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Abstract—A quarter of the world population will be using
smartphones to access the Internet in the near future. In this
context, understanding the Quality of Experience (QoE) of popu-
lar apps in such devices becomes paramount to cellular network
operators, who need to offer high quality levels to reduce the risks
of customers churning for quality dissatisfaction. In this paper
we address the problem of QoE provisioning in smartphones
from a double perspective, combining the results obtained from
subjective lab tests with end-device passive measurements and
QoE crowd-sourced feedback obtained in operational cellular
networks. The study addresses the impact of the downlink
bandwidth on the QoE of three popular smartphone apps:
YouTube, Facebook and Google Maps. As a main contribution,
we show that the results obtained in the lab are highly applicable
in the live scenario, as mappings track the QoE provided by users
in real networks. We additionally provide hints and bandwidth
thresholds for good QoE levels on such apps, as well as discussion
on end-device passive measurements and analysis. The results
presented in this paper provide a sound basis to better understand
the QoE requirements of popular mobile apps, as well as for
monitoring the underlying provisioning network. To the best
of our knowledge, this is the first paper providing such a
comprehensive analysis of QoE in mobile devices, combining
network measurements with users QoE feedback in lab tests and
operational networks.

Keywords—QoE; Smartphones; End-device Measurements;
Field Trial; Subjective Lab Tests; Mobile Apps; Crowdsourcing

I. INTRODUCTION

Smartphones are becoming the most typical mobile device
to access Internet today. Recent projections [2] show that
by 2016, a quarter of the world population will be using
smartphones to access the most popular services such as
YouTube, Facebook, WhatsApp, etc. According to Cisco’s
global mobile data traffic forecast [1], smartphones will be
responsible for more than three-quarters of the mobile data
traffic generated by 2019. In the light of these trends, cellular
network operators are becoming more and more interested in
understanding how to dimension their access networks and
how to manage their customers’ traffic to capture as many
new customers as possible. In this scenario, the concept of
Quality of Experience (QoE) has the potential to become one
of the main guiding paradigms for managing quality in cellular
networks. Closely linked to the subjective perception of the

The research leading to these results has received partial funding from the
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end-user, QoE enables a broader, more holistic understanding
of the factors that influence the performance of systems,
complementing traditional technology-centric concepts such as
Quality of Service (QoS).

In this paper we study the QoE of popular apps in smart-
phones (YouTube, Facebook and Gmaps) from two different
yet complementary perspectives: subjective tests performed in
a controlled lab, and passive end-device measurements with
QoE user feedback in operational networks, through a field
trial. Our study considers the impact of the most relevant
QoS-based characteristics of the access network: the downlink
bandwidth. Besides providing a solid ground-truth (based on
the experience of real users) regarding the QoE-requirements
of popular apps such as YouTube and Facebook (e.g., a
downlink bandwidth of 4 Mbps/1 Mbps respectively is high
enough to reach near optimal results in terms of overall quality
and acceptability), our results suggest that lab study results are
highly applicable in the live setting, as the mappings obtained
between network QoS and user QoE are highly similar in
both scenarios. This a major contribution, as it permits to gain
high insight about QoE in mobile devices, even by running
experiments in the lab.

The standard approach to assess the performance of net-
works and services from a QoE end-user perspective is to
conduct controlled lab experiments [16]–[18]. The key benefits
of such an approach rely on the full control the experimenter
has on the overall evaluation process. Indeed, content and
context are fully known and controlled, and users are directly
briefed and observed on the spot, providing as such tangible
and solid results. However, lab experiments miss out many
important QoE influence factors such as usage context, content
preferences by individual users, or device usability among
others, potentially introducing differences w.r.t. evaluations
conducted in the field [21]. Field trial experiments place the
end-user and the evaluated components (i.e. network, apps,
etc.) as closest as possible to their daily usage scenarios and
running environments, providing more representative evalua-
tions. This augmented degree of realism w.r.t. lab experiments
yields in principle more reliable results in terms of end-user
experience, to the cost of higher complexity in acquiring and
processing the results (e.g., traffic monitoring, QoE feedback,
app-level measurements, etc.).

Indeed, we developed different tools to conduct the field
trial, including a passive monitoring tool to measure the traffic
of the field trial participants at their end devices, a QoE-
feedback app to gather user experience data (e.g., quality
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ratings), and a YouTube passive monitoring tool to measure
initial playback delays, playback stallings, and video quality
switches (induced by the adaptive video streaming protocols
used by YouTube).

The remainder of the paper is organized as follows: Sec. II
presents an overview of the related work on QoE, focusing
on the specific case of mobile devices. Sec. III describes
the subjective tests’ setup and presents the obtained results,
including the impact of the downlink bandwidth on the overall
experience and acceptability of the end-user. Sec. IV describes
the tools and the approach followed in the field trial, and dis-
cusses the obtained results, particularly in terms of similarity to
those obtained in the lab. Sec. V discusses several implications,
limitations and topics related to the passive monitoring of QoE
in end-user devices, including privacy, network neutrality, and
incentives among others. Finally, Sec. VI concludes this work.

II. RELATED WORK

The study of the QoE requirements for cloud-based appli-
cations as the ones we target in this paper has a long list of
fresh and recent references. A good survey of the QoE-based
performance of cellular networks when accessing different
cloud services is presented in [7]. The specific case of QoE in
YouTube deserves particular attention, due to the overwhelm-
ing popularity and omnipresence of the service. Studies have
both considered the “standard” HTTP video streaming flavour
of YouTube, as well as the more recent Dynamic Adaptive
Streaming (DASH) version. Previous papers [9], [10] have
shown that stalling (i.e., stops of the video playback) and
initial delays on the video playback are the most relevant
Key Performance Indicators (KPIs) for QoE in standard HTTP
video streaming. In the case of adaptive streaming, a new
KPI becomes relevant in terms of QoE: quality switches. In
particular, authors in [12] have shown that quality switches
have an important impact on QoE, as they increase or decrease
the video quality during the playback. A comprehensive survey
of the QoE of adaptive streaming can be found in [13].

There has been a recent surge in the development of tools
and software libraries for measuring network performance on
mobile devices: some examples are Mobiperf [24], Mobilyzer
[23], and the Android version of Netalyzr [22]. When it comes
to our specific analysis of QoE in cellular networks and mobile
devices, most references are very new, showing that there is
still an important gap to fill. In [14], authors study the QoE
of YouTube in mobile devices through a field trial, exclusively
considering the non-adaptive version of the YouTube player.
Authors in [15] recently introduced Prometheus, an approach
to estimate QoE of mobile apps, using both passive in-network
measurements and in-device measurements, applying machine
learning techniques to obtain mappings between QoS and QoE.
In [6], authors introduce QoE Doctor, a tool to measure and
analyze mobile app QoE, based on active measurements at
the network and the application layers. Additional papers in a
similar direction tackle the problem of modeling QoE for Web
[4] in cellular networks, and video [5].

The main limitation of these approaches is the lack of
real user experience ground truth in their analyses. Most of
the papers study QoE-related metrics such as page-load times,
interface latency, or video stallings but without any reference

to real user experience, reflected for example in terms of Mean
Opinion Scores. In addition, many of the proposed approaches
rely on active measurements only (e.g., [6]), which is less
attractive when thinking on large scale user traffic monitoring
and analysis. Our approach considers both real users QoE
feedback and passive monitoring at end devices, improving
and extending the state of the art.

This paper elaborates on our previous study recently pre-
sented in [3], particularly extending the analysis by performing
measurements at the end devices and conducting a field trial
in operational cellular networks.

III. MOBILE QOE IN THE LAB

Let us begging by reporting the results of the conducted
subjective lab tests. The subjective study consists of 52 par-
ticipants interacting with the aforementioned services while
experiencing different downlink bandwidth profiles in the
background data connection. Android smartphone devices are
used in the study (Samsung Galaxy S4, OS Android 4.4
KitKat). Devices are connected to the Internet through sep-
arate WiFi access networks. The downlink traffic between the
different evaluated services and the devices is routed through
a modified version of the very well known NetEm network
emulator so as to control the different access network profiles
under evaluation.

Different constant bandwidth profiles are instantiated at
the network emulators, changing downlink bandwidth loga-
rithmically, from 0.5 Mbps to 16 Mbps. These profiles are
selected from operational experience, particularly following
typical operational values reported in [7] for different access
network technologies (LTE, 3G/2G, etc.). Note that while we
do not emulate the particular characteristics of a cellular access
network (which would mainly impact the RTT profiles), results
obtained in the field (c.f. Sec. IV) suggest that our lab results
are accurate in real cellular access networks.

Participants were instructed to perform independent tasks
for each of the three considered applications. For YouTube,
they were requested to watch two-minutes HD YouTube
videos, considering both the usage of the standard (i.e., non-
DASH) and the DASH versions of the YouTube player. Videos
correspond to 4K ultra-HD videos (i.e., 2160p), which are
down-scaled to HD resolution (i.e., 720p) due to the device’s
display capabilities (i.e., screen size and resolution). The
average video bit rate (vbr) of the corresponding HD videos
is in all cases around 1.6 Mbps. In the case of Facebook,
participants were instructed to access the application with a
specific user account, browse the timeline of this user, and
browse through specific photo albums created for this user.
Finally, Gmaps tasks consisted of exploring different city maps
using the Gmaps application, in satellite view, which consumes
more bandwidth.

Tests were performed in a dedicated lab for subjective
studies, compliant with the QoE subjective studies standards
[16]–[18]. Regarding participants’ demographics, 29 partic-
ipants were female and 23 male, the average age was 32
years old, with 40 participants being less than 30 years old.
Around half of the participants were students and almost 43%
were employees, and 70% of the participants have completed
university or baccalaureate studies.
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(a) Overall quality (MOS). (b) Acceptance rate.

Figure 1. Overall quality and acceptability in YouTube standard (i.e., non-
DASH) and DASH. DASH is capable of handling lower DBW connections
with high QoE, trading image quality by lower download throughput.
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(a) Stalling. (b) Video Image Quality.

Figure 2. QoE for YouTube Mobile, considering playback stallings and video
image quality. Video image quality is perceived as almost excellent for the
lowest DBW condition, even if video resolution is lower.

Regarding QoE feedback, participants were instructed to
rate their overall experience according to a continuous ACR
Mean Opinion Score (MOS) scale [16], ranging from “bad”
(i.e., MOS = 1) to “excellent” (i.e., MOS = 5). MOS ratings
were issued by participants through a custom questionnaire
application running on separate laptops, which pops up im-
mediately after a condition has been tested. Participants also
provided feedback on the acceptability of the application,
stating whether they would continue using the application
under the corresponding conditions or not. For the specific
case of YouTube, two additional questions were asked to
participants: (i) stalling annoyance (did you perceive stalling
as disturbing?); (ii) video image quality (rate the image quality
of the video). The reader shall note that the maximum MOS
ratings declared by the participants are never 5 but somewhere
between 4.2 and 4.6. This is a well known phenomenon in
QoE studies called rating scale saturation, where users hardly
employ the limit values of the scale for their ratings [7].

A. QoE in YouTube Mobile

The Downlink BandWidth (DBW) takes values 1 Mbps, 2
Mbps, and 4 Mbps in YouTube tests. Figure 1 reports the over-
all quality and acceptability results obtained for the YouTube
tests. Recall that in the YouTube scenario, we compare the
standard, non-adaptive version of the YouTube player (videos
are selected to play in HD quality) against the DASH-capable
one. In the DASH case, videos are also requested in HD
quality, but the server adapts the subsequent video quality
resolutions to the bandwidth estimated by the player.

Figure 1(a) compares the overall QoE experienced by the
participants using both player versions. It is quite impressive to
appreciate how the DASH approach results in a nearly optimal
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Figure 3. QoE in Gmaps. Overall quality and acceptability for different
DBW. A DBW of 2 Mbps is high enough to achieve good QoE and almost
full acceptability.

QoE for all the tested conditions (from 1 Mbps to 4 Mbps),
whereas the fixed HD quality approach results in poor QoE
for downlink bandwidth below 4 Mbps. As expected for the
standard player, heavy stalling occurs for the 1 Mbps condition,
taking into account that the average vbr is 1.6 Mbps. Indeed, as
we have shown in [19], the DBW should be in the order of 30%
higher than the average video bitrate to avoid stalling when
non-adaptive streaming is used. This dimensioning rule also
explains the results obtained for the 2 Mbps condition, as some
stalling still occurs. No stalling seems to occur for the DASH
version. The main difference is that DASH changes the video
quality without incurring in playback stalling, whereas the
fixed quality configuration definitely results in video stalling.

Figure 1(b) reports the results in terms of acceptability of
the participants. This is one of the key features that an operator
has to consider, because low acceptance rate may sooner or
later turn into churn. As observed, acceptance rate is as low
as 23% for the standard streaming at 1 Mbps, whereas it’s
close to 99% in the case of DASH.

To complement the picture for YouTube QoE in mobile
devices, Figure 2 depicts the results obtained in terms of (a)
annoyance caused by stalling (stop of the video playback),
and (b) video image quality. In Figure 2(a), a MOS = 5 means
not disturbing at all, whereas a MOS = 1 means unbearable
(very annoying). Stalling has a very strong impact on the user’s
level of annoyance, confirming what has been already seen in
previous studies for desktop and laptop like devices.

The most interesting result is presented in Figure 2(b),
which reports the perceived image quality of the video. Ac-
cording to previous studies [12], quality switches induced by
DASH have an important impact on QoE. However, in the
case of smartphones, where displays are smaller than laptops
or desktop devices, quality switches do not seem to have an
important impact on the perception of the user. While these
results are directly linked to the specific quality-switching
patterns induced by the tested DBW conditions, they represent
a main contribution to assess QoE for YouTube in smartphones
when using DASH. As a summary, using DASH highly reduces
the chances of playback stalling, at no apparent perceived
image quality cost.

B. QoE in Gmaps and Facebook Mobile

Gmaps is tested with a fully logarithmic scale: 1 Mbps,
2 Mbps, 4 Mbps, 8 Mbps, and 16 Mbps. Figure 3 reports
the overall quality and acceptability results obtained for the
Gmaps tests. Figure 3(a) shows that a DBW of 4 Mbps results

3



0.5 1 2 4 8
1

1.5

2

2.5

3

3.5

4

4.5

5

DBW (Mbps)

M
O

S

log fitting

0.5 1 2 4 8
0

10

20

30

40

50

60

70

80

90

100

DBW (Mbps)

A
c
c
e
p
ta

n
c
e
 r

a
te

 (
%

)

accept

do not accept

(a) Overall quality (MOS). (b) Acceptance rate.

Figure 4. QoE in Facebook. Overall quality and acceptability for different
DBW. A DBW of 1 Mbps is high enough to achieve good QoE and almost
full acceptability.

in near optimal QoE (MOS ≈ 4.5), and from this value on,
QoE saturation already occurs. This means that no major
QoE improvements are then obtained for additional bandwidth
provisioning. A DBW of 2 Mbps provides good quality results
and almost full acceptance, but a DBW of 1 Mbps rapidly
brings Gmaps into bad user experience.

Similarly, Facebook is tested with DBW = 0.5 Mbps, 1
Mbps, 2 Mbps, 4 Mbps and 8 Mbps. Figure 4 reports the
results obtained in the Facebook tests for different DBW
configurations, considering both (a) the overall quality and
(b) the acceptance rate. A DBW of 500 kbps is not high
enough to reach full user satisfaction in Facebook mobile for
Android devices, as participants declared a fair quality with
an acceptance rate of about 80%. Still, a DBW of 1 Mbps
results in good overall quality, with almost full acceptance
of the participants. Excellent QoE results are attained for 8
Mbps, which shows that even if a 2 Mbps DBW allocation is
high enough to reach full acceptance (cf. Figure 4), the overall
experience of the user can still marginally improve.

In both cases, the relation between QoE and DBW is
clearly logarithmic when not considering the most restrictive
DBW configuration in both apps (1 Mbps and 0.5 Mbps
respectively). Next we show that such logarithmic mappings
are also observed in the field trial.

IV. FROM THE LAB TO THE FIELD

In this section we overview the details of the conducted
field trial and analyze the obtained results, particularly com-
paring them with the observations and conclusions drawn from
the subjective lab study. The main question we try to answer is
to which extent, subjective lab studies conducted under WiFi
networks are applicable to operational cellular networks.

A. Field Trial Overview

The field trial consisted of 30 participants using their
own smartphones and cellular ISPs to access the same apps
tested in the lab as part of their normal daily Internet activity.
Participants were requested to perform the same kind of tasks
to those performed by the lab study participants, to improve
comparison of results. QoE feedback was provided for each
session through a customized QoE crowd-sourcing app (details
next), for a total span of 2 weeks. In this paper we only focus
on the overall experience declared by participants, but the
QoE feedback provided actually includes the same questions as
those evaluated in the lab study. In addition, all the traffic flows

Table I. METRICS RECORDED FOR EACH DATA FLOW, USING THE

ANDROID-BASED PASSIVE MONITORING TOOL. ALL METRICS ARE

EXTRACTED FROM THE ANDROID DEVELOPERS’ API.

Metric ID Metric Name Units Example

1 device id (IMEI) – 352668049725157

2 flow start time s 1430825689

3 flow direction (up/down) – downlink

4 flow duration s 10,24

5 flow size KB 4041,00

6 avg. flow throughput kbps 3157,03

7 app (Android API package) – com.android.browser

8 signal strength dBm -71

9 operator (MCC.MNC) – 295.4

10 cell id – 16815

11 cell location (lat-lon) deg (o) {40,198-12,347}
12 RAT – LTE

generated by the participants were passively monitored with
an Android-based monitoring application developed for this
field trial (details next). Besides QoE feedback, participants
indicated their location at the moment of performing the
corresponding task (e.g., at home, in the underground - metro,
walking, etc.). Field trial participants were compensated with
vouchers for their participation, which proved to be sufficient
for achieving correct involvement in the study.

Figure 5 depicts the distribution of ratings issued by
participants in terms of (a) number of ratings per app, (b) per
location, and (c-d) MOS values distributions for both apps and
locations. In total, almost 700 ratings were issued by the par-
ticipants during the span of the field trial. As a-priori expected,
the biggest share of ratings were done for YouTube, which is
currently the most popular app in the Internet. The preferred
location was home, which is coherent with the results that we
have obtained in previous similar field trials [21]. Interestingly,
the second most preferred location to access the requested
apps was the underground, evidencing that mobile traffic and
smartphone usage in such mobility scenario is highly frequent,
at least within the users’ community represented by the field
trial participants.

Figure 5(c) and Figure 5(d) report the MOS scores distri-
butions. Surprisingly, the MOS distributions are rather similar,
both when considering the tested apps (cf. Figure 5(c)) and the
selected locations (cf. Figure 5(d)). This suggests that network
performance was rather stable during the span of the study,
and uniform for both fixed mobility profiles (e.g., home) and
highly dynamic mobility profiles (i.e., metro). Indeed, tests
were performed in the city of Vienna, where all ISPs have very
good network coverage, even in the underground, justifying as
such the observed results.

B. End-device Monitoring Tools

To monitor the traffic of the field-trial participants and to
log their QoE feedbacks, we developed two specific Android-
based applications. The traffic monitoring tool consists of a
simple Android-based passive monitoring tool which captures
several metrics for all the traffic flows generated by the device.
We decided to develop our own tool and not to use those
available in the literature (e.g., [22]–[24]), as these either
rely on active measurements only or are too specific for their
original purpose.
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Figure 5. Distribution of QoE feedbacks in the field. The biggest share of ratings were done for YouTube. The preferred location was home, followed by the
underground, evidencing the usability scenarios mostly preferred by mobile users. MOS distributions are rather similar wrt tested apps and selected locations,
suggesting that network performance was rather stable during the span of the study.

Table II. POPULAR APP NAMES, ACCORDING TO THE ANDROID API
NAMING SCHEME.

App Android API-based Name

YouTube
system.android.media

com.google.android.youtube

Web Browsing (Chrome) com.android.chrome

Web Browsing (Firefox) org.mozilla.firefox

Web Browsing (Android) com.android.browser

WhatsApp com.whatsapp

Gmaps com.google.android.apps.maps

Instagram com.instagram.android

Facebook
com.facebook.katana

com.facebook.orca

Dropbox com.dropbox.android

Table I reports the different metrics passively monitored for
each traffic flow by our tool. Flows in this context correspond
to the standard 5-tuple flow definition, and are associated to the
specific app generating them, using the Android developers’
APIs. The first metric is a simple device identifier known
as IMEI (International Mobile Station Equipment Identity),
which is a unique number identifying a 3GPP device. Metrics
with ID from 2 to 6 correspond to traffic flow measurements,
including the flow start time, the flow direction (uplink or
downlink), the flow duration, the size of the flow, and most
importantly, the average flow transfer throughput, which is
simply computed as the ratio between the flow size and the
flow duration. Metric ID 7 indicates the app which gener-
ated the corresponding flow, using as naming scheme the
Android API notation. For example, YouTube video flows
are associated to the app name system.android.media
(com.google.android.youtube is associated to the
rest of the YouTube player content, such as thumbnails
of videos), Google maps flows are associated to the
app name com.google.android.apps.maps, Google
Chrome web browsing flows are associated to name
com.android.chrome and so on. Table II provides a list
of Android API apps’ names for popular mobile apps. Metric
ID 8 provides the strength of the signal at the smartphone when
the corresponding traffic flow starts. Metrics with ID from 9
to 11 correspond to the operator providing the Internet access
and the cell to which the smartphone is attached to at the
time of the flow start, particularly including the geographical
location of the cell (i.e., longitude and latitude). Finally, metric
ID 12 indicate the Radio Access Technology (RAT) used by
the smartphone (e.g., LTE, 3G, 2G, EDGE, etc.) when the flow
starts.

All these metrics are logged locally at the smartphone, and
are periodically sent to a centralized server for post-processing
and analysis.

QoE feedbacks are provided by the participants through a
web-based app, which is manually run by the user immediately
after completing a specific task, such as watching a short
YouTube video, exploring a city map using Gmaps, or using
Facebook to browse photo albums. This app keeps a local
database to store QoE feedbacks even when the device has
lost connectivity. For the sake of the analysis presented in
this paper, a QoE feedback entry consists of the following
4 fields: {timestamp; app; location; MOS}. Given
that the QoE feedback tool and the traffic monitoring tool use
both the same time reference (i.e., from the local smartphone),
a MOS score given by the participant to certain application
would always have a timestamp bigger than the timestamps
indicating the start of the flows associated to the rated app.

In order to correlate the traffic measurements and the MOS
scores provided by the field trial participants, we group flows
into sessions. A session corresponds to a group of flows
generated by the same app which are continuous in time, based
on a pre-defined maximum inter-flows timeout. Evidently, the
inter-flows time for a specific session is partially determined by
the type of application being accessed by the user, as well as by
its usage behavior; for example, the inter-flows time for a web
browsing session is generally larger than the inter-flows time
for a google maps session. To become independent of such
issues, we follow a simple and pragmatic approach to identify
relevant sessions. By relevant we refer to sessions which have
an associated QoE feedback/MOS rating. The procedure is as
follows: given a MOS rating at time tMOS for app appMOS, we
define a session as all the flows associated to app appMOS and
started within the time window [tMOS−Thsession; tMOS]. The
threshold Thsession defines the maximum session duration,
and it is set to 4 minutes, which is the average time requested
to participants to take to perform a specific task.

The final step is to define a proper session-based KPI which
could be used to correlate sessions and MOS scores. Recall that
the results presented for the lab study considered the downlink
bandwidth as the independent network feature being tested in
terms of QoE. Hence, we would define a KPI that tries to
capture this downlink bandwidth for the rated session. The best
approximation one could get for the downlink bandwidth when
using passive throughput measurements is the Maximum Flow
Throughput (MFT) achieved within the session. The through-
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(a) YouTube QoE vs. MFT.
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(b) Gmaps QoE vs. MFT.
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(c) Facebook QoE vs. MFT.

Figure 6. QoE for YouTube, Gmaps and Facebook in the field. Squares and circles correspond to individual sessions reported/rated by participants. Red/black
lines correspond to log fitting curves. Filtering out small flows improves the correlations between flow throughput measurements and QoE, specially by avoiding
protocol impact on the achieved downlink speed.

put of a flow is limited by multiple components, including
the application itself, the server providing the flows, the TCP
congestion and flow control, and the available bandwidth of
the connection. Throughput limitations by the application itself
or by the server are less relevant to us, because they are not
linked to performance of the cellular network. The impact of
the TCP protocol, and specially the slow start phase, can be
limited by filtering out small flows from the analysis (we shall
come back to this issue later on). Therefore, when targeting
the performance of the cellular connection, the MFT achieved
for a specific session would be the closest indication to the
downlink bandwidth.

In the next section, we analyze the results obtained by
correlating the MOS scores and the corresponding session
MFT values for the three tested apps.

C. QoE in the Field

Figure 6 depicts the results obtained from the field trial
measurements, reporting the MOS scores as a function of
the MFT per session for (a) YouTube, (b) Gmaps, and (c)
Facebook. To improve visualization of results, MOS scores
are plotted with a very small random perturbation (basically
to avoid overlapping as much as possible).

Figure 6(a) presents the results obtained in the case of
YouTube. Squares correspond to individual sessions rated by
participants. Red lines correspond to log fitting curves, with the
only purpose of showing such a logarithmic relation between
MOS and MFT, in a purely visual basis. High MFT values
result in good QoE; indeed, MOS > 4 for almost all sessions
with MFT > 5 Mbps, which is highly similar to the results
observed in the lab study (cf. Figure 1), where QoE is optimal
for a DBW > 4 Mbps. In addition, most of the sessions
having very poor QoE (i.e., MOS = 1) have a very low MFT.
However, as expected, the picture becomes very fuzzy in the
most relevant MFT gap, between 1 Mbps and 4 Mbps, having
MOS scores between 2 and 5, i.e., from sessions with poor
QoE to excellent QoE. This is coherent with the fact that the
QoE of YouTube is strictly linked to the stallings observed in
the video playback, and this can happen for both high video
bitrate and low video bitrate videos. In addition, as we have
shown in Figure 1, using fixed video image quality or adaptive
quality completely changes the obtained results, this adding
more noise to the overall mapping. As a consequence, even if

we can estimate good and bad QoE video sessions for very
high and very low MFT values, we need application-layer
measurements (i.e., stallings, video bitrate, etc.) to estimate the
QoE of YouTube, specially for 1 Mbps < MFT < 4 Mbps.
Even if we do not report results in such a direction in this
paper, we have developed a tool to provide such application-
layer measurements for YouTube in mobile devices [25], which
we expect will highly increase the QoE estimations.

Figure 6(b) presents the results obtained in the case of
Gmaps. In the case of Gmaps, sessions are composed of
both big and small flows, linked to the different components
of the app. As we said before, to improve the correlation
to network performance, we filter out small flows from the
computation of the MFT values. In particular, squares in Figure
6(b) correspond to individual sessions rated by participants,
with flows smaller than 500 KB kept aside for the computation
of the corresponding MFT. The threshold of 500 KB comes
directly from the practice, as we noticed that this represents a
good tradeoff between accuracy and coverage of the complete
set of Gmaps flows. As before, red curves show the visual
log fitting of the MOS vs MFT curve, but in this case, we
also add the log fitting curve obtained from the lab study
results (cf. Figure 3(a)). Besides some small number of outliers
which received MOS scores of 3 (i.e., fair quality), results
clearly show that good QoE can be expected for a MFT > 2
Mbps, exactly as suggested by the lab study results in Figure
3(a). In addition, also similarly to the lab indications, QoE
rapidly degrades for MFT ≤ 1 Mbps. Therefore, we can say
that for the case of Gmaps, the mappings between MOS and
MFT observed in the field trial are pretty much aligned to the
MOS vs DBW curves obtained in the lab study, suggesting
that conclusions drawn from such studies have a direct and
accurate applicability in the practice.

Figure 6(c) presents the results obtained in the case of
Facebook. Facebook flows are rather smaller than in the case of
Gmaps, therefore we also consider a similar filtering approach,
but considering a less restrictive threshold. In Figure 6(c),
squares correspond to sessions with flows smaller than 100 KB
filtered out of the computation of the MFT values, whereas
circles consider a threshold of 500 KB. As in the case of
Gmaps, we include both the visual log fitting curves and
the log curve obtained from the lab study results. Mappings
follow the lab study results when considering flows > 500
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Figure 7. MOS vs signal strength in YouTube. The signal strength metric
corresponds to the average single strength when considering all the flows of
a single session. There is no apparent correlation between the MOS declared
by participants and the measured average signal strength.

KB, resulting in good QoE for MFT ≥ 1 Mbps. A MFT ≤
0.5 Mbps results in poor QoE (i.e., MOS = 1 or 2), similar
to the observations in the lab, cf. 4. Thus, similar to what
we observed in the Gmaps app, mappings between MOS and
MFT in the field trial are aligned to the MOS vs DBW curves
obtained in the lab study.

As a summary, the MFT observed in a session seems to be
a good QoE indicator in the field, specially when considering
apps generating big traffic flows. Apps such as Gmaps and
Facebook can be reliably monitored in the field using passive
flow measurements as the ones conducted by our tool, but
considering only big flow instances (flow size > 500 KB).
The case of YouTube is a challenging one: high and low
MFT values relate well to good and bad QoE, but mappings
are very poor for more commonly observed throughputs.
Thus, it’s necessary to additionally perform measurements at
the application layer (e.g., stallings, page-load-times, etc.) to
capture QoE indications.

V. DISCUSSION AND PERSPECTIVES

In this section we provide some additional discussion on
the obtained results, and then move on to address several
implications, limitations and topics related to the passive
monitoring of QoE in end-user devices.

Firstly, considering both the lab and the field results, we
can claim that conclusions drawn from both approaches are
highly similar and coherent between them, suggesting that
subjective lab studies results are applicable to operational
cellular networks. In our particular scenario, the usage of WiFi
technology in the lab study setup did not have an appreciable
impact on the quality of the results when considering real
cellular networks.

More in general, obtained results suggest that a downlink
bandwidth of 4 Mbps is high enough to reach near optimal re-
sults in terms of overall quality and acceptability for YouTube
when accessed in smartphones. This threshold drops to 2 Mbps
and 1 Mbps for Gmaps and Facebook apps respectively. As
a consequence, cellular network operators should target such
downlink bandwidth thresholds as their short term goal for
dimensioning their access networks. Given these relatively low
requirements, resources could be re-allocated or scheduled to

manage the network more easily and with a more efficient cost-
benefit trade-off, avoiding over-provisioning while keeping
high QoE. The implications for the end-user are straightfor-
ward: you do not need a super high speed cellular contract
with your operator if your target is on the studied applications.
So in particular, an expensive LTE contract is not necessary to
have a near optimal experience today.

Our results show that dynamic applications such as
YouTube DASH are much better suited to smartphone sce-
narios, providing the same level of experience as the non-
adaptive version of the YouTube application in terms of image
quality, but with much lower QoS-based requirements in terms
of downlink bandwidth. This is a major finding, as DASH
has been shown to degrade the video image quality and the
associated user experience when considering standard, laptop
or PC devices. The main difference with smartphones is their
inherent small size displays, which to some extent filter out
the impact of quality switches. A direct implication of this
finding is that cellular network operators willing to monitor
the QoE of its YouTube customers must know which type of
technology is used by the YouTube app in the smartphone to
understand its QoE. Even more, as also reflected by the results
obtained in the field, the only reliable way to monitor QoE in
the case of YouTube is to measure application layer features
such as stallings and quality levels. Our work in this direction
has recently provided very promising results [25].

A particular question that arises in this study is whether
other KPIs related to the end-device measurements could also
be used to estimate the QoE of a session. The signal strength
is a-priori a relevant metric related to the health of the con-
nection, thus it could in principle a good KPI to our purpose.
However, we could not find any relevant correlation between
the strength of the signal and the MOS scores provided by
the participants. As an example, Figure 7 reports the results
obtained for the case of YouTube. The signal strength metric
corresponds to the average single strength among all the flows
of a single session. There is no apparent correlation between
MOS scores and the measured average signal strength.

The last part of this section is devoted to present and
discuss different implications and topics related to the usage of
passive monitoring and QoE-feedback tools at the end-device
as the ones we have used in this study.

A. QoE Crowdsourcing Approach

In the conducted field trial, participants rated the quality of
their sessions through our tools as part of their participation to
the study. However, a quite novel and interesting perspective
for QoE-based network performance analysis at the large scale
is to employ similar QoE-feedback tools to obtain the feedback
of those customers who are willing to do so. Services such
as Skype are already taking advantage of its large population
of users for doing such an outsourcing of its QoE-based
performance monitoring, resulting in a very rich and powerful
input to enhance its service and improve the engagement
of the users. In a nutshell, every time a user completes
a Skype call, the application automatically presents a short
questionnaire asking for the experienced quality. We envision
a similar approach for the benefit of cellular ISP, where its
customers could potentially receive an automatic pop-up like
questionnaire after completion of randomly selected sessions.
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Figure 8. End-device location monitoring and privacy issues. End-user
activity and private location can be guessed by simply measuring the location
of the cell where smartphone are attached to. In this example scenario,
participants’ home is located at region A, working office is located at region
B, and high activity occurs at region C, linked to daily train traveling.

B. Incentives

Previous discussion brings to the light a highly relevant
topic linked to the large scale usage of end-device monitoring
system: the incentives a customer receives to install such tools
on his phone. End-device measurement tools only become
relevant to an operator when these are used at the large-scale,
so as to provide meaningful and representative information.
Free tools available at the Google Play store such as Onavo1

and RadioOpt2 are smartly designed such that the customer
is attracted to install and maintain the app running on its
phone, based on side applications provided by the tools, such
as widgets measuring the data consumption, or proxies offering
data compression to reduce the usage of the contracted data
volume. Google is for sure the leader in terms of incentives,
as all of its apps are highly valuable to the end user (gmail,
gmaps, gdocs, etc.), and as a side effect, the company has a
full visibility of its worldwide overlay.

C. Privacy Issues

Conducting measurements at end devices can have a detri-
mental and undesirable effect on the privacy of the monitored
customers, as metrics available through the Android API are
good enough to sniff on the customers habits. Unfortunately,
most of the apps we install today in our smartphones have
access to lots of information related to our private life. As an
example, Figure 8 shows a simple map in which all the session
QoE ratings provided by one of the participants of the field trial
are geo-located using metric ID 11 (cf. Table I). Three regions
concentrate the majority of the ratings of this participant, and
these correspond to (A) his home, (B) his working office and
(C) his daily train traveling activity. So even if the participant
does not provide for example his home address, this can be
easily retrieved from such simple measurements.

D. Network Neutrality

The last topic we address is the case of network neutrality
and the identification of traffic differentiation through end-
device measurements. End-device throughput measurements
can be used to identify potential traffic differentiation policies
done by an ISP, based on types of traffic. This is highly

1http://www.onavo.com/
2https://www.radioopt.com/
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Figure 9. Network neutrality and identification of traffic differentiation.
End-device throughput measurements can be used to identify potential traffic
differentiation policies done by an ISP, based on types of traffic.

relevant, as many cellular operators are today tempted to
mistreat some classes of traffic to discourage its usage or for
other internal interests such as traffic engineering. As an exam-
ple of identification of such a potential traffic differentiation,
Figure 9 depicts the distribution of the downlink average flow
throughput (metric ID 6, cf. Table I) for two participants of
the field trial having a contract with two different ISPs. ISP 1
seems to treat differently the traffic corresponding to YouTube
videos, as the flow throughput in the download is abruptly
shaped down to 4 Mbps (see the slope in the CDF) whereas no
shaping is observed for other traffic apps such as Gmaps. While
we are not sure about the root causes of such a differentiation,
a similar approach could be applied to understand and to assess
the application of such policies by cellular operators.

VI. CONCLUDING REMARKS

Smartphones are becoming the Internet-access devices by
default, and we claim that network operators must understand
how to manage and dimension their networks in order to
correctly provision popular services accessed in smartphones,
avoiding wasting additional unnecessary resources while keep-
ing end users happy, and most importantly, reducing the
chances of churning due to quality dissatisfaction.

We have presented an overview on the QoE of different
services and applications with different network-level QoS
requirements for the specific case of smartphone devices,
including both lab study results as well as measurements in the
field. Our results are highly relevant to future 5G design and
LTE evolution in better understanding the mapping between
network performance and customer experience. In addition,
they provide hints and many insights about how and to which
extent, end device measurements and QoE-based monitoring at
the end devices can be applied in the practice, complementing
the lab study perspective.

We are aware that our results only tackle one side of the
problem: the experience of the customers, from a very simple
perspective: the downlink bandwidth. We agree with other
researchers in that a more holistic perspective incorporating
QoE, energy-consumption, data (re)transmission, and radio
resource impact (among others) should be considered. This
paper provides some initial components of such a holistic
analysis.
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