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Abstract—HTTP Adaptive Streaming (HAS) is the de-facto
standard for video delivery over the Internet. Splitting the video
clip into small segments and providing multiple quality levels
per segment allows the client to dynamically adapt the quality to
current network conditions. The performance of HAS, and as a
consequence the user Quality of Experience (QoE), is influenced
by a multitude of parameters. This includes adjustable settings
like quality switching thresholds, the initial buffer level, or the
maximum buffer, as well as video characteristics like segment
duration or the variation of segment sizes along the video.
Finding an appropriate tuning of those parameters still remains
a challenge, which is mainly tackled by performing testbed
measurements or simulative analysis. Due to the large problem
space and the complex interactions of the involved influence
factors, a holistic comparison of a multitude of parameter settings
is extremely time intensive. To address this problem, we propose
to enhance a GI/GI/1 system with pq-policy, which models video
buffer behavior, with the capability to switch between different
quality levels. This allows to investigate all relevant QoE influence
factors for HAS-based video delivery. In a first evaluation, we
illustrate the impact of different quality switching thresholds on
the QoE influence factors for varying network conditions.

Index Terms—Adaptive video streaming; QoE; DASH;
Discrete-time analysis; Modeling;

I. INTRODUCTION

Online video streaming has become the prevalent way of
video consumption and a large fraction of the global Internet
traffic can be attributed to on-demand video content [1].
MPEG dynamic adaptive streaming over HTTP (DASH) [2]
is a widely adopted standard for Internet video delivery and
allows the adaptation of the video quality to the available
throughput and client capabilities. The content is split typically
into segments of 2 to 10 seconds length and encoded into
multiple quality levels [3]. The properties of the segments are
summarized in an XML-based media presentation description
(MPD) file. The DASH client requests the MPD file and
afterwards downloads the segments in a quality dictated by
the client’s internal quality adaptation strategy.

The adaptation strategy considers a combination of parame-
ters to decide about the next segment’s quality, so to maximize
the Quality of Experience (QoE) of the user. New strategies are
coming up regularly and are being discussed in the research
community [4]–[11]. They differ with regard to their quality
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selection process, which allows them to improve the played
back video quality, while reducing video stallings. Alongside
the adaptation strategies, thresholds for the initial buffer time
or the segment duration have a high impact on the QoE [12].

So far, comparisons between quality adaptation strategies
or player- and coding-relevant parameters have mainly been
conducted using measurements in dedicated testbeds or by
service providers within their infrastructure. Due to the large
problem space, it is time consuming to do holistic comparisons
between different mechanisms and parameter settings. Instead,
such comparisons are done for specific use-cases which are
considered to be relevant. Recently a couple of queueing-based
models [13], [14] have been developed. These models are
based on certain assumptions regarding the adaptation strategy
and other relevant parameters, but allow to easily compute
QoE metrics like the stalling probability for a large set of
different network scenarios and parameter settings. However,
these models do not take quality switching into account and
thus do not allow to compute further QoE relevant metrics, like
the switching frequency and amplitude, or the average video
quality. Hence, there is currently no model which allows to
take different video qualities, segment durations, and network
conditions as input factors into account and to compute all
QoE-relevant HAS metrics.

To close this gap, we enhance a discrete-time model from
literature [13] by including explicit quality switching based
on the state of the video buffer. Firstly, we present a formal
discrete-time model for adaptive streaming systems. Secondly,
we implement this model and perform an investigation of the
impact of the switching thresholds on the outlined QoE metrics
for different network throughput variations.

The rest of the work is structured as follows. Section II
introduces DASH, presents the QoE-influencing DASH pa-
rameters, and summarizes related work on modeling DASH
behavior. Section III describes the proposed model and its
computation of QoE-relevant metrics. We perform an exem-
plary evaluation applying the proposed model in Section IV.
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Dynamic Adaptive Streaming over HTTP

Dynamic Adaptive Streaming over HTTP (DASH) enables
the adaptation of video quality to current network conditions
throughout the playback. The video is split in small segments



of equal length, typically, the segment durations range between
2 and 10 seconds. Each of the video segments is available
in several representations, which differ in terms of resolution
and encoding bitrate. The Media Presentation Description
(MPD) lists all available qualities, the segments’ duration,
and the URL to the specific video segments. The video client
downloads the MPD and runs a DASH heuristic, which decides
about the next segment’s quality to request. This is either done
based on the current video buffer level or based on throughput
measurements. Accordingly, one distinguishes between buffer-
based and throughput-based DASH heuristics. Some hybrid
adaptation logics consider both, the client’s buffer and the
throughput. The heuristics decide so to maximize the playback
quality, whilst simultaneously avoiding rebuffering.

B. DASH Parameters and QoE Influencing Factors

Video re-buffers, i.e. video stallings, have a strong negative
effect on a user’s QoE. Hofeld et al. [15] showed that users
rather accept a larger initial waiting time than video interrup-
tions during playback. Besides the waiting times, video QoE
is influenced by the playback quality throughout the video, as
well as the frequency and amplitude of quality switches [3].
State-of-the-art HAS systems aim at tuning certain parameters,
so to maximize a user’s satisfaction with video services. One
of these parameters to influence HAS performance is the initial
buffer threshold. It determines the minimum video time that
needs to be buffered in order to start the playback. This
parameter constitutes a trade-off between initial waiting time
and the probability of video stallings. A low initial buffer
threshold allows to quickly start playing, but stallings are
likely to occur due to the small buffer. Another factor is the
placement of quality switching thresholds. These thresholds
describe the value of buffer state or throughput that trigger to
increase or decrease the quality level. Aggressive heuristics
implement low thresholds in order to deliver high quality,
hazarding the consequence of an increased stalling probability.
The maximum buffer limits the video time stored at the
client. The more a client is allowed to buffer, the lower is
its risk to run into video interruptions. However, large buffers
decrease the promptness of quality adaptations and increase
the wasted traffic when the user aborts the video. Alongside
these adjustable parameters, the logic and techniques applied
in HAS adaptation heuristics influence the performance. For
example, the heuristics implement different techniques to
determine the next quality, i.e. approaches based on reinforce-
ment learning [16] or game-theory [5] versus simply choosing
the highest bitrate below the measured throughput [17]. Apart
from the heuristic- and player-specific parameter settings, there
are three more factors, which are related to th affecting the
streaming quality. These are related to the preparation of
the video content. The first one is the duration of video
segments. Segments of short duration allow for a more fine-
grained quality adaptation, however, the shorter the segments,
the lower is the encoding efficiency [18]. The second one is
the number of available video representations. While a high
number of video qualities on the one hand facilitates less

noticeable quality switches and a very fine-grained adaptation,
it imposes high storage and encoding costs for the content
provider on the other hand. The third one is the bitrate used
throughout the encoding of one quality layer. While a constant
bitrate results in a similar size for all segments within one
quality layer, the visual quality might be degraded in high
motion scenes.

In order to be able to set these parameters optimally, their
impact and interactions must be well understood. Measure-
ments and simulation often do not scale, due to the large
problem space and hence are only able to cover specific
scenarios and use-cases. Analytical models constitute a good
method to do holistic evaluations to study the impact of certain
parameters on QoE influencing factors.

C. Models for HAS Behavior

Efforts have been made towards modeling HAS behavior
using Markov models. M/M/1/∞ models, for example, work
on a high level of abstraction, however, they allow to easily
compute relevant metrics. Hoßfeld et al. [14] presents such a
model, which applies a pq-policy. Thereby, buffer values of p
and q constitute lower and upper bounds for segment requests,
resulting in the typical HAS on-off behavior. The model is
applied to investigate the impact of user profiles on the QoE
of adaptive streaming. The authors use mean-value analysis to
appropriately dimension the video buffer so to meet the trade-
off between initial delay and buffered time for different user
characteristic, e.g. watching a complete video versus browsing
videos.

De Cicco et al. [19] formalizes the behavior of an Akamai
video streaming session. The system is modeled as a hybrid
automaton, using upon others the video level, the current rate,
and the playout buffer as state variables. Using their model,
the authors show that stalling can be avoided by properly
tuning switching thresholds and that a proper setting of the
ratio between idle states and segment downloading can avoid
large buffering, which results in network resource wasting in
case the user aborts the video.

Burger et al. [13] models the video buffer as a GI/GI/1
queue with pq-policy using discrete time-analysis. Thereby, the
video portion buffered at the client is considered as the amount
of unfinished work in the system. The playback is the service
time, i.e. draining the buffer. It is assumed that the inter-arrival
times, which correspond to the segments’ download durations,
are independent. The model allows to evaluate the impact of
video characteristics (e.g. segment duration, bitrate variation),
network dynamics, and buffer policies on the streaming per-
formance. However, this work does not model the quality
switching behavior of DASH. Admittedly, the model allows
for evaluating metrics like stalling probability and average
buffer, but not for evaluating those QoE influencing factors
that are related to video quality, i.e., the average quality or the
number and amplitudes of quality switches. Correspondingly,
the model in it its current state does not yet allow to examine
the impact of the number of quality levels, or the setting of
quality switching thresholds, on HAS performance.



Notion Description
Un RV for the buffer level immediately upon arrival of segment
A

(i)
n RV for the inter-arrival time of segment n of quality level i

Bn RV for the play time of segment n
C

(i)
n RV for the average bitrate of segment n of quality level i

Dn RV for the average throughput received for downloading
segment n

q Maximum buffer, i.e. pause buffering threshold
p Continue buffering threshold
qti Buffer threshold for requesting quality layer i

TABLE I
NOTIONS USED IN THE MODEL DESCRIPTION AND THEIR MEANING
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Fig. 1. Sample state process of GI/GI/1 buffer with pq-policy and switching
thresholds.

In this paper, we build upon the work of Burger et al. and
extend the existing model by including the DASH switching
behavior.

III. PROPOSED MODEL

The model proposed in this paper is based on the work
conducted in [13]. It is a generic model, which is based on
distributions. Please note that any distribution can be assumed
for available bandwidth, segment size and segment duration.
As every model, it abstracts reality and is based on a couple
of assumptions. Besides assumptions like negligible round
trip times and protocol overhead, or the playback availability
of segments solely when completely downloaded, this also
includes segment arrivals and service times to be indepen-
dent. We extend this model by mimicking switching between
different quality layers based on the buffer thresholds. Hence,
the selected quality for the next video segment, and therewith
the bitrate of this segment and the downloading time, depend
on the current buffer state. Thus, the proposed extension
constitutes a relaxation of the independence assumption for
segment inter-arrivals.

For the following subsections, we use the notions illustrated
in Table I. The respective probability mass functions are
denoted by un(k), a(i)n (k), bn(k), c(i)n (k), and dn(k).

A. Model Description

We describe the proposed model exemplary considering
three quality layers (i = 1, 2, 3) using Figure 1. The time t is
depicted along the x-axis, the y-axis represents the buffered
time. Upon arrival of segment n− 2, the subsequent segment
n−1 is requested, denoted as rn−1. As the current buffer U(t)

is below the threshold qt2, quality 1 is chosen for segment
n − 1, resulting in a download time of A(1)

n−1. Upon arrival
of segment n− 1, the buffer exceeds threshold qt3, triggering
segment n to be requested in quality 3. After the segment’s
download duration, i.e. A(3)

n , segment n + 1 is requested in
quality 2, as the buffer exceeds qt2, but is below qt3. Once
the maximum buffer q is reached, the client enters idle state,
i.e. the request is paused until the buffer falls below threshold
p for continuing buffering.

The current video playback buffer level, which corresponds
to the unfinished work in case of a GI/GI/1 queue immediately
upon the (n − 1)-th segment arrival, is denoted by Un.
Assuming that the video player requests the next segment n
with quality level i immediately upon arrival of the (n−1)-th
segment, the inter-arrival time of the segment A(i)

n equals the
time to download the segment.

A(i)
n =

C
(i)
n ·Bn

Dn
. (1)

Upon arrival of segment n, its playtime Bn is added to
the buffer level. Note that the distribution of Ai

n has to be
calculated by a ratio distribution in order to consider the
bitrate of the segment and the download bandwidth. Since we
are utilizing discrete-time analysis, we can compute the ratio
distribution by iterating over all possible combinations.

The service rate of the video player is determined by
the video bitrate which corresponds to the amount of video
data played out per time unit, e.g., bits per second. Hence,
the average bitrate corresponds to the service rate of video
playtime by the video player, thus we denote E[Ci

n] = µi.
The average throughput corresponds to the arrival rate of
video playtime in the queue, thus we denote E[Dn] = λ. In
the parameter study, we consider the bandwidth provisioning
factor a, i.e., the offered load on the video player, which
corresponds the ratio of available bandwidth to the lowest
quality level’s bitrate.

a =
E[Dn]

E[C1
n]

=
λ

µ1
(2)

A fluent video playback is generally only possible if a > 1.
If more video data is delivered than is played out, the video
buffer will increase, and better qualities will be downloaded,
based on the bitrates of the quality levels and the available
throughput.

To derive the discrete time model of the buffer level
in the GI/GI/1 queue with pq-policy and quality switching
thresholds, we introduce the following notations.

Assuming we have N qualities, we choose thresholds
qt1, . . . , qtN with According to the buffer level Un imme-
diately after the arrival of segment n − 1, the quality for the
next segment request is determined. If qti ≤ Un < qti+1,
the player requests the next segment in quality i. For the first
quality the condition reduces to Un < qt2 and for quality N
we need to have Un ≥ qtN .

The last inequality qtN ≤ p ensures that the quality does
not decrease when pausing the requests during the idle state.



We can define the disjoint sets Qi, i = 1, . . . , N represent-
ing all buffer levels that result in the download of the next
segment in quality i.

Q1 = {0, 1, . . . , qt2 − 1}
Qi = {qti, qti + 1, . . . , qti+1 − 1}, i = 2, . . . , N − 1

QN = {qtN , . . .}

The set Qi contains the buffer levels upon which quality i is
requested.

Following the notation of [13], we introduce the conditional
random variables

Ũn,i = Un|Un ∈ Qi, Un < q i = 1, . . . , N

Ũn,N,1 = Un|Un ∈ QN , Un ≥ q

and

Un+1,i = Un+1|Un ∈ Qi, Un < q i = 1, . . . , N

Un+1,N,1 = Un+1|Un ∈ QN , Un ≥ q

with corresponding distributions ũn,i, ũn,N,1, un+1,i, and
un+1,N,1. The first two probability mass functions are the
normalized restriction of un(k) to a certain range of buffer
levels, each of which corresponds to one quality.

ũn,i(k) = P (Un = k|Un ∈ Qi, Un < q), i = 1, . . . , N

ũn,N,1(k) = P (Un = k|Un ∈ QN , Un ≥ q)

These distributions can be easily calculated. With qt1 := 0,
we get for i = 1, . . . , N − 1:

ũn,i(k) =
σqti(σ

qti+1(un(k)))

P (qti ≤ Un < qti+1)
.

For i = N , we have:

ũn,N (k) =
σqtN (σq(un(k)))

P (qtN ≤ Un < q)

ũn,N,1(k) =
σq(un(k))

P (Un ≥ q)
,

where we use the σ−operator that truncates the distribution to
a certain range.

σm(u(k)) =

{
u(k), k ≥ m
0, k < m

σm(u(k)) =

{
u(k), k < m

0, k ≥ m

With the sweep operator π we define another operator that
takes the probability mass below 0 or above p and adds it to
0 or p respectively.

π0(u(k)) =


u(k), k > 0

u(0) +
∑
i<0

u(i), k = 0

0, k < 0

πp(u(k)) =


u(k), k < p

u(p) +
∑
i≥p

u(i), k = p

0, k > p

We can define a similar operator for a random variable X:

Π0(X) =

{
X, X ≥ 0

0, X < 0

We use π0 or Π0, since negative buffer levels are not possible.
Next, we derive Un+1,i and Un+1,N,1 and their respective

probability mass functions.

Un+1,i = Π0(Ũn,i −A(i)
n ) +Bn, for i = 1, . . . , N.

The buffer level Un,i, given that Un is in quality range i, is
reduced by the corresponding inter-arrival time A(i)

n . Since the
buffer level can’t drop below zero, we apply the Π0 operator
to the result. Then the n− th segment arrives and its playtime
Bn is added to the buffer level.

The probability mass function of Un+1,i is given by:

un+1,i(k) = (π0[ũn,i(k) ∗ a(i)n (−k)] ∗ bn(k)).

If we have qtN ≤ Un (i.e. the buffer level corresponds to
the highest quality), Un is either below the buffering-pause
threshold q or it exceeds the threshold q. The first case is
included in the previous formula with i = N . In the second
case, the segment request is paused until the buffer level falls
below threshold p. Un+1,N,1 is then given by:

Un+1,N,1 = Π0(p−A(N)
n ) +Bn

with distribution:

un+1,N,1(k) = (π0[πp(ũn,N,1(k)) ∗ a(N)
n (−k)] ∗ bn(k)).

From the above equations, we derive with qt1 := 0:

un+1(k) = π0
[N−1∑

i=1

(
σqti(σ

qti+1(un(k))) ∗ a(i)n (−k)
)
+

σqtN (σq(un(k))) ∗ a(N)
n (−k)+

πp(σq(un(k))) ∗ a(N)
n (−k)

]
∗ bn(k).

Additionally, we are interested in the buffer level not
directly after a segment arrives but before. Furthermore, we
allow the buffer level to be negative, which means we omit the
operator Π0. This corresponding random variable is denoted
by Ûn. The distribution is given by:

ûn(k) =

N−1∑
i=1

(
σqti(σ

qti+1(un(k))) ∗ a(i)n (−k)
)
+

σqtN (σq(un(k))) ∗ a(N)
n (−k) + (πp(σq(un(k))) ∗ a(N)

n (−k)).
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Fig. 2. Computational diagram of the buffer model

B. Metrics
In the following, we present the computation of the

QoE-relevant metrics. For the sake of brevity, we limit
the description on the steady state probabilities. Thereby,
u(k), û(k), a(k), b(k) denote the steady state distribution of
the corresponding random variables. We define qt1 := 0 and
qtN+1 := q to shorten the notation.
Stalling probability A stalling event occurs, when the buffer
is empty and the next segment hasn’t arrived yet. We can cal-
culate the stalling probability by summing up the probability
mass of all negative buffer levels of û(k).

pst =
∑
i<0

û(i) (3)

Stalling duration The stalling duration corresponds to the
time that passes between the buffer runs empty and the arrival
of the next segment.

L = −
∑
i<0

i · û(i) (4)

Average buffer level To calculate the average buffer level,
u(k) and π0(û(k)) has to be taken into account, since u(k)
is the buffer level after segment arrival and û(k) is the
buffer level immediately before a segment arrives. Instead,
we calculate the average buffer level upon segment arrival by
the following formula, where we sum over all possible buffer
levels i.

ū =
∑
i

i · u(i) (5)

Switching amplitude A switch of amplitude j means that the
quality of segment n is j steps lower or higher than the quality
of segment n− 1. The probability for a switch of amplitude j
for j = 0, . . . , N−1 is given by the following formula, where
we define Qi = ∅ for i < 1 or i > N .

pamp(j) =
N∑
i=1

∑
k∈Qi+j∪Qi−j

(π0[σqti(σ
qti+1(u(k))) ∗ a(i)(−k)] ∗ b(k))+

∑
k∈QN+j∪QN−j

(π0[πp(σq(u(k))) ∗ a(N)(−k)] ∗ b(k))

(6)
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Fig. 3. Impact of quality switching threshold qt2 on QoE-IFs for different
cvar of the available bandwidth. All metrics along the y-axis denote the
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Switching probability The probability to observe a switch
from one quality to another when the next segment arrives
can be calculated by:

pswitch =

N∑
i=1

∑
k/∈Qi

(π0[σqti(σ
qti+1(u(k))) ∗ a(i)(−k)] ∗ b(k))

+
∑

k/∈QN

(π0[πp(σq(u(k))) ∗ a(N)(−k)] ∗ b(k)).

(7)

Average quality The average quality, where the quality is
between 1 and N , is given by:

Q̄ =

N∑
i=1

i
∑
k∈Qi

u(k). (8)

IV. MODEL APPLICABILITY TO STUDY THE INFLUENCE OF
DASH PARAMETERS

In the following, we exemplary illustrate the model’s ap-
plicability by studying the impact of the quality switching
threshold on relevant QoE influence factors. We consider three
quality levels, whereby the threshold to switch to quality layer
2, i.e. qt2, is set to 6, 10, 14, and 18 seconds. The threshold for
requesting the third quality level, i.e. qt3, is set to 25 seconds
and does not change throughout the study. The video segment
duration is set to 5 seconds. For the bitrates of the three quality
layers, it holds q1 = 0.7 · q2 and q3 = 1.3 · q2, whereby the
average bitrate of quality level 2 is 5000 kbps with a standard
deviation of 500 kbps. We set a bandwidth provisioning factor
to a = 1.5, i.e. the available bandwidth is the 1.5-fold of
the lowest quality’s bitrate. The coefficient of variation of the
available bandwidth (cvar) ranges from 0 to 1 in steps of 0.05.

The plots in Figure 3 illustrate, from top to bottom, the
average amplitude of quality switches, the frequency of quality
changes, the average video buffer, the average quality level,
and the stalling probability.

For cvar = {0, 0.05, 0.1, 0.15, 0.2}, the behavior is similar
for all threshold configurations of qt2. For cvar ranging
between 0.25 and 0.5, the average buffer values start to drift
apart, whereby a higher threshold qt2 indicates a larger buffer.
Within this region (cvar between 0.25 and 0.5), it is also



observable that qt2 = 6 shows the lowest switching frequency
and amplitude, whereby qt2 = 18 shows the highest values for
these metrics. This is due to the fact that the average buffer,
when setting qt2 to 18 seconds, lies between 22.5 seconds and
17.39 seconds. Hence, the average buffer is close to the the
switching threshold of qt2 = 18, and as a consequence, quality
switches are triggered with higher probability. As the buffer
constantly decreases with increasing values of cvar, the buffer
approaches the values of the lower switching thresholds. As a
result, beginning with cvar = 0.55, the switching frequency
increases with decreasing qt2.

In general, the buffer shrinks with increasing bandwidth
variations. Accordingly, the probability of stallings increases,
especially in cases where quality is rather adapted in an ag-
gressive (qt2 = 6), than in a conservative manner (qt2 = 18).
Although small quality thresholds bring a high quality on
average, they should be avoided if the network is likely to
show high variability. The results point out that higher values
for threshold qt2 can cushion network dynamics and lead to
less stalling, while they provide a similar quality as the lower
thresholds for qt2 in constant scenarios, i.e. cvar = 0.

The threshold qt2 determines the number of video interrup-
tions in networks with high variability, but at the same time
has hardly impact on the average quality in scenarios with
static network conditions. Accordingly it is generally better to
set the first threshold to a larger value and thus increase the
quality in a quite conservative manner.

This first proof-of-concept study shows how the model can
be used to optimize quality switching thresholds for a given
set of quality levels in a QoE-centric manner. It is essential to
adjust configuration-specific parameters, e.g. buffer boundaries
for pausing/resuming segment requests or quality thresholds,
to the expected network conditions as well as to the given
content properties, such as the number of available qualities
or their bitrate characteristics. With the proposed generic
model, which supports any distributions and configurations,
parameters can be tuned to the underlying conditions without
the need for costly measurements or simulations.

V. CONCLUSION

Due to the high complexity of adaptive video streaming
systems, it is cumbersome and time-consuming to perform a
holistic analysis of all involved parameters. Hence, theoretical
models providing an appropriate abstraction, while still repli-
cating the adaptive video streaming behavior, are required.
In this work, we extend a GI/GI/1 buffer model with pq-
policy by including the switching behavior of adaptive video
streaming systems, so to capture all relevant QoE metrics for
adaptive video streaming systems. As a first step, we studied
the interplay of switching thresholds and network conditions
in terms of QoE-IFs. The evaluations reveal the dependence
of this thresholds with respect to the network characteristics
and clearly show how the thresholds can be used to tune the
trade-off between a high video quality and stalling.

For future work, we plan to validate the model with testbed-
based measurements to outline the significance of the model.

Furthermore, we will extensively study the interaction and
influence of different network and video characteristics, as
well as player configurations on the HAS performance. Using
the standardized QoE model P.1203 [20], we plan to tune
all adjustable parameters so to optimize the overall user
perceived quality for different network scenarios and content
characteristics.
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