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I. INTRODUCTION

The increasing acceptance of the Internet of Things (IoT)
has made connected devices an everyday occurrence and cre-
ated many application areas. The broad spectrum of verticals
present in modern IoT deployments lead to an extremely
heterogeneous environment. A temperature sensor has vastly
different requirements in comparison to a connected car.
This leads to significantly different traffic patterns within the
network [1]–[3].

This, in combination with the need for global connectivity,
has led to the emergence of Machine-to-Machine (M2M)
focused platforms and the expected increase of the number of
devices will lead to new challenges regarding the scalability,
resiliency, and overall performance of all involved systems.
To this end, we need to further our understanding of the
behavior of IoT devices in cellular networks. Connecting these
devices using networks that have been designed for human use
poses several challenges. Operators have to deal with signal-
ing traffic of a vast number of globally distributed devices
whose behavior differs significantly from human generated
traffic. Therefore, a good understanding of such IoT devices
is essential. This includes the knowledge of traffic patterns,
especially when it comes to their signaling behavior. As many
devices only transmit negligible amounts of payload data, the
overhead induced through mobile signaling is significant and
induces significant cost for operators.

To this end, we attempt to identify sequences of signaling
dialogs, to strengthen our understanding of the signaling
behavior of IoT devices by examining a dataset containing
over 270.000 distinct IoT devices whose signaling traffic has
been observed over a 31-day period in a 2G network [4]. We
propose a set of rules that allows the assembly of signaling
dialogs into so-called sessions in order to identify common
patterns and lay the foundation for future research in the areas
of traffic modeling and anomaly detection.

II. BACKGROUND

In this section the architecture of a 2G/3G network is
provided and relevant core components are briefly introduced.
Furthermore, we cover the signaling procedures performed by
devices.

A. Network Architecture and Mobile Roaming

Unlike classic Mobile Network Operators (MNOs), Mobile
Virtual Network Operators (MVNOs) operate their own core

network, but no Radio Access Network (RAN). Therefore, the
MVNO we get the data from, maintains roaming agreements
with more than 300 MNOs worldwide to cover the whole
globe. The architecture of the system evaluated in this work is
shown in Figure 1. Starting on the left-hand side, exemplary
IoT devices, equipped with a SIM card from the MVNO
connect to the RAN of a local operator. The most important
components are the Mobile Switching Center (MSC), Visitor
Location Register (VLR), and Serving GPRS Support Node
(SGSN). The VLR is a database located at the MSC and
contains every device connected to the visited network and
especially to the current MSC. While MSC and VLR are
responsible for circuit switched connectivity, such as telephony
and Short Message Services (SMS), the SGSN provides a
similar functionality for data connectivity.

Via dedicated carrier networks, the visited network can then
interact with the home network, operated by the MVNO.
Here the main components are the Home Location Register
(HLR), Authentication Center (AUC), and Gateway GPRS
Support Node (GGSN). Similar to the visited network, the
home network core components are responsible to manage
authentication (HLR, AUC) as well as data connectivity man-
agement (GGSN) [5].

As indicated by the blue and red markers in Figure 1,
we capture signaling interactions of both the MAP and the
GTP protocol. Specifically, we capture request-response pairs,
called dialogs, for authentication and mobility as well as the
creation, update and deletion of data tunnels using GTP.
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Figure 1: Network architecture overview.

B. Signaling Procedures
In order to successfully attach to a network and be able to

send data, devices have to go through two separate procedures.
The first procedure, called IMSI attach, is responsible for
authenticating a device with the VLR and establishing connec-
tivity for circuit switched services (telephony, SMS) [6]. The



first dialog of this procedure is called Send Authentication In-
formation (SAI). A request is sent from the VLR to the HLR in
order to initiate device authentication. At the HLR the request
is checked. If the device is allowed to register, a corresponding
response containing one or several authentication vectors is
sent. After this an Update Location (UL) dialog follows. In
this dialog the location of the device is sent form the VLR to
the HLR. Note that location in this context does not describe
a devices geographical location, but contains information on
which VLR a device is currently connected to. If a device
is not newly attaching to the system, but changed the VLR,
the MVNO can send a Cancel Location (CL) dialog to the
old VLR and deregister the device there. After this procedure
has been successful, the device is registered for telephony and
SMS.

This procedure is done during initial registration, when
a device moves to another location (another VLR), or may
even be triggered periodically. Whether a device exhibits this
periodic behavior depends on the Base Transceiver Station
(BTS), a part of the RAN of the visited network.

In order to be able to send data, a second procedure, called
GPRS attach, has to be performed. The process is very similar
to the IMSI attach. The communication here is between the
SGSN and the HLR, instead of the VLR, and the UL dialog is
replaced with the Update GPRS Location (UL_GPRS) dialog.
After the procedure is successful the device is allowed to open
a data connection to access the Data Network (DN).

The explained dialog types all belong to the Mobile Ap-
plication Part (MAP) protocol. In order to open a data tun-
nel the following GPRS Tunneling Protocol (GTP) dialog
types are needed. The dialog exchanged between the SGSN
and GGSN are Create Packet Data Protocol (PDP) Context
(PDP_CREATE), Update PDP Context (PDP_UPDATE), and
Delete PDP Context (PDP_DELETE). The first is to open
a data tunnel, to allow the device the sending of data, the
second is to update an existing tunnel, e.g. after changing the
location, and the last one is to close the tunnel, e.g. after data
transmission is completed.

In the following, we attempt to automatically match multiple
dialogs (e.g. SAI, UL, PDP_CREATE) that occur in close
temporal proximity, as explained in Section IV. We assemble
such dialogs into sessions with the goal to capture the intent of
devices and identify sessions that occur with higher frequency
and identify devices that behave abnormally.

III. DATASET DESCRIPTION

The dataset used to develop the first version of our session
detection algorithm is a 31-day trace from January 2020. It
contains more than 270 000 devices which produce more than
600 million dialogs. For this work, we use 38 of 61 available
data fields present for each dialog. Note that we are using the
same dataset that has already been described in the past [7].
The most important fields for this work are shown in Table I.

The start and end columns give the unix timestamp of
the first request and the last response of the corresponding
dialog, respectively. The fields calling and called determine

Table I: Most important dataset fields in the trace.

Field Content MAP GTP

start timestamp of first request ✔ ✔
end timestamp of last response ✔ ✔
countryName country name ✔ ✔
operatorName operator name ✔ ✔
calling source VLR/SGSN of dialog ✔ ✘
called destination VLR/SGSN of dialog ✔ ✘
ci cell identifier ✘ ✔
type dialog type ✔ ✔
typeReason explanation of dialog type ✔ ✔
superType definition of whether the dialog is ✔ ✔

successful, rejected, error or unknown
contextIdentifier identifier to match PDP contexts ✘ ✔
simId SIM card identifier ✔ ✔
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Figure 2: Schematic representation of exemplary sessions.

the specific VLR, SGSN, or HLR the dialog is sent to or
received from and the ci is the cell identifier which contains
the identifier from which mobile cell (i.e. base station) the
dialog is received. In the type field, the dialog type is given, the
typeReason gives canonical information about why this dialog
type has been assigned, and the superType defines whether
a dialog is successful, rejected, or an error. Rejected dialogs
have actively been denied by the core network, e.g. devices
that are not allowed to authenticate, errors encompass actual
technical errors or aborted or incomplete dialogs. Furthermore,
the contextIdentifier matches PDP dialogs to the same context,
hence allows the mapping of PDP_CREATE to its correspond-
ing PDP_DELETE. The last field is the simId, which is a
unique identifier for the device.

Throughout the dataset, different sequences of dialogs can
be seen that losely correspond to the signaling procedures
introduced earlier. However, not all patterns that can be
observed behave exactly like the IMSI attach and GPRS attach
procedures, indicating device, VLR or operator specific behav-
ior that deviates from the standardized signaling procedures.
Because of that we developed the session detection algorithm
to identify sequences of dialogs, called sessions, with the goal
of analyzing and comparing them to the procedures as well
as identify sessions that occur regularly as well as identify
outliers or even malicious devices.

IV. SESSION DETECTION ALGORITHM

In order to identify sessions in our dataset, multiple process-
ing steps are performed. At first the dataset is filtered and only
successful dialogs are kept in the trace. This is optional and
depends on what the goal is. For now, we are just interested
in seeing how devices behave in comparison to the expected
procedures. However, taking erroneous dialogs into account is
planned for future work. In the next step, we examine the inter
arrival times between dialogs of each device, respectively. It



Table II: Extract of the session library.

No. of Pct. of Cum. Pct. of
Index Session Occurences Occurences Occurences

1 PDP_CREATE PDP_DELETE 39 538 615 0.23 0.23
2 SAI 38 759 766 0.22 0.45
3 SAI PDP_CREATE 13 155 091 0.075 0.52

PDP_DELETE
4 SAI SAI 10 392 775 0.059 0.58
5 UL 7 913 284 0.045 0.63
6 PDP_CREATE PDP_UPDATE 7 742 440 0.044 0.67

PDP_DELETE
7 SAI SAI PDP_CREATE 7 457 510 0.043 0.72

PDP_DELETE
8 PDP_CREATE SAI 5 881 758 0.034 0.75

PDP_DELETE
9 SAI UL 4 207 436 0.024 0.77
10 UL_GPRS 4 097 077 0.023 0.80

can be seen that a lot of dialogs exhibit inter arrival times
in the range of less than one up to a few seconds of time
between each other, whereas the others show inter arrival
times of many minutes or even hours. Therefore, it is assumed
that some dialogs belong together in the sense that these are
triggered by the same signaling intention, e.g. updating the
HLR after a device has moved to a new operator. To examine
this assumption we designed a session detection algorithm that
matches dialogs into sessions based on the following rules.
Exemplary sessions are depicted in Figure 2, as indicated by
the gray boxes.

Sessions are assembled by checking each of the following
rules until a currently open session is finished:

• MAP dialogs are attached to their successor if the inter
arrival time AS is smaller than 30 seconds

• The PDP_CREATE, PDP_UPDATE and PDP_DELETE
dialogs of a respective PDP tunnel always belong to the
same session

• A PDP_DELETE dialog always terminates the current
session

Each dialog marked as a session start is then assigned a
session number. As a next step, all dialogs which are not
marked as a session start, are assigned to the session of the
previous dialog. The result is a set of signaling sessions for
each device that can in the following be analyzed to identify
commonly occurring sessions.

V. PRELIMINARY RESULTS

In order to obtain preliminary results, the session detection
algorithm is applied to the full dataset. We then count the
occurence of each type of session, meaning sessions containing
the same sequence of dialogs, independent of their exact inter
arrival time. The resulting rates are summarized in a session
library that can be seen in Table II. The table shows the top
10 most occurring sessions and includes the index of the
corresponding session in the library, the session itself, the
number of occurrences, and the percentage of session specific
as well as cumulative occurrences.

In this evaluation, a total of 174 712 239 sessions have been
identified, which are grouped into 721 565 unique session

types. Out of these 721 565 unique sessions, there are 579 120
sessions which only occur once. This means that 80% of
identified sessions only have a single occurrence in the dataset.
On the other hand, the 10 most occurring sessions are listed
in Table II. These top 10 sessions contribute 80 % of the
total number of occurring sessions, so the Pareto principle is
observed and needs to be further investigated. The most com-
mon session, with a percentage of 23 %, is “PDP_CREATE
PDP_DELETE”, representing the establishing and closing
of a data tunnel. The second most observed session is a
single “SAI” with 22 %. This is particularly interesting, as
a single, standalone SAI has no immediate use for both the
visited network as well as the corresponding device. It merely
prepares the system for future signaling dialogs, like UL or
UL_GPRS.

VI. DISCUSSION AND OUTLOOK

In order to extend our understanding of the behavior of
the signaling traffic induced by IoT devices, we developed an
algorithm that allows the identification of signaling sessions
that encompass multiple dialogs. Due to respecting both their
temporal proximity as well as their meaning in the context of
mobile signaling, these sessions are assumed to represent a full
signaling intention, meaning a full interaction with a specific
goal. In the preliminary results presented here, we have shown
that the resulting sessions contain only few dialogs and that
a small fraction of unique sessions contributes the majority
of total session volume. Similarly, more than 80% of sessions
only occur once in the whole dataset, even when not taking
into account erroneous dialogs.

With this session detection algorithm in combination with
a deeper understanding of the behavior of specific devices,
e.g. a source traffic model, datasets can be analyzed in
more detail and regular devices can be distinguished from
misconfigured or malicious devices. Furthermore, the insights
gained through session detection can be used to develop model
driven simulation tools. This will in the future help to conduct
research without being reliant on large scale datasets through
the generation of realistic signaling load based on established
session libraries. In this context the session detection library
is used to determine which traffic should be generated.

However, the session detection in its current form is based
on assumptions that should be validated by means of in-
vestigation of additional datasets. Additionally, the threshold
of 30 seconds, that is used by the algorithm, worked for
our example but may need to be configured differently or
dynamically for other environments or datasets. Finally, a
more detailed distinction between sessions is required and
correlation between sessions need to be looked at. We have
seen that roughly 22% of sessions consist of a single SAI
dialog that has no immediate use for the system. In order to
understand why this is happening, a more detailed analysis
is required. These research questions are critical in order
to understand the behavior of mobile IoT devices and will
provide interesting challenges in the future.
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