
Assessing the Accuracy of Network Estimations in the DOTA 2 Game Client

Matthias Hirth1, Fabian Allendorf1, Florian Metzger2, Christian Schwartz

Chair of Communication Networks, University of Würzburg
Chair of Modeling of Adaptive Systems, University of Duisburg-Essen

matthias.hirth@informatik.uni-wuerzburg.de, fabian.allendorf@stud-mail.uni-wuerzburg.de

florian.metzger@uni-due.de, christian.schwartz@gmail.com

Abstract
Online video games and the subjective quality of player inter-
actions with them rely on good network conditions. Almost
equally important is a good and timely knowledge of such con-
ditions in order to take proper countermeasures to worsening
conditions. To this end, many online video games include
components for estimating the current network status. In this
paper, we examine the accuracy of those estimations for the
popular competitive multiplayer game DOTA 2. Our results
show that the game client is capable of performing a good es-
timation of the delay and packet loss, but only after a rather
large initial delay.
Index Terms: Dota 2, game client, network measurements

1. Introduction
Playing online video games has become a regular recreational
activity for many people around the world. Popular game ti-
tles are often played by hundreds of thousands of users con-
currently, sometimes even millions. This imposes significant
challenges on the underlying network and server infrastructure,
especially for games with real-time constraints played in a com-
petitive fashion. In these games, lags (i.e., the delay between a
player’s action and the observable reaction of the game as pro-
cessed by the server) can cause to disadvantages for the player
and subsequently a degraded game experience, ultimately even
leading to gamers stop playing that particular game altogether.

While the server infrastructure can usually be directly mon-
itored and controlled by the online game’s operator, monitoring
the entire transmission path, on which the fidelity of the game
strongly depends, may impose some challenges. Additionally,
it is generally not feasible to deploy dedicated measurement
probes at the players’ locations. To overcome such issues many
online game clients implement a network monitoring tool in or-
der to estimate players’ network Quality of Service (QoS). Such
data is then used both to keep the player informed as well as to
drive various mitigation techniques modern games are usually
capable of. But only if this data is correctly measured and inter-
preted can the game engine engage appropriate measures.

With that in mind, this study aims to analyze the accuracy of
such a network monitoring tool from an exemplary online video
game. DOTA 2, a team-based multiplayer game, has garnered
a lot of popularity over the recent years, reaching a daily peak
of concurrent players of just under 1M 1. It is the standalone
successor to a custom WARCRAFT III map called DOTA (short
for “Defense of the Ancients”) which started the Multiplayer
Online Battle Arena (MOBA) genre. Likewise, it is also one

1http://store.steampowered.com/stats/ (Jun. 2016)

of the most successful competitive games with last year’s “The
International 5” tournament having a prize pool of over $18M.

This competitive nature makes DOTA 2 an ideal candi-
date for investigations as undiscovered and untreated QoS vari-
ations could have a significant impact on the outcome of a
match. In order to examine this situation a dedicated network
testbed was set up to test the accuracy of the game’s estima-
tion tool under various network QoS conditions, i.e. increased
delay and packet loss.

The remainder of this work is structured as follows. In Sec-
tion 2 we set the background for this work, including a short
introduction to the game and its mechanics, and then briefly
discuss related work. The methodology used for our analysis
is described in Section 3. The results of the conducted studies
are shown in Section 4. Section 5 discusses these results and
concludes this paper.

2. Background and Related Work
DOTA 2 is a MOBA, where two teams of five players face off
against each other. At the beginning of each match, each player
chooses a hero as the sole player-controlled unit in the match.
During the course of each match, heroes gain access to different
combat abilities and skills through a progression system. The
system is governed by experience points and currency, both of
which are attained through combat with Non-Player Character
(NPC) units and heroes from the other team. A typical round of
DOTA 2 is about 40min to 50min long and can be separated
into three phases: early, mid and late game. During early game
(also called the “laning phase”), the players are slowly ramping
up their heroes through static combat with NPC units (or “lane
creeps”). While experience points are gained automatically in
the vicinity of a dying creep, in order to gain currency one must
take the “last hit” on such a creep. This can be a challenging
task when affected by lag as timing and precision are required.
During mid and late game, the focus shifts to Player-versus-
Player (PvP) interactions, with ambushes, skirmishes and larger
teamfights. Here, the correct use and timing of one’s abilities
is crucial to come out on top. Delay and packet loss become
even more impactful here when players can miss their correct
timings on their abilities.

To keep track of network statistics, the game provides
means of testing and observing the current network state. This
information can be displayed in the game client as a “netgraph”,
shown in Fig. 1. This DOTA 2 UI widget shows information on
frames per second — highlighted as (1) in the figure) — aver-
age bandwidth and size of the last incoming (2) and outgoing
packet (3), percentage of lost packets (4), amount of delay (5),
received updates per second (6), and received packets per sec-

NOTICE: This is the author’s version of a work accepted for publication. Changes resulting from the publishing process, including editing, corrections,structural
formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for
publication in 5th ISCA/DEGA Workshop on Perceptual Quality of Systems, 2016. The final publication is available in the ISCA archive via
http://dx.doi.org/10.21437/PQS.2016-6.

Figure 1: Ingame display of the game client’s network measure-
ments, also called the netgraph.

ond (7). Throughout this work, we analyze how accurate the
obtained measurement values for delay and packet loss are and
how quickly the measurement tool reacts to network changes.

The network’s QoS parameters can significantly alter the
subjective quality a player experiences when playing online
multiplayer games, even if games readily offer a few options
to counteract or at least diminish the effects. This includes spe-
cific mechanisms like aim assistance [1], but also more general
paradigms like interpolation, prediction, as well as lag compen-
sation as outlined, e.g., in [2].

There are numerous studies on the reaction of players to
network QoS issues, e.g., [3]–[6]. However, all of these studies
have been performed in laboratory environments with a limited
number of participants. In order to enable large scale user stud-
ies, it would be desirable to perform tests with the actual games
and use the information from in-game network measurements.
To make this possible an assessment of the accuracy of such
data is required beforehand.

3. Methodology
To analyze the behavior of the DOTA 2 netgraph, a network em-
ulation testbed was set up, which alters the QoS parameters of
the connection between game server and client. In the follow-
ing, we first take a look at the testbed setup, thereafter we detail
the measurement procedure.

3.1. Testbed Setup

Fig. 2 schematically depicts the testbed setup. In order to better
control the test conditions we use a local client-sever setup in-
stead of the official online game servers. DOTA 2 version 6.88
is installed both PCs, with the client running Windows 7 64-
bit on an Intel Core i7-4790K 4.00 GHz processor with 16GB
RAM. The server is running Windows 7 64-bit on an Intel Core
i7-2600 3.40 GHz processor with 8GB RAM. Client and server
are connected through an emulation node equipped with an Intel
Pentium 4 3.0 GHz processor, 3GB RAM and running a 32-bit
Ubuntu Server 14.04. The network impairments are generated
using NETEM2. In addition to the measured link between client
and server, each entity is also connected to a separate manage-
ment network, allowing us to control the experiment without
interfering with the actual game traffic. The testbed addition-

2http://www.linuxfoundation.org/collaborate/
workgroups/networking/netem (Jun. 2016)

Measurement
network

Management
network

Internet
connection

Dota client Dota serverNetwork emulator

Figure 2: Network testbed entities and interactions.

ally enables Internet access for the server and client, as this is
required to operate DOTA 2.

3.2. Measurement Procedure

The adaptations of the netgraph to the emulated test settings
are recorded a during regular game sessions. In order to create
game interactions, the players are emulated by bots, computer-
controlled heroes, available in DOTA 2. Throughout the game,
the network parameters are changed periodically. The emulator
holds each parameter setting, e.g., a delay of 100ms, for two
minutes before once again dropping all artificial network im-
pairments for a period of one minute. This allows the game and
monitoring tool to reset to the default state before the next QoS
parameter is altered.

In order to access the information shown in the netgraph,
we used CHEAT ENGINE3, which allows access to the mem-
ory section of other programs, as it is the only means to directly
access the raw data the DOTA 2 netgraph is based on. Cheat En-
gine’s memory scanner hooks into other processes and can read
and modify their memory area, making it possible to search for
specific values. Once the address and offset of a stored value is
found, it can be monitored throughout the lifespan of the pro-
cess. We used this to log the necessary information with a fre-
quency of 21Hz (i.e., 21 measurements of delay values) given
to us by the network monitoring tool.

4. Evaluation
With this methodology at hand, we first have a look at the gen-
eral behavior of the DOTA 2 netgraph when changing the un-
derlying network parameters. We identify two main metrics to
assess the quality of the client’s network parameter estimation,
namely 1. the awareness time and 2. the adaptation time, which
we will both describe in more detail in the remainder of this
section. Finally, we analyze how both metrics behave depend-
ing on the emulated delay and packet loss.

4.1. Adaptation Behavior

To gain initial impressions of the accuracy of the game
client’s network estimation, we use the network emulator
to create artificial delays of 10ms to 2000ms on the link
between client and server.

Fig. 3 shows the delays as measured by the DOTA 2 net-
graph and the corresponding network emulator setting. The
figure depicts only a subset of a complete match’s duration at
just one of the considered delay settings, namely 250ms. The
emulator setting, indicated by the continuous line, exhibits the

3http://www.cheatengine.org (Jun. 2016)

0

100

200

300

400 450 500 550

Time [s]

D
el

ay
 [

m
s]

Measurement Probe Delay Setting Measurement Value

Figure 3: Emulated delay and network condition estimated by
DOTA 2 game client.

previously described behavior. Before the delay is increased to
250ms at the 396 s-mark, the network does not show any im-
pairments. Then the emulator adds an artificial delay of 250ms
for two minutes. Thereafter, the emulator once again removes
the additional delay at about 518 s and the link returns to the
baseline conditions.

We observe that the game client, shown as the dashed line in
the figure, captures the changing network parameters quite well
and correctly identifies the additional delay. However, the net-
work state identification does not occur instantaneously. Rather,
a transient phase between the update of the emulator setting and
the client measurement output can be observed. A closer anal-
ysis shows that this transient phase can be further sub-divided
into two parts, which we refer to as awareness time and adap-
tation time. The awareness time describes the time between
changing the emulator settings and a first change of the net-
graph’s measurement, i.e. it measures how long it takes until
the client recognizes a change in network state. As soon as a
change is recognized, it takes and additional amount of time
until the netgraph displays the correct estimation of the current
network state. We refer to this phase as the adaptation time.

Both awareness time and adaptation time can have a signif-
icant impact on the player’s performance and enjoyment, espe-
cially if the network conditions change from a good to an unac-
ceptable state. During these two phases the game is not aware
of the severity of the network impairments, and therefore can-
not take the correct countermeasures, e.g., an automatic pause
of the match might happen too late, leading to disadvantages for
the affected players. Similarly, if the delay estimation is wrong,
lag compensation mechanisms cannot operate properly, as the
server adjusts the players’ positions to incorrectly guessed lag
offsets. In the following we take a closer look on the variations
of awareness time and adaptation time in relation to the emu-
lated delay and packet loss.

4.2. Adaptation to Delay Changes

The assessment of the network delay’s impact on the awareness
time and adaptation time is conducted with an added delay of
100ms to 2000ms. For each setting we conducted 10 replica-
tions and then calculated the client’s delay estimation error, i.e.
the difference of the emulator setting and the value displayed on
the game’s netgraph.

An example of the estimation error over time is given in
Fig. 4a for a delay of 250ms. Each measurement run is indi-
cated by a different color, however most of the runs show an

identical behavior of the netgraph measurement and therefore
overlap. We observe that all runs exhibit an initial estimation
error of 250ms, an expected behavior as the client is initially
unaware of the change in network conditions. After the aware-
ness time has past, the estimation error starts to decrease linearly
for all measurements until it reaches zero after the adaptation
time. This general behavior is common to all delay settings
from 10ms to 2000ms. Only the value of the awareness time
and adaptation time changes as shown in the Figures 4b and 4c.

For the evaluation, the awareness time and adaptation time
have been automatically derived using the following approach.
We first normalize the estimation error by the delay setting in
order to calculate the relative estimation error. Then, we search
for the first four consecutive measurements with a relative esti-
mation error smaller than 99%, i.e. the netgraph starts to adapt
its estimation. This timestamp is then used as the awareness
time. Afterwards, we search for the first four consecutive mea-
surements with a relative estimation error smaller than 1%, i.e.
the netgraph’s estimation matches the current parameter setting.
The adaptation time can then be calculated as the delta between
this timestamp and the adaptation time.

Fig. 4b shows the mean awareness time for each delay set-
ting, including the 95% confidence intervals, which exhibit a
reasonably high accuracy. The figure shows that the awareness
time increases nearly linearly with the emulated delay. This in-
dicates that the game client only updates the delay estimation
after receiving a new packet from the server. Consequently, it
takes at least one delay-duration until the clients is aware of the
changing network conditions.

Next, we consider the adaptation time as shown in Fig. 4c.
Once again, the figure includes the mean values and the 95%
confidence intervals. In contrast to the awareness time, the
adaptation time decreases with the delay. This might indicate
that the client uses a simple moving average approach to esti-
mate the network parameters. Thus, a larger change leads also
to a faster adaptation.

4.3. Adaptation to Loss Changes

In a second step we analyze the game client’s adaptation speed
to changing loss between 1% to 70%. Similar to the previous
evaluation, we performed 10 replications for each setting and
calculated the client’s loss estimation error as the difference be-
tween emulator setting and the value shown on the netgraph.

Figure 5a shows an example of the estimation error over
time for 50% packet loss. We observe a much larger difference
between the individual test runs than in the previous delay mea-
surements. This is also the case for all other loss settings and
can be explained by the way packet loss is emulated. In contrast
to the delay that remains constant for all packets, the packet
drop rate follows a random distribution, resulting in larger vari-
ations between the different repetitions. These larger variation
can also be observed in the values of the calculated awareness
times and adaptation times. The values are automatically deter-
mined in a similar fashion to the previous delay measurements.

Fig. 5b shows the mean values and the 95% confidence
intervals of the awareness time for the different loss settings.
Across all packet loss values, with the exception of 1%, the
awareness times seem to be almost constant. This is related to
the fact that the server sends packet at a constant rate of about
30 packets per second, allowing the client to detect the chang-
ing network conditions for high loss values (≥ 20%) rather
quickly. The large confidence interval and the long awareness
time for 1% could be considered as a measurement artifact. Due

0

50

100

150

200

250

0 2000 4000 6000

Time [ms]

Er
ro

r
D

el
ay

 E
st

im
at

io
n

[m
s]

(a) Estimation error for 250ms delay for
multiple measurements.

0

500

1000

1500

2000

0 500 1000 1500 2000

Delay [ms]

A
w

ar
en

es
s

Ti
m

e
[m

s]
(b) Awareness time for varying delay
settings.

2500

3000

3500

4000

0 500 1000 1500 2000

Delay [ms]

A
da

pt
at

io
n

Ti
m

e
[m

s]

(c) adaptation time for varying delay set-
tings.

Figure 4: DOTA 2 netgraph delay setting times determining the reaction quality.

0%

10%

20%

30%

40%

50%

0 2000 4000 6000

Time [ms]

Er
ro

r
Lo

ss
 E

st
im

at
io

n

(a) Estimation error for 50% loss for
multiple measurements.

400

800

1200

1600

0% 20% 40% 60%

Loss

A
w

ar
en

es
s

Ti
m

e
[m

s]

(b) Awareness time for varying loss set-
tings.

8000

12000

16000

0% 20% 40% 60%

Loss

A
da

pt
at

io
n

Ti
m

e
[m

s]

(c) adaptation time for varying loss set-
tings.

Figure 5: DOTA 2 netgraph loss setting times determining the reaction quality.

to the low sending rate and the low loss value, it is quite un-
likely that a packet is dropped shortly after the emulator set-
ting is changed. This would make it necessary to calculate the
awareness time based on the time the first packet was actually
dropped rather than based on the changing of the emulator set-
ting. However, this is currently not possible using our testbed.

The adaptation time shown in Fig. 5c also appears to be in-
dependent of the delay setting, as all 95% confidence intervals
overlap, similarly to the awareness time.

5. Conclusions
This paper addressed the accuracy of builtin network measure-
ments performed by online video game clients on the example
of the DOTA 2. A proper and timely estimation is necessary
for a game to both inform the player about these conditions and
perform the correct mitigations. We presented a testbed setup
to examine the game client’s accuracy of information of varying
network conditions and therefore its ability to adapt to them.

The initial evaluation uncovered a transient phase in the
game client’s estimation accuracy of the current network con-
ditions. This means that both the awareness as well as adapta-
tion to changing network conditions can take considerable time,
which can proof to be problematic in certain game scenarios,
e.g. a sudden skirmish, where each ability usage has to be cor-

rectly timed so that no player can gain an unfair advantage over
another. After this transient phase has concluded the client’s
estimation of the network delay and packet loss are quite accu-
rate, with a relative error of less than 1% between the emulator
setting and the estimation.

These results lay the foundation for future endeavors, as the
exact interactions with lag compensation and prediction mech-
anisms need to be further explored. Additionally, different es-
timation methods can be evaluated that would enable a faster
adaptation to changing network parameters. Likewise, future
evaluations need to consider the full end-to-end lag. Besides
network QoS disruptions, the full end-to-end lag considers also
additional delay factors, e.g., input device and monitor delays
but also the game’s framerate and tickrate. The latter two can
significantly influence the interactions between the player and
the game [7].

6. Acknowledgements
This work is supported by the Deutsche Forschungsgemein-
schaft (DFG) under Grants HO TR 257/41-1 “Trade-offs be-
tween QoE and Energy Efficiency in Data Centers”. The au-
thors alone are responsible for the content.

7. References
[1] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe, “Quantifying

and Mitigating the Negative Effects of Local Latencies on Aim-
ing in 3D Shooter Games,” in Proceedings of the Conference on
Human Factors in Computing Systems, Seoul, Republic of Ko-
rea, 2015. [Online]. Available: http://doi.acm.org/10.
1145/2702123.2702432.

[2] Y. W. Bernier, “Latency Compensating Methods in Client/Server
In-Game Protocol Design and Optimization,” in Proceedings of
the Game Developers Conference, San Francisco, California,
USA, Mar. 2001.

[3] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and
M. Claypool, “The Effects of Loss and Latency on User Perfor-
mance in Unreal Tournament 2003,” in Proceedings of Workshop
on Network and System Support for Games, New York, NY, USA,
Sep. 2004.

[4] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu, “The
Effect of Latency on User Performance in Warcraft 3,” in Pro-
ceedings of the Workshop on Network and System Support for
Games, Redwood City, California, USA, May 2003.

[5] J. Nichols and M. Claypool, “The Effects of Latency on On-
line Madden NFL Football,” in Proceedings of the International
Workshop on Network and Operating Systems Support for Digital
Audio and Video, Cork, Ireland, Jun. 2004.

[6] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gam-
ing in the clouds: QoE and the users perspective,” Mathematical
and Computer Modelling, vol. 57, no. 11, Jun. 2013.

[7] F. Metzger, A. Rafetseder, C. Schwartz, and T. Hoßfeld, “Games
and Frames: A Strange Tale of QoE Studies,” in Proceedings of
the International Conference on Quality of Multimedia Experi-
ence, Lisbon, Portugal, Jun. 2016.

