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Abstract—In the last years, new paradigms for net-
work softwarization based on the adoption of cloud
computing are evolving. Additionally, with the 5th gen-
eration of mobile networks enormous benefits for ser-
vice providers and private persons arise. Scalability of
services by segmentation into components helps cloud
providers to monitor and analyze their services. Services
to be provided to 5G network users are divided into in-
dependent components and instantiated in remote clouds
or at the edge network. The service itself is assembled
from the components to a so-called service chain. To
understand the total performance, key influence factors
for each component have to be examined. To analyze
these factors, analytical models by means of task graph
reduction can be used. In this work, each component
is described by a task graph node and a processing
time distribution. Out of all nodes, a task graph is
created and reduced receiving one probability density
function, characterizing the performance of the whole
service chain. Finally, an example use case for cloud
based video streaming on a 5G network is analyzed with
the developed tool.

I. INTRODUCTION

In the last decade mobile user experience has been
enriched by services like social networking and mobile
video streaming. Especially mobile video streaming is
expected to reach 69 % of the total mobile traffic by
2018 [1]. To deal with that, the fifth generation (5G)
of mobile networks will enter the market supporting
among others 1000 times the current aggregate data
rate and 100 times user data rate [2].

A fundamental role in this innovation process is
played by the concept of the virtualization of network
functions and applications. This approach derived from
cloud computing, will transform telco operator net-
works in big distributed data centers (DCs) constituted
by the interconnection of many nano, micro, and macro

DCs located in the cloud or the edge of the network,
very close to the user [3]–[5].

Therefore, in this scenario cloud computing pro-
vides IT infrastructure services such as storage space,
computing power, or application software as a service
over the Internet. Due to the simplicity of instantiating
new services and service components one major ben-
efit is scalability. The typical service consists of many
functions, called service components, that are mapped
on the available infrastructure of one or more DCs.
The linking of several components is called service
chaining. From the cloud service provider point of
view, the advantage of this structure within the cloud
is encapsulation. Each component can be monitored,
evaluated, scaled or exchanged independently.

In this work, analytic modeling of service chains
in a 5G network is done with task graph reduction.
Each task graph G = (V,E) consists of vertices
V , called nodes and edges E. A node represents
one service chain component by a processing time
probability density function (PDF), while the edges
are connections indicating the workflow of the task
graph. With task graph reduction mechanisms the
whole graph is reduced to one node influenced by the
input PDFs of all nodes. The output is a single vertex
with a processing time PDF describing the analyzed
service chain.

The contribution of this work is a method for per-
formance evaluation of service chains in a 5G network
based on task graph reduction. The influence of chang-
ing PDFs in one service component and the interaction
of several linked components can be observed in detail.
As an example for an application area of this analysis
technique, cloud based video streaming is presented.
According to the results of the EU H2020 INPUT
project [6], a video streaming setup is created, where



practical measurement values are obtained. These data
is evaluated with task graph reduction by the frame-
work presented in this work. This framework allows
evaluating the impact of individual tasks on the end-to-
end characteristics of the service chain. By optimizing
the performance of the service chains, tasks with a high
impact on the overall processing time are identified.
Since we consider general service time distributions
for each task, we can apply the characteristics of real
components obtained by measurements. This allows to
study the impact of the task service time distributions
and its parameters on the overall performance.

The remainder is structured as follows. In Section 2,
related work is summarized. In Section 3, the modeling
concept and methodology is presented by introducing
the components of the created task graphs and the
reduction mechanisms. The implementation of the tool
is presented in Section 4, while Section 5 presents
an evaluation and some numerical results. At the end,
conclusions are drawn in Section 6.

II. RELATED WORK

In this section, related work with focus on modeling
and analyzing methods for task graphs and service
chains is presented. A main focus is kept on per-
formance parameters in cloud based architectures and
service chain analysis for video streaming.

The authors in [7] are analyzing process models
with task graphs. A verification approach and an
algorithm to identify structural conflicts in process
models is presented. Additionally, the complexity and
correctness of a reduction process is considered. Com-
pared to them, in this work one requirement is having
a correct and reducible task graph for further evalua-
tion. The main focus is on the analysis of the graph
based on different components defined by probability
density functions. In [8], an overview about scheduling
algorithms for task graphs to multiprocessors is given.
Especially their functionalities are compared together
with their benefits regarding performance and time-
complexity. Kühn is presenting a detailed approach for
analyzing parallel and serial processing of stochastic
workload by multi-processor/multi-core processing re-
sources in DCs by task graph reduction in [9]. An
execution time of the whole system is received while
serial and parallel processing of jobs is analyzed.
Better results are obtained with parallel processing in
low to medium load ranges while serial processing
outperforms parallel for high loads. Based on this ap-
proach, in this paper a tool is presented to evaluate any
system a task graph can be created from. In a recent
work, Marotta et. al. are presenting an optimization
model that allows the minimization of energy used for
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Fig. 1: Task graph components diagram

computing and network infrastructure by hosting a set
of service chains in [10]. One goal is the calculation
of an energy optimal NFV placement considering la-
tency constraints and resource demand uncertainty for
network service chains by the comparison of energy
consumption with the usage of more computing power
and network elements. In contrast to their work, in
this paper the analysis of processing times for each
component of a service chain is considered.

By having a look on related work in the video
streaming area, in [11] the goal is to reduce the number
of cloud resources together with delivering robust and
scalable video streaming. Their result saves around
50 % of the total number of resources. Compared to
them, in this paper the performance of service chains
in a cloud network are compared with regard to end to
end delay. Based on among others network conditions
and current server load, Seufert et. al. present an
overview of HTTP Adaptive Streaming (HAS) in [12].

III. MODELING CONCEPT AND METHODOLOGY

The target of this section is to introduce modeling
concepts and methodology used in the rest of the paper.
More specifically, service chains are represented and
evaluated by means of task graphs. A task graph is
a directed graph G = (V,E) consisting of a finite
number of vertices V presenting the entities of the
graph. The weightless edges E, indicating the relations
between two vertices showing the workflow of the
task graph. Compared to other models, network links
signifying a delay between two network components
are modeled with a task graph node. In that way,
the delay can be specified. All used components are
presented hereafter. Afterwards, the method of task
graph creation and reduction is introduced which is
referred to as task graph reduction.

A. Definition of Task Graph Reduction

In a task graph reduction process, the first step is
the graph creation. Therefore, several components are
required each containing specific parameters depend-
ing on its type. A detailed diagram about all task graph
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components is depicted in Fig. 1. A brief overview of
them is given below.

Task Graph Nodes: Each graph node inherits
from the node class, independent on its type. The node
class is described by a unique ID, a type, and a pair
(x, y) representing its coordinates, required later for
node visualization. A short introduction to the visu-
alization is presented in the implementation section.
Additionally, an array for ingoing and outgoing edges
of each node is created to build an adjacency matrix.
This matrix is later used for node handling and graph
simplification. In the following, the attributes of each
specific node type are introduced.

Task Nodes: Since task nodes describe processing
units like servers or databases, this is the most complex
type in this work. Next to the inherited attributes from
the node class, a PDF can be stored there. The PDF
contains an x and y list, a type and a distribution
parameter. Based on it, for example the mean response
time or the variance, can be calculated and stored.

Alternative Split Nodes: Compared to the task
node shown above, the alternative split node has two
additional parameters. The node’s title is If by default,
a list of probabilities are initialized with zeros. This
list indicates the outgoing probabilities from the node
towards the successor nodes.

Parallel Processing Nodes: The parallel task
node contains an additional title that is Parallel by
default, and a parallelType attribute. It can be either
minimum or maximum, indicating different types of
parallel nodes.

Repetition Nodes: The repetition has one extra
attribute, the numberRepetiton, that is k = 1 by
default. The k-value defines how often the specific
node is passed through and evaluated.

Structuring Nodes: The structuring node aims
at splitting different parts of the graph for better
readability and task graph reducibility. Its main goal is
to make reduction easier and help to see the different
processing types. An introduction to the processing
types follows in the next subsection.

Task Graph Edges: The edge class has four
attributes. First, it has a unique ID required to identify
the edge. Additionally, each edge has a source and a
target node and an optional probability variable, which
is only defined if the source node of an edge is an
alternative split node. Then, the probability of taking
this edge out of the alternative split is stored there.

B. Task Graph Reduction and Processing Types

By connecting several graph components, a task
graph is created. In the task graphs presented in this

(a) Sequential processing (b) Alternative split

Fig. 2: Sequential processing and alternative split

work, it is only allowed to connect single compo-
nents to processing types. More complex graphs are
created by nesting such types. These graph parts can
be stepwise reduced to solve the nesting from the
inner part of the graph to the outside. An overview
of all processing types together with the result of its
reduction is presented in the following based on [9].
There, also a more detailed presentation about solving
the nested processing types is given.

Processing Types: The first type, called sequen-
tial processing, is the concatenation of several nodes,
T1, ..., Tn , shown in Fig. 2a for two nodes. Let fi(t)
be the PDF for node i. The resulting PDF f(t) after
reduction is calculated by a convolution of the PDF of
each component node as follows:

f(t) = f1(t)⊗ f2(t)⊗ · · · ⊗ fn(t), n ∈ N (1)

In the following the other processing types are listed.
Detailed explanation of them is presented in [9].

Alternative split:

f(t) = q1f1(t) + · · ·+ qnfn(t)

with
n∑

i=1

qi = 1, and n ∈ N.
(2)

Parallel Processing:

X = min(X1, X2) :

f(t) = f1(t)[1− F2(t)] + f2(t)[1− F1(t)]
(3)

X = max(X1, X2) :

f(t) = f1(t)F2(t) + f2(t)F1(t)
(4)

Repetition:

f(t) = f1(t)⊗ [f1(t)⊗ · · · ⊗ f1(t)]︸ ︷︷ ︸
J

(5)

IV. IMPLEMENTATION

The following chapter presents the implementation
done for this work. For task graph creation and re-
duction, a website is created. There all nodes can
be specified by a PDF. The resulting graph can be
stepwise simplified in a graphical user interface (GUI)
according to Section III-B. Therefore, a user can select
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(a) Parallel processing (b) Repetition

Fig. 3: Parallel processing and repetition

the graph part for reduction. In one reduction step, it is
only possible to select all nodes of one processing type.
By right clicking at one of the selected nodes, the PDFs
of all selected nodes are sent to a server for calculation.
The response is the calculated PDF of the sent PDFs
according to the selected processing type introduced
in Section III-B. Together with additional values like
distribution mean and variance, the PDF of the server
response is stored in an array in a newly created node.
All nodes selected for reduction are deleted than.

Each task node can be described by a commonly
used distribution like exponential, normal or log-
normal with their distribution parameters respectively.
Thus, for an exponential distribution for example the
λ value can be varied. This distribution can be stored
with the tool in any task node. Additionally, real
measurement values can be imported by a CSV file
describing a PDF. A screenshot of the web GUI with
an example task graph is shown in Fig. 4.

When creating a task graph, a representation of each
component is added to the document object model
(DOM) of the web page to display it for the user.
The platform for running the tool is a web browser
like Firefox or Chrome with activated JavaScript. For
temporary data storage and visualization, modification
and data handling a web framework called Data-Driven
Documents (D3) is used. D3 is a JavaScript library
to create dynamic and interactive data visualizations
on common web browsers. It works with HTML5,
CSS and SVG standards for data handling. The D3
code is embedded inside an HTML page creating SVG
elements using pre-build JavaScript functions. The
framework can be used to evaluate the performance
of a GI/GI/1 queue, where the system state holds the
amount of unfinished work upon arrival instance [13].
The task graph describes the service time distribution.
Workload is added to the system according to the
arrival process. Dynamic workloads are considered by
conditioning the arrival process on the system time.

Fig. 4: Task graph reduction tool

Fig. 5: Cloud-based video streaming service chain

V. EVALUATION OF A VIDEO STREAMING SERVICE
CHAIN

As an example of service chain evaluation with
task graph reduction, in the following, a typical video
streaming service chain like the one shown in Fig. 5
is evaluated. When a user requests a video at the play-
back service, the streaming service decides whether to
access the content from a cache in the edge cloud or a
database in a global DC. Based on this service chain
and the streaming use case in the INPUT-project [6],
a task graph is created depicted in Fig. 6. The content
request is started by a user shown at the left side
of the figure. Then, there are three possibilities for
content access. The top path of the graph shows
a cache access with a cache miss. Afterwards, the
video is requested from a bigger database. The middle
path presents a direct access to the database without
accessing the cache first. At the bottom path, the edge
database is accessed successfully. Thus no database
access is required. The p values at the three paths
are symbolizing different probabilities for taking any
of them. For each database access, a round-trip delay
to the database is added to the graph. Additionally,
two more elements are included in the chain, an edge
acquirer (EA) and a personal acquirer (PA). The EA,
placed close to the content provider, receiving data
flows and communicating with the PAs of all registered
users for the video transmission. At the most right of
the graph, the PA gathers the data and enables live
streaming or the recording of a selected content. In the
following, several streaming scenarios are presented
and evaluated. For mathematical tractability the PDFs
in each task graph component are assumed to be
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Fig. 6: Streaming task graph

statistically independent.

A. Scenario Definition

Based on the task graph shown in Fig. 6, it is
possible to investigate several streaming scenarios by
changing the database access method, location and the
load on different components. The first scenario is the
evaluation of the middle path of the graph. There,
accessing content from a regional DC, a DC located
in another continent and a local edge cloud or cache
is compared. This can be done with different load
conditions at the EA. For this evaluation, delay values
for data access from a VNF located in Würzburg to a
VNF in Frankfurt and one in the US are measured. The
delay to the cache is assumed to be negligible. In [14],
1.5 ms is presented as a meaningful value for the mean
database access time, thus the service time PDF for a
database is assumed as an exponential distribution with
a mean of 1.5 ms hereafter. Since the experiments with
service time PDFs for the database with normal or
log-normal distributed values are showing comparable
results, they are not presented in detail in this paper.

The second scenario is a real home live streaming
scenario: a user living in Würzburg accessing a virtual
set-top box (vSTB) service [15] at home through his
smart TV, or in mobility by his smartphone. The PA is
at the edge of the network, close to the user’s home.
The PAs behavior depends on the kind of access. It
is assumed to have 60 % of access only in mobility
by a smartphone while the remaining time the vSTB
service is also accessed by some family member at
home from their smart TV. The EA, since it is shared
by many users, has two states. It is considered having
the EA under high load in 70 % of the cases while
in 30 %, it runs under low load conditions. For the
described scenario several case studies are created and
evaluated. First, a content provider accesses the real-
time video streaming service from an Internet access
point (AP) located in the US. Second the content is
accessed from an AP located in Europe, very close
to Frankfurt. The last case is accessing streams from
both databases in a parallel way. This can be done to
avoid stalling or when having hard time constrains in

databasedelay
content

request

PA

Phone

EA low

load

�� 0.3

0.7

EA high

load

��
PA TV +

Phone 

0.6

0.4

delay

Fig. 7: Streaming use case task graph

the delivery to guarantee fastest possible serving. In
the following, these scenarios are evaluated.

B. Scenario Evaluation

First, data request to an Internet AP located close
to Frankfurt and to one in the US is compared and
evaluated. There, at the beginning only the delay nodes
and the database presented in Figure 6 are taken
into consideration. In this way, only the delay by the
network is observed. The mean content delivery time
from Frankfurt is 63 ms, for the USA it is 178 ms.
The probability for receiving data from the US faster
than 130 ms is 0. It is remarkable having a probability
mass of 94 % below 200 ms for the access to the
US compared to about 88 % to Frankfurt. Thus, it is
more likely to wait more than 200 ms for content from
the provider in Frankfurt than from the US. This is
indicating higher disturbances in the network to the
Frankfurt AP resulting in higher delay for individual
packets. However, in general the content request from
the closer location is faster in average.

Next, the graph presented in Fig. 6 is evaluated.
The bottom path including the cache access requires a
mean of 4 ms. Compared to this, the evaluation of the
middle path to the database is shown in Fig. 8. There,
access to Frankfurt and the US AP under different load
conditions in the EA are presented. The x-axis shows
the time in ms, the y-axis the PDF. The access to a
provider located in Frankfurt is described with EU in
the dark colors, the access to the US in the bright
colors. First, it is depicted to have higher access times
to the US like already mentioned above, with 92 ms for
low load and 97 ms for high load accessing Frankfurt
and 206 ms and 211 ms respectively requesting data
from the US AP. Higher loads in the EA has only a
small effect on the total data request time with about
5 ms more. Thus, compared to the delay accessing the
DC, higher load conditions in the EA do not have a
heavy impact on the whole transmission time.

Next, the result for the real home live streaming
scenario is presented in Fig. 9. The axes are kept like
in the previous figure. The black line shows content
access from an AP in Europe, close to Frankfurt, the
yellow one from the USA. With 93 ms on average,
the content delivery from the EU service provider is,
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like expected, faster than from the US with 208 ms in
average. In 8 % of the requests, the EU AP requires
more than 250 ms, in 7 % the US one did. To reduce
this amount for very time critical systems, it is possible
to access both in a parallel way. The respective result
is shown in the Figure by the brown dashed line. The
mean of this request is 78 ms while only 0.5 % of all
requests take longer than 250 ms.

VI. CONCLUSION

The evolution of cloud computing and scaling of
services by segmentation into components, together
with the softwarization process of the network, are
fostering a variety of services supported by the next-
generation 5G network. A key goal for a provider is
to know the influence of each component of a service
chain to the whole service. For that reason, a de-
tailed analysis is required. With this result, bottleneck
components can be determined and a service can be
improved by changing or scaling them.

Thus, in this work a novel method of performance
evaluation for service chains within cloud networks
by task graph reduction is presented. After the intro-
duction of stochastic task graph reduction, a tool is

presented to analyze a task graph based on various
parameters and metrics. At the end, cloud based mo-
bile video streaming as an example of a service chain
in a 5G network is used for evaluation. By analyzing
different use cases and comparing access methods to
data from a regional and a remote provider, differences
are detected and presented.
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