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ABSTRACT
We introduce a concept for client-initiated selection of
service location and service quality for improving the
Quality of Experience (QoE) of general cloud services.
It is loosely based on the HTTP adaptive streaming ap-
proach (e.g., MPEG DASH). A manifest file compiled
by the cloud service provider specifies the available ser-
vice locations and qualities, from which the user selects
the optimal service instance based on contextual in-
formation obtained from client measurements and user
preferences. The proposed concept is defined and is im-
plemented in two client-based decision algorithms for
improving the QoE of a simple picture gallery cloud ser-
vice. These decision algorithms are evaluated and their
impact on the service delivery is discussed. The evalua-
tion shows that it is possible to improve the service lo-
cation and quality selection by light-weight client-based
algorithms.

1. INTRODUCTION
Cloud services are growing at a fast pace and are ex-

pected to grow to a $176 billion market in 2015 [1, 2].
This is due to the fact that the cloud offers the promise
of almost unlimited and scalable resources. Thus, more
and more application providers adopt their applications
and move their solution to the cloud. Typically, cloud
services are scaled in two dimensions, which influence
the service delivery. First, there is the possibility to
horizontally enlarge the service with multiple instances
running simultaneously in different locations (virtual
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machines, servers, or data centers). Second, the cloud
service can offer different service qualities. This ver-
tical scaling of the service quality can be achieved by
providing different functionality, delivering content in
diverse qualities, or offering additional or reduced sets
of features. For example, a video streaming service can
be scaled horizontally by employing a content delivery
network (service location) and vertically by providing
different video bit rates and resolutions (service qual-
ity).

The decision on which location and which service
quality shall be provided to the end user is usually taken
on the server side based on simple heuristics, which are
expected to reach a high Quality of Experience (QoE)
for the end user. For example, a proxy service in the
cloud or a DNS service can resolve the request to a
particular cloud instance (service location) that is best
suited according to the current workload in the data
center. Another example is a web server, which delivers
the mobile version of a website (service quality) based
on the HTTP User-Agent header. However, taking this
decision on the server side is not always the ideal so-
lution as different users have different requirements re-
garding the location or service quality, which the server
cannot be sure about. Mobile Internet users, for exam-
ple, are mostly limited to a small screen size and are
likely to have an unstable or low Internet connection.
Thus, for a given service, a mobile user might prefer lo-
cal servers to receive application feedback as quickly as
possible to have a high QoE, and accept reductions in
terms of content quality or functionality. PC users, on
the other hand, have access to large screens with a high
resolution. To have the best experience with the service,
a PC user with a huge bandwidth might require the
highest possible service quality instead of a close server
location. As the servers usually have no knowledge of
the user’s context, e.g., device, connection, preferences,
or expectations, adverse decisions might be taken.

A lot of this contextual information is present at the
user’s device, which is not and should not be communi-
cated over the Internet, as long as the connection is not
encrypted. Nevertheless, this information could be con-
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sidered if the user (or the user’s device) decides which
service location and quality is to be accessed. Thus,
in this work, we propose a concept for a client-based
selection for the improvement of QoE, which is loosely
based on the HTTP adaptive streaming approach (e.g.,
MPEG DASH)1. When the user starts a specific cloud
service, the client accesses a manifest file, which is com-
piled and provided by the cloud service provider and
lists information about the available service locations
and quality. Based on contextual information obtained
from client-based measurements and user preferences,
the optimal request can be sent by the client.

We show an implementation of two client-based selec-
tion algorithms for a simple picture gallery cloud service
and discuss the impact on the service delivery. Thus,
our work relates to cloud service providers, which tar-
get improved service delivery while achieving a high end
user satisfaction. Therefore, the remainder of the pa-
per is structured as follows. Background information
and related work are presented in Section 2. In Sec-
tion 3, the proposed concept is described and defined.
Section 4 presents the experimental setup of the pic-
ture gallery cloud service, and Section 5 introduces the
implemented client-based selection algorithms. In Sec-
tion 6, the results of the evaluation are discussed, and
conclusions are drawn in Section 7.

2. BACKGROUND INFORMATION
AND RELATED WORK

We provide an overview of related work according to
different directions, from today’s basic mechanisms for
distributed services to relevant concepts and ideas for
specific applications on server and client side.

A fundamental way to improve the quality in today’s
cloud services is the distribution of content on different
servers in different regions organized through content
delivery networks (CDN). This principle is also used
in the horizontal scaling for distributed cloud services
where stateless or stateful cloud service instances are
distributed across multiple servers in physically sepa-
rated server farms. A critical task for the service quality
here is the intelligent assignment of clients to servers:
A common approach is the assignment according to the
geographical distance by the server. Other approaches
are DNS-based approaches on the server side [3,4]. In [3],
the working principle of the Akamai CDN is explained,
while [4] unveils Akamai’s content delivery network and
delivery technologies.

Related to our approach are works that deal with a
client-side content server selection in CDNs [5–7]. [5]
deals with the server selection process in the YouTube
CDN, which is, among other factors, mainly based on
round trip time between users and data centers. In [6] a
client-side process is proposed that shares load-balancing
functionality with CDNs by choosing from resolved CDN

1In fact, our concept is a generalization of HTTP adap-
tive streaming to distributed and general cloud services.

servers based on last mile network performance.
There are several approaches that use machine learn-

ing for content selection for cloud services [8,9]. Learn-
ing provides a way to classify the existing parameters
and to detect the most important decision parameters.

Recently, application-specific approaches are getting
more attention. The MPEG DASH Industry Forum is
working on implementation of adaptive video streaming
with H.264/AVC and H.265/HEVC [10]. The content is
divided into chunks and can be distributed to different
servers so that the client can decide which quality it re-
quests based on this current network conditoins. Com-
parisons of different streaming solutions can be found
in [11,12] and the impact on QoE is discussed in [13,14].
The Responsive Images Community Group has stan-
dardized in HTML5 an approach to provide images in
multiple resolutions for a web service [15, 16]. The op-
timal image can be selected according to the client’s
viewport size. Another approach is to rely on third
party solutions, which deliver images from the cloud,
like ReSRC.it [17]. These services detect the screen
size of the client and automatically resize the requested
image to the optimal resolution before it is delivered for
a cloud service.

3. CLIENT-INITIATED SELECTION OF
SERVICE LOCATION AND QUALITY

The goal of the cloud service provider is to deliver
the service to the user. From the perspective of the
provider, the objective here is always to maximize the
satisfaction of the user with the service while minimiz-
ing resource utilization on delivery. In order to meet
both objectives, we define our concept with the premise
that the client should access the best service instance
out of a given number of service locations and qualities.
Our conceptual idea is based on the observation
that significant information is available at the
client-side, which the server is unaware of, and
thus, will result in inferior decisions. This includes
information, such as user preferences, hardware capa-
bilities, or the current Internet connection to the cloud
service. The concept envisages to use this information
for an optimal decision by the client on which service
instance should be requested. From a QoE perspective,
the information should be chosen so that the QoE is,
in the end, positively influenced. Matching information
for specific services and applications may need to be
found in the literature on QoE models, e.g. [18,19].

3.1 Terminology
To begin with, the used terms will be defined. A cloud

service consists of several service locations, which can
be virtual machines, servers, or data centers, and are
typically distributed in one or more clouds or networks
(edge cloud). Each service location can be uniquely
identified by the corresponding address. Moreover, a
cloud service offers different service qualities, for exam-



ple, different functionality, content, or features. We de-
fine a service instance as a single combination of service
location and quality. A decision algorithm is a client-
side software that selects a service instance to send the
service request to. Moreover, we define a manifest as a
list of available service instances, which is compiled and
provided by the cloud service provider, and from which
the decision algorithm can select. Finally, we define
contextual information as all information related to the
user’s service experience that can be measured by a soft-
ware on the client-side. This includes user preferences
and expectations, device capabilities, QoS parameters
of the network connection, and application-level QoE
parameters. Contextual information is represented as
one or more metrics, which will be exposed to and taken
into account by the decision algorithm(s).

3.2 The Process of Service Instance
Selection

In the following, the process of service instance se-
lection is described. The concept is visualized in Fig-
ure 1. Once the user accesses the cloud service, the
client first accesses the manifest of the cloud service,
which provides a list of available service qualities per
server location. Note that the cloud provider may in-
fluence the decision process by providing only a subset
of service instances in the manifest depending on its
own criteria, e.g., workload, network traffic, or costs.
Second, the client gathers contextual information and
passes the corresponding metrics to the decision algo-
rithm, or the decision algorithm conducts the measure-
ment itself. Based on these metrics, the decision algo-
rithm selects an optimal service instance and requests
the corresponding service quality from the correspond-
ing service location. Depending on the nature of the
cloud service, the service instance selection might be
repeated and different decisions might be taken over
time. Thus, at any time the decision is made specifi-
cally according to the user’s needs.

service
quality

time

measured
user/QoS/QoE metric

requested
service instance
(service location
and quality)

manifest

service
location

client-based selection

measurement

client

available service locations

available
service
qualities

Figure 1: Visualization of the concept with multiple
service locations and qualities and client-based selection
of service instance according to different metrics.

4. EXPERIMENTAL SETUP
This section illustrates the experimental setup that

was used during the study on the concept, to quantify
the characteristic effects and benefits.

On the server side, we use Node.js with the express
module as web server for the implementation of a simple
picture gallery. Node.js is a JavaScript runtime which is
built on Chrome’s V8 JavaScript engine and is used to
develop web applications. The picture gallery takes ad-
vantage of the cloud and distributes the picture content
within multiple server instances in different qualities.

The hardware setup consists of three virtual servers at
different locations and one local client. One of the three
servers is running the web server which provides access
to the picture gallery plus its content. The remaining
two servers do nothing but provide the distributed con-
tent of the picture gallery. Moreover, the client is con-
nected to the Internet via an OpenWrt router, which is
used for emulating different network conditions.

As content for the testbed, we populated our picture
gallery with 10 different high-resolution images. The
original images were scaled down multiple times in or-
der to create four different quality grades namely small,
medium, large, and extra large. All of these scaled im-
ages have a JPEG quality factor of 100%. An overview
of the different quality grades can be found in Table 1.

Table 1: Resolution and File Size of Images
Image Size Small Medium Large X-Large
Max. Width [px] 320 640 1024 2048
Avg. Size [MB] 0.06 0.17 0.41 1.52

5. SELECTION ALGORITHMS
In this section, we present different content and server

selection algorithms, which can be executed on the client-
side to improve the performance of the picture gallery
service. First, we show an algorithm, which selects the
content server with the lowest latency according to mea-
surements conducted by the client. Then, we introduce
an algorithm, which improves the Quality of Experience
of the end user by selecting the image size, such that an
acceptable picture loading time can be achieved under
the current network conditions. Please note, that both
algorithms can eventually be combined to improve the
service by selecting the appropriate content and servers.

5.1 Algorithm 1: Selection of Content
Server by Latency

The purpose of this algorithm is to select the opti-
mal server. This can be useful, e.g., in a mobile net-
working scenario where the user prefers loading time
over content quality. Therefore, it measures the latency
time between the client and each server in the manifest
file. Due to the lack of a ping function in JavaScript,
it was necessary to develop a lightweight alternative.
Therefore, an image file (test1.bmp) with a minimal



file size of 58 B and resolution of 1x1 pixel was placed
on each content server. The algorithm downloads this
image from each of the content servers and compares
the download times. This process is repeated every 30 s
to ensure the selection of the best content server also
for changing conditions. This method of latency mea-
surement is not as accurate as most other latency mea-
surement functions, e.g., the built-in ping function of
Windows or Linux. However, it is possible to roughly
compare multiple servers to each other and to determine
the best server among them, because the time delay that
is caused by JavaScript and the short download should
be similar for all measurements. The pseudo code can
be seen in Algorithm 1.

while Latency Algorithm Active do
forall the Content Servers do

Download test1.bmp()
Store Download Time()

end
Compare Download Times()
Set New Best Content Server()
Sleep(30 s)

end
Algorithm 1: Select Server by Latency

5.2 Algorithm 2: Selection of Content by
QoE

Quality of Experience (QoE) of web-based services,
such as picture galleries, is mainly influenced by waiting
times [19]. Thus, this algorithm targets a high QoE of
the end user by trading off content size and download
times. The size of the requested image is maximized
subject to the condition that it can be downloaded in
an acceptable time. Therefore, the current through-
put is estimated at the client and the maximum image
size is computed taking the maximum picture loading
time into account. According to [19], a good QoE (MOS
> 3.5) can be achieved for picture loading times smaller
than 1.3 s. Taking the average file sizes for each image
size into account, we can calculate the required through-
put to download a small, medium, large, or x-large im-
age in less time. The pseudo code of the QoE-aware
algorithm is presented in Algorithm 2.

In order to estimate the throughput of the client, two
approaches will be utilized and compared. The first ap-
proach actively downloads a predefined image file with
an exact file size of 1 MB from the current content server
(on idle). After the download has finished, it calculates
the average throughput by dividing the file size of the
image by the measured download time. This measure-
ment procedure is repeated every 30 s, if the user is
not currently requesting another image. Note that this
algorithm will increase the (mobile) traffic demand of
the client. The second approach measures the available
bandwidth passively whenever the user requests an im-
age (on the fly) by reading the Content-Length field of
the HTTP header to gather the size of the image.

while QoE-Aware Algorithm Active do
Get Throughput()
New Image Size = ”x-large”
if Throughput ≤ 9.84Mbps then

New Image Size = ”large”
end
if Throughput ≤ 2.64Mbps then

New Image Size = ”medium”
end
if Throughput ≤ 1.12Mbps then

New Image Size = ”small”
end

end
Algorithm 2: Select Image Size by Throughput

6. EXPERIMENTAL RESULTS
In this section, we carry out the evaluation of the

concept. We first discuss the resulting complexity of
the algorithms for the system. Then, we go into de-
tail about the functioning of the individual algorithms
and consider the accuracy of the selection algorithms
and the achieved gain with respect to the goal of the
algorithm.

6.1 Complexity of the Algorithms and
Signaling Overhead

In this section, we briefly present our findings about
the complexity of the algorithms. Since all algorithms
are extremely simple and lightweight, they do neither
influence the page load time nor the loading time of the
content in a notable way. However, this only refers to
the time complexity of the algorithms. The decision
of the algorithms, e.g., the selected image size or the
selected server, may indeed influence the loading time
of the content, which is discussed in Section 6.

For the analysis of the signaling overhead, we neglect
the initial download of the manifest file as these files
are typically very small and are only downloaded once
at the beginning. Moreover, we can neglect the algo-
rithm, which measures the throughput on the fly. This
algorithm does not create any additional traffic. How-
ever, the two remaining algorithms, i.e., latency mea-
surement and throughput measurement on user idle,
will constantly create additional traffic on the up- and
downlink. In order to quantify this traffic, we performed
10 consecutive test runs. In each of these test runs,
we recorded the communication overhead between client
and server for the period of 30 min for each of the two
algorithms. The results of this measurements can be
found in Table 2.

Table 2: Average Overhead of the Different Algorithms
and 95 % Confidence Intervals
Algorithm Latency Throughput on Idle

Uplink 0.267 ±0.001Kbps 6.95 ± 0.29Kbps
Downlink 0.271 ±0.002Kbps 290.75 ± 2.53Kbps
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The table shows that the latency estimation algo-
rithm creates only very little traffic both on the uplink
and the downlink. Still, the measured results are sig-
nificantly higher than the theoretical overhead of 58 B
of payload every 30 s (0.02 Kbps), mainly because of a
comparatively large HTTP header of 615 B. Neverthe-
less, we conclude that it is suited for any type of Internet
connection, even if the throughput is highly variable or
very low. The throughput estimation, which downloads
a 1 MB file every 30 s, creates a theoretical overhead of
279.62 Kbps. Here again, the measured downlink over-
head is higher due to the overhead of the protocols. Al-
though it will not negatively impact the Internet expe-
rience of users with a high bandwidth, this throughput
measurement approach will for sure affect users with a
low bandwidth, e.g., mobile users. Furthermore, the ad-
ditional traffic could drain the data plan of mobile users,
thus, the throughput estimation “on the fly” should be
preferred in this scenario.

6.2 Algorithm 1: Selection of Content
Server by Latency

The accuracy of Algorithm 1 depends on the accu-
racy of the incorporated latency measurement. We eval-
uate our approach by setting different latency values
from 0 ms to 120 ms at the client using the popular
NetEm tool. Figure 2 shows the set latency on the x-
axis and the average estimated latency and 95 % confi-
dence intervals of 50 measurements each in red on the y-
axis. The baseline latency (i.e., measured latency to the
server due to the local LAN without the use of NetEm)
was subtracted from all measured values. It can be seen
that for all set latencies the estimated latencies are close
to the bisector (dashed), which shows the accuracy and
applicability of our approach. The confidence intervals
overlap the set values, while having acceptable sizes.

In the following, the latency-based server selection is
compared to a random server selection in terms of re-
sulting latency. Therefore, the latency of three servers
(one in Germany, two in the United States) has been
measured every 30 s for a total test run duration of
85 min. The test run was executed over the Internet
with fluctuating network conditions and average laten-
cies of 112.68 ms (median 55 ms), 185.92 ms (median
155 ms), and 247.79 ms (median 217 ms), respectively,
were observed. Figure 3 shows the resulting average la-

tency and the 95 % confidence intervals based on the
different server selection strategies. The random server
selection would randomly select one of the three servers
to forward the client’s requests, which results in an aver-
age latency of 182.1 ms. The lowest latency strategy of
Algorithm 1, which selects the server with the lowest la-
tency based on the latency estimation, can significantly
reduce the average latency to 76.5 ms.

6.3 Algorithm 2: Selection of Content by
QoE

Finally, we investigate Algorithm 2. As it is de-
pending on an accurate throughput estimation, we eval-
uate the two estimation methods by setting different
throughput limitation values from 0.5 Mbps to 12 Mbps
for 100 requests each at the client using NetEm. Fig-
ure 4 depicts the average and 95 % confidence intervals
of the throughput estimation for different set through-
put thresholds. It can be seen that both the “on idle”
(blue) and the “on the fly” (red) algorithm have simi-
lar estimations, which are close to the bisector (dashed)
for low throughput limits. For increasing throughput
values, the estimated throughputs deviate from the bi-
sector by having smaller values than the set throughput.

To evaluate the gain of the QoE-aware content se-
lection, we started 100 runs of 10 consecutive image
requests with an interval of 30 s between each run. The
throughput limit was rotated every 120 s among the
following values: {0.5, 1, 2, 4, 15} Mbps. Figure 5
shows the picture loading times on the x-axis and the
requested image size on the y-axis. A vertical dashed
line indicates the critical picture loading time of 1.3 s,
which results in a just good MOS value of 3.5 [19]. The
baseline scenario without any algorithm, which always
downloads the x-large image size, is plotted in red. It
can be seen that only 40.2 % of the requested images
have a loading time of less than 1.3 s, and thus, a good
QoE in case of the baseline scenario. In contrast, the
QoE-aware algorithms are able to increase the percent-
age of good QoE to 82.3 % (on idle) and 93.7 % (on the
fly), respectively. However, a trade-off with respect to
the image size has to be taken into account. The worse
performance of the “on idle” algorithm can again be
explained by the fact that it only updates its estimate
every 30 s if the user is not interfering with a content re-
quest. Thus, this algorithm has to measure the through-



put within the 30 s idling window in between each test
run. If it fails to catch this time window, the whole next
test run will have an old, outdated throughput estima-
tion in case of a throughput change. In contrast to this,
the “on the fly” algorithm will only fail to request the
correct image size once per throughput change.

7. CONCLUSION AND OUTLOOK
The goal of this paper was to develop and design a

concept of client-initiated service location and quality
selection for distributed cloud services. The concept
was defined and evaluated in a proof-of-concept imple-
mentation of a cloud service picture gallery. Therefore,
we developed one algorithm for quality grade selection
and one algorithm for server selection based on client
information, e.g., the client’s network status.

The goal of the quality selection algorithm for the
picture gallery is to deliver the requested content in an
acceptable time to improve QoE. For this purpose, it
measures the current available bandwidth and selects an
appropriate image resource. The algorithm can use dif-
ferent throughput measurement strategies. One strat-
egy is to periodically measure the available bandwidth
by downloading a specific image file with a known file
size. However, this approach causes additional network
traffic, which will quickly drain the data volume of mo-
bile users. The second approach is to measure the down-
load speed on the fly, whenever the user requests and
downloads an image resource. Therefore, the algorithm
uses information about the image’s file size in the HTTP
header. Our results show, that the on the fly approach
clearly outperforms the periodic measurements in our
testing scenario.

For the server selection, we developed a simple and
lightweight algorithm, which periodically measures the
latency between the client and each content server that
is specified in a manifest file.

Overall, we showed in this work that it is beneficial
for web services to make use of algorithms, which se-
lect the server and quality of embedded images based
on client side parameters in order to improve loading
times. For future work, we plan to improve our content
selection algorithms and to examine the use of client-
sided selection algorithms for other cloud services and
content types, e.g., documents, audio, or even gaming.
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