objective is to minimize the CPU utilization, but on
a second priority, the number of hops was included, e.g., to avoid loops in the
paths. Using the variables above, the objective is expressed as follows.

Minimize 0.99

|T |
∑

t=1

|V |
∑

n=1

mt,n · tcpu + 0.01

|R|
∑

r=1

|rc|+1
∑

f=1

|E|
∑

e=1

ar,f,e (1)

Thereby, the weights are chosen such that the amount of hops does not impair the
minimization of the primary objective, i.e., the number of used CPU resources.

Constraints. The following constraints are used by the ILP to ensure path
consistency and to respect resource and capacity utilization. Given an edge e ∈



{1, ..., |E|}, let e1 and e2 be the respective nodes that it connects. Further, let
L(n) be the set of incident edges of node n, F (t) be the set of all functions (r, f)
with type t, and τ(r, f) be the type t of the f -th function of the request r. Note
that special cases, such as the subpath towards the final destination of a request,
are omitted to retain clarity. For possible values for the indices r, f, n, e, t, and
i, see Table 1.

∀r, f :

|V |
∑

n=1

cr,f,n = 1 and

|R|
∑

i=1

zr,f,i = 1 (2)

∀r, f, e : ar,f,e ≤
∑

x∈L(e1)\e

ar,f,x + cr,f,e1 + cr,f−1,e1

and ar,f,e ≤
∑

x∈L(e2)\e

ar,f,x + cr,f,e2 + cr,f−1,e2 (3)

∀r, f, n : cr,f,n ≤
∑

x∈L(n)

ar,f,x + cr,f−1,n

and cr,f−1,n ≤
∑

x∈L(n)

ar,f,x + cr,f,n (4)

∀n :

|T |
∑

t=1

mt,n · tcpu ≤ ncpu (5)

∀e :

|R|
∑

r=1

|E|
∑

e=1

ar,f,e · rbw ≤ ebw (6)

∀t, n, i :
∑

(r,f)∈F (t)

mr,f,n,i · rbw ≤ tbw (7)

∀r :

|rc|+1
∑

f=1

|E|
∑

e=1

ed · ar,f,e +

|rc|
∑

f=1

τ(r, f)d ≤ rd (8)

Hereby, Equation 2 ensures that, for every requested function, there is exactly
one location and one instance assigned. Equation 3 ensures that the paths are
connected: for every incident node of a link e, there is at least one other link x

in use, or the node is an endpoint of this subpath. With Equation 4, all used
instance locations enforce the usage of an incident link, ultimately leading to an-
other instance location (or the request’s destination) with the above constraints.
The set of Equations 5, 6, and 7 respect the available CPU resources on nodes,
the available bandwidth on links, and the available computational power of in-
stances, respectively. Finally, Equation 8 maintains the service level agreements
with respect to the flows’ delays.

3.2 Approximation Algorithms

Approximation algorithms provide solutions with guaranteed quality bounds.
They are designed such that their results are provably within a multiplicative



(or sometimes additive) distance from the optimal solution. However, the approx-
imability of the VNFCP problem varies greatly with its details and assumptions,
such as the actual objective of the optimization and considered constraints. There
are only few publications in literature that propose an approximation algorithm
for the VNFCP problem in polynomial time (cf. Section 6).

Given their provable bounds, the evaluation of approximation algorithms
is primarily of analytical kind and deals with their worst case performance.
Assessing their expected, average performance by analytical means is difficult
as the definition of an expected problem scenario itself is unclear. However, they
can be evaluated by empirical means with respect to selected representative
problem characteristics from real world scenarios. Therefore, similar approaches
as described in Section 3.3 can be applied here as well.

3.3 Heuristics

Heuristic algorithms attempt to find sufficiently good solutions within feasible
computational efforts and time limits. These approaches vary greatly in applied
strategy, requirements, and runtime, and therefore, also in their results’ qual-
ity. Their underlying ideas include simple greedy heuristics, pre-calculation of
desired parameters, iterative improvements, relaxation of ILPs, fixing and op-
timizing only parts of the whole problem, and finally meta-heuristics such as
simulated annealing and evolutionary algorithms. A selection of related work in
this category is presented in Section 6.

An empiric evaluation of heuristic algorithms is based on a comparison of
the resulting objective values with chosen reference solutions. The selection of
these references affects the expressiveness of the evaluation.

Comparison with other heuristics. When comparing two or more heuristic
algorithms, the main statement is which algorithm performs better than the
other with respect to the selected problem scenarios and objectives. However,
there is no meaningful quantitative estimation of the overall performance of
both algorithms without an independent reference point. Even with statements
such as “algorithm A performs x% better than algorithm B”, they could still
both be significantly worse than the optimal attainable value, which should be
reflected by the evaluation. In many cases, simple baseline algorithms are used for
the comparison, which further reduces its expressiveness. Nevertheless, as only
heuristics are used, the scale of the evaluation is only limited by the algorithms’
capabilities, as opposed to the limitations of acquiring optimal references.

Ideal reference points. The ideal solution (or true Pareto frontier for multi-
objective problems) can be used to overcome the above issues. As it is not tied
to the used algorithm but only to the problem itself, it serves as an indepen-
dent representative for the investigated heuristics. However, obtaining these ideal
points is not trivial in itself. Exhaustive solvers as described in Section 3.1 are
only applicable for small problems due to their runtime, but the investigation
of more complex scenarios is usually more interesting. Hence, the generation of
synthetic problem instances with predefined optimal solutions is proposed in this



work. This enables an empirical evaluation of larger scaled problems with pa-
rameterized characteristics. At the same time, the generation of such problems
is tied to predefined strategies and objectives. Two simple generation strategies
are presented in Section 4.

4 Synthetic Problem Generation

In general, there are two conceivable techniques for the generation of problems
with known solutions. On the one hand, the problem structure could be restricted
in such a way that, for an aware algorithm, the computation of solutions is
facilitated significantly. An example for such a strategy is given by the grid
graphs in Section 4.1. On the other hand, the problem could be created in
conjunction with, or even based on, the actual solution instead of dealing with
its acquisition subsequently. This type of strategy is applied for the dynamic
resource distribution in Section 4.2.

In any case, the presence of solutions for a problem instance requires that
the objective is fixed beforehand. Consequently, most generation strategies are
tied to a specific objective. On the contrary, other characteristics of the problem
can be defined more flexibly. Having more parameters for the generation process
provides more control of the scale and difficulty of the problem, which helps to
reveal properties of the investigated algorithms.

However, in every meaningful performance evaluation, the results should be
reviewed with respect to the synthetic problem’s structure and its influence
on them. General statements are difficult to obtain from empirical evaluations,
but the observed behavior shall not only be caused by the choice of evaluation
scenario. Therefore, it can be supplemented by an independent evaluation with
different, smaller problem instances and optimal references obtained by an ILP,
such as in Section 3.

4.1 Grid Graph Problem

The grid graph problem (GGP) is designed to be a simple multi-objective place-
ment problem, minimizing both CPU utilization and number of hops simulta-
neously. Due to its simple structure, these measures are directly proportional to
the number of instances and the overall delay, respectively. Therefore, they may
be minimized here as well.

An overview of the graph’s layout is presented in Figure 1. The positions of
the nodes are based on a grid layout. There are m source and destination nodes
in the network, located at the first and last stage of the graph, respectively. In
each of the the n intermediate stages, there are k nodes with computational
resources. Each node is only connected to its direct neighbors in the grid.

The idea of this scenario is to define very similar traffic requests, with equal
properties except for their source and destination, and all traffic flowing into the
same direction. The requests include n different VNF types, one for each of the
inner stages. Each of them has the same properties, and a single instance of each
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Fig. 1. Grid graph problem scenario.

type is sufficient to satisfy all traffic requests. Each node in the n intermediate
stages can host exactly one instance. Each link in the network has the same delay
and sufficient bandwidth to support every request n+1 times. Finally, each traffic
demand requests all of the n VNFs in the same order and its maximum tolerated
delay allows it to visit all of them, regardless of their position.

In addition to the above parameters k, m and n, the load parameter ρ ∈
[0, 1] controls the amount of requests in the scenario, i.e., there will be ρ · m2

traffic demands generated with random choices from the m available source and
destination nodes. The dimensions of other measures, such as bandwidths and
CPU resources, may be tweaked as well if necessary.

Optimal Solutions. In this example, the optimal placement is computed after
the problem generation. The k horizontal rows of length n in the intermediate
stages are referred to as lanes. All Pareto optimal solutions place all of the n

functions in a straight lane, exactly in the order they are requested, from left
to right. This avoids the introduction of unnecessary hops. As this is a multi-
objective scenario, the CPU utilization is minimized as well, hence, all possible
numbers k′ ∈ {1, ..., k} of occupied lanes are tested. For each such k′, there are
(

k
k′

)

possibilities for chosen lanes, thus, a total of 2k − 1 tests must be done.
The optimality of these solutions can be proved by contradiction: assuming

the use of an incomplete row of VNFs at some point, there must be additional
hops to reach the remainder of the requested service chain, which could have
been avoided otherwise. Due to the limited space, only the idea is outlined here
though.

4.2 Dynamic Resource Distribution

The idea of the dynamic resource distribution is to decouple the generation of
the network graph from the traffic demands in order to enable a more versa-
tile evaluation. In particular, any graph can be used without restrictions on its
structure, including real topologies and randomly generated ones, however, the
available resources and link bandwidths are altered in the process.

The intended objective is to minimize the number of placed instances on the
graph. In its current implementation, the strategy is limited to a single VNF of
the same type for each request, however, improvements are planned for future
work. The generation process is comprised of the following steps.



1. Generate or choose an existing network topology.
2. Distribute a predefined number of instances on a predefined number of nodes

in the network.
3. Generate traffic demands with random source-destination-pairs until all in-

stances are fully used.

(a) Pick a random source-destination-pair from all node pairs.
(b) Pick one of the VNFs with remaining capacity that implies the smallest

detour from the shortest source-destination-path.
(c) Select the requested bandwidth for this traffic demand from a predefined

range. Ensure optimality by filling instances up: If the remaining capacity
of the instance would be too small to allow another traffic demand,
increase the bandwidth such that it is fully utilized.

(d) Define the maximum tolerated delay within a factor of the selected path’s
latency, e.g., the twofold.

4. Distribute sufficient CPU resources in the network such that all intended
instances can be placed. Add further resources to allow more variation from
the evaluated algorithms. This includes increasing existing resources as well
as adding new resources to previously unused nodes.

5. Define the link bandwidths such that all selected paths are supported. Mul-
tiply the required amount by a predefined factor to enable more versatile
results from the evaluated algorithms.

As evident from this process, the optimal solution is constructed in conjunction
with the problem. More accurately, it is defined in steps (2) and (3b). Optimality
of this problem-solution-pair is achieved by (3c), which ensures that all intended
instances are fully utilized, and therefore, this is the minimum required number.

Despite its flexible definition, the generated problems are currently limited in
variation with regard to requested VNF chains. The generation of longer chains
and the possibility to support more objectives will be investigated in future work.

5 Evaluation

In order to show the benefits of synthetic problem generation, the strategies
from Section 4 are demonstrated by means of a few examples. Therefore, the
algorithms from [3] and [2] are applied.

Multi-Objective Quality Indicators. For the evaluation of multi-objective prob-
lem scenarios such as the grid graph problem, all n obtained solutions s1..n ∈ R

n

are aggregated into a single quality indicator value q ∈ R and compared directly.
As this accompanies a loss of information, multiple types of indicators that rep-
resent different performance aspects are usually used. In this work, the hyper-
volume IH and epsilon indicator Iǫ are applied [4–6]. Hereby, the hypervolume
indicator measures the volume in the solution space enclosed by the returned set
and a reference point, while the epsilon indicator measures how much a reference
solution set (e.g., the real Pareto frontier) must be stretched so it becomes worse
than the evaluated set.
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Fig. 2. Influence of GGP’s parameters on the placement quality of MO-VNFCP.

For a direct comparison with the optimal values, their ratio is computed.
Note that for the hypervolume, bigger values indicate a better performance,
while the opposite applies to the epsilon indicator. Hence, the indicator quotients
for heuristic solutions S and optimal solutions O are defined as follows.

QH(S,O) :=
IH(S)

IH(O)
; Qǫ(S,O) :=

Iǫ(O)

Iǫ(S)
(9)

Thereby, all values are within the range [0, 1], where 1 represents the optimal
performance with respect to this indicator.

5.1 Grid Graph Problem

With the GGP scenario, the effects of different parameters on the performance
of the MO-VNFCP algorithm [3] are investigated. Firstly, Figure 2 contains the
resulting indicator ratios.

Note that, without the optima available for comparison, displaying the pure
indicator values in a similar way would be significantly less expressive. By in-
creasing the parameters of the scenario, the optimized problem instances differ
between two runs, and so does their difficulty. As the optima change in a similar
way, they are used to provide a relative view on the performance and a consistent
overall representation of attained quality.

Figure 2a displays the influence of the number of traffic requests on the
indicator quotient. The load parameter ρ is increased from 0.2 to 0.8 withm = 20
source and destination nodes, resulting in ρ · m2 = 80 to 320 requests. The
parameters for the intermediate stages are k = 4 and n = 3. Both indicators
show a decreasing trend in quality values, however, the hypervolume is affected
stronger than the epsilon indicator, which implies that they indeed represent
different aspects of performance.

In Figure 2b, the number of nodes in the intermediate stages is varied instead,
with k ∈ [3, 7] and n ∈ [4, 8]. This leads to an increased number of locations with
CPU resources available for the algorithm to choose from, but also increases the
length of the embedded VNF chains. The figure displays box plots which enclose
the first and third quartile of attained indicator values. The whiskers extend to
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Fig. 3. Feasibility ratios with different bandwidth multipliers.

the furthest point, but at most to the 1.5-fold of their boxes’ height. Similarly to
before, increasing the scale of the problem leads to a decrease in solution quality
shown by both indicator types. However, increasing the intermediate nodes from
12 to 56 has a greater impact on both indicators compared to raising the num-
ber of requests from 80 to 320. This analysis helps to identify the algorithm’s
capabilities and shows opportunities for improvement.

5.2 Dynamic Resource Distribution

With the dynamic resource distribution scenario, the behavior of the algorithms
MO-VNFCP [3] and MSH (Multi-Stage Heuristic) [2] are compared. Note that,
while this scenario only considers the number of instances, both algorithms still
try to optimize other measures simultaneously, such as the number of hops. All
measurements were conducted on a real topology, namely the Germany graph [7].

As an initial quality measure, Figure 3 displays the influence of the number
of traffic demands on the feasibility ratio (i.e., the relative amount of feasible
solutions within all optimization runs) for two different bandwidth parameters
with 95% confidence intervals. In Figure 3a, the available link bandwidths were
set to the 1.5-fold of what the optimal solution required. Here, MSH did not
return a feasible solution in most cases as it tends to congest links. For MO-
VNFCP, increasing the scale of the problem improved its solvability as with
more traffic requests there are also more available resources in the graph, allowing
more variation in the selected paths. In Figure 3b, MO-VNFCP is always able
to return a feasible solution, while there is no significant dependency observable
for MSH. Its 95% confidence intervals range from 0.6 to 1.0 for multiplier 5.0.
The following measurements were also conducted with this configuration.

Figure 4 shows the number of used VNF instances in relation to the optimal
value. In Figure 4a, the influence of the number of requests is shown. Interest-
ingly, the relative performance of the MSH improves significantly with larger
problems. This is caused by a broad distribution of instances by the heuristic,
and its relative quality improves when the optimal placement also requires more
instances. On the other hand, Figure 4b shows the dependency on the num-
ber of nodes with available CPU resources. The more choices exist, the more
difficult the problem becomes, but the optimal number of instances stays the
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Fig. 4. Influence of problem parameters on the number of instances.

same. Hence, the relative performance of the MSH deteriorates in this example.
Figure 4 also shows that in both cases, the performance of the MO-VNFCP
heuristic was very close to the optimal solution with no significant dependency
on the investigated scale. Taking its longer runtime into account, it presumably
requires larger or more complex scenarios to reveal its behavior, e.g., by adding
more VNFs to the requested chains.

6 Related Work

This section provides an overview of publications that deal with different aspects
of the VNFCP problem and focuses on the problem instances that are used
for the quality assessment of the proposed algorithms. Furthermore, we present
works that discuss methodologies for generating synthetic problem instances
whose optimal solutions are known beforehand.

6.1 VNF Chain Placement

In [8], the authors provide one of the first formal problem statements for the
VNFCP. Their evaluation is performed on a network comprised of four core
routers, five switches, and 10 edge nodes. Since an ILP-based approach is utilized,
optimal results are obtained. Unfortunately, such approaches can not be applied
to large problem instances due to the fact that the solution space of the VNFCP
grows exponentially.

For this reason, the authors of [9, 10] propose heuristics in addition to ILP-
based algorithms. As they analyze only a subset of all possible placements, these
heuristics are capable of handling large problem instances. As a downside, they
provide no guarantees with regard to the optimality of returned solutions. In
order to evaluate the heuristics, the authors generate synthetic topologies using
the Barabási Albert (BA) model [11] with up to 1,000 nodes and randomly
generated demands. In a similar fashion, both an ILP-based approach as well as
a heuristic are proposed in [12]. However, only a small network of 12 nodes and 3
function chains is considered. In [3], a multi-objective approach is used to handle
conflicting objectives. A set of solutions is continuously improved similarly to



the simulated annealing approach. The results are evaluated by comparing them
with those of another heuristic from literature, by means of three real-world
topologies and artificial demands.

In contrast to optimizing the placement of all demands simultaneously, Bari
et al. [2] propose an algorithm that adds newly arriving demands to the current
placement and instantiates new instances on demand. The evaluation is per-
formed on real world networks whose size ranges from 12 to 79 nodes. Similarly,
Sahhaf et al. [13] consider the dynamic scenario and evaluate their algorithm
using two network graphs from the Internet Topology Zoo [14].

Rather than addressing the entire VNFCP, [15,16] address subtasks like rout-
ing of demands or mapping and scheduling them to existing VNF instances,
respectively. Both approaches work in the dynamic scenario. While the former
uses different graph generation models like BA or Waxman [17], the latter does
not require a topology due to the assumption that delays between nodes are
negligible. Furthermore, demand arrivals follow a uniform distribution and are
composed of random permutations of available VNF types.

In summary, most works in literature use either synthetic or real world graphs
in conjunction with artificial demand sets in order to evaluate their proposed
VNFCP heuristics. However, in the context of large problem instances, optimal
solutions can not be determined and thus, a quantitative statement regarding
the performance of heuristics is not possible.

Approximation Algorithms. A special case is provided by the few approxima-
tion algorithms in this context [18,19]. They prove deterministic bounds for their
results and may therefore omit the empirical evaluation of their algorithms.

6.2 Synthetic Problem Generation

In many areas of optimization, synthetic problem instances are used in order to
perform algorithm benchmarks and tweak their performance [20–22]. To the best
of our knowledge, there are no corresponding frameworks for the VNFCP, yet.
However, Virtual Network Embedding (VNE) problems [23, 24] overlap with
the VNFCP in terms of the chaining and placement aspects, and algorithms
for problem generation are researched in a recent publication [25]. Its authors
develop mechanisms for both static and dynamic scenarios whose solution is
known beforehand. Since it is possible to change the number of network nodes,
requests, and resources, algorithms can be analyzed in terms of aspects like
scalability and behavior under different load levels.

7 Conclusion

In order to fully benefit from the flexibility of Network Function Virtualization,
algorithms that tackle the arising optimization problems, in particular the Vir-
tual Network Function Chain Placement problem, are required. Despite the large
number of recent publications in this area, there is no commonly accepted stan-
dard approach yet. Therefore, an unbiased methodology for the evaluation and



comparison of VNFCP algorithms is necessary to obtain meaningful statements
on their performance.

This work presents an overview of the VNFCP problem, followed by pos-
sible strategies for its solution. Different concepts towards their evaluation are
discussed, and the importance of optimal solutions for their comparison is em-
phasized. In particular, an Integer Linear Program is proposed to obtain optimal
reference solutions for small problems, along with artificial problem generation
strategies with known optima for the assessment of larger topologies.

Two strategies are implemented to demonstrate the applicability of the con-
cept. Their evaluation shows the influence of problem parameters on the al-
gorithms’ performance and provides valuable insights for their improvement.
However, it also reveals current limitations. Hence, future work will include the
extension of existing strategies to use more complex function chains, and the
support for more objective functions. Nevertheless, by using artificial problems,
the expressiveness of performance assessments can be raised significantly with
regard to parameterization and absolute solution quality.
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