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Abstract—Many exciting applications are currently emerging
due to the use of technology from the Internet of Things (IoT) in
Smart Cities. In recent years, Long Range Wide Area Networks
(LoRaWANs) have become one of the main technologies in this
field due to long distance coverage, low power consumption
sensors, and economic reasons. So far, LoRaWANs have been
planned and deployed mainly with the aim of minimizing
the number of gateways, while still providing coverage in a
geographic area. Packet collisions and future traffic have not been
considered. In contrast, we present a gateway placement strategy
that is robust against an increase in the number of sensors and in
the network load. To this end, we modify an existing local search
algorithm for a geometric set cover problem such that it takes
the capacities of gateways into account. If we set these capacities
below the maximum, the network can accommodate additional
sensors in the future. Moreover, our algorithm can extend the
initial placement once the capacities are exhausted.

I. INTRODUCTION

Weather, climate, traffic, and pollution monitoring as well as
smart water metering [1] are only a small subset of application
areas that currently emerge given the Internet of Things (IoT)
and Smart Cities. Although some deployments have high
bandwidth or very low delay requirements, a large number
of applications require cheap sensors and energy-efficient
communication. There, Long Range Wide Area Networks
(LoRaWANs) have proven to be viable [2].

Nowadays, a LoRaWAN provider sets up the IoT gateway
infrastructure with coverage and reasonable Quality of Service
(QoS) for all sensor nodes. As usual with new infrastructure,
novel use cases will emerge and will be used, which in turn
creates more traffic. As a consequence, there is an expected,
but unknown increase of IoT traffic in such networks. This is a
key problem which is, to the best of our knowledge, not taken
into account by existing gateway placement algorithms, which
mainly aim at minimizing the number of required gateways for
given network traffic patterns and loads [3].

In this work, we address the IoT gateway placement prob-
lem as a geometric set cover problem where we are given a
set of gateway candidates (disks) and a set of sensors (points).
Each gateway has a capacity – the maximum number of sen-
sors that can be assigned to it. The task is to select a minimum-
size subset of the gateway candidates such that each sensor
can be assigned to a gateway that covers it and no gateway
capacities are violated. We solve this problem by modifying
an existing local search heuristic for the uncapacitated version
(which is already NP-hard). For small problem instances, we
compare the solutions of this algorithm to exact solutions

computed using an integer linear program (ILP). By limiting
gateway ranges and capacities, we reserve gateway capacity
towards a future network load or sensor increase. Based
on the resulting placements, we study different LoRaWAN
network configurations and sensor assignments to compute the
packet collision probability for different placements. Finally,
we emulate future network scenarios with increasing sensor
numbers, study their influence on our placement, and provide
ways to extend our placement.

Our contribution is threefold. First, we present a novel
approach for IoT gateway placement by solving a capacitated
geometric set cover problem in reasonable time for realistic
Smart City scenarios. Second, we present a methodology to
study the QoS for a LoRaWAN based on a collision probability
investigation. Third, by varying input parameters for the place-
ment algorithm, we show how to compute gateway placements
that are robust against load increase and how to extend an
existing placement when the capacities are exhausted.

The remainder of this work is structured as follows. We
first review background and related work concerning gateway
placement (Section II). Then, we introduce our methodology
(Section III). Next, we present our scenarios (Section IV) and
evaluate them (Section V). Finally, we conclude (Section VI).

II. BACKGROUND AND RELATED WORK

We summarize fundamental background required to under-
stand the gateway placement approach. Afterwards, we outline
related work on LoRaWAN and gateway placements therein.

A. Gateway Placement

Gateway placement is a geometric variant of the well-
known combinatorial optimization problem SET COVER. In
SET COVER, one is given a ground set U (our sensors) and
a family S of subsets of U (for each gateway, the set of
sensors that can communicate with the gateway), and the task
is to find a smallest cover, that is, a subset C of S such
that

⋃
S∈C S = U . Clearly, a cover can only exist if S itself

covers U . It is well-known that SET COVER is NP-hard and
that a simple greedy approach (that repeatedly selects the set
that covers the largest number of uncovered elements) yields
an (lnn)-approximation [4], which is essentially best possible.

We assume that sensors and gateways are points in the plane
and that a gateway can communicate with all sensors within a
certain distance r. In this variant of GEOMETRIC SET COVER,
a subset of the (gateway) disks must cover all (sensor) points.
This is equivalent to the HITTING SET problem where the
sensors correspond to disks of radius r, and the task is to
find the smallest hitting set, that is, the smallest set of pointsISBN 978-3-903176-42-3© 2021 IFIP



in the plane such that every disk contains at least one of the
points. Many geometric variants of set cover and hitting set
have been studied. Since geometry restricts the ways to cover
the ground set, usually better approximations exist for these
variants. E.g., using so-called epsilon-nets yields constant-
factor approximations [5]–[7]. Mustafa and Ray [3] presented
a simple local search algorithm with an additional parameter k.
For every k > 1, their algorithm computes a (1 + b/

√
k)-

approximation in nO(k) time, where b is a constant. Their
iterative local search algorithm, which we denote by Geo-
metricLocalSearch, works as follows. Initially, set C = S,
i.e., put all (gateway) disks into the cover. While there is
a set of k (gateway) disks from C that can be replaced by
k − 1 (gateway) disks from S such that all (sensor) points
are still covered by C, reduce the size of C by at least one
by applying this replacement. We study a capacitated version
of GEOMETRIC SET COVER where each gateway may only
communicate with the ` closest sensors in its range. We call
this problem VORONOI COVER. We solve this new problem
using the local search algorithm of Mustafa and Ray because
it can easily be adapted to our setting (though we do not
prove that the algorithm keeps its approximation guarantee).
This adapted version, which we call VoronoiLocalSearch, is
described below.

B. Related Work on LoRaWAN and Gateway Placement
Adelantado et al. [8] thoroughly investigate the limitations

of LoRaWANs and consider the network behavior for e.g.,
different spreading factors and payload sizes. Bankov et al. [9]
discuss the limits of LoRaWAN channel access. Ferré [10]
presents a theoretical study for collisions and packet loss
at a LoRaWAN gateway and validates the study with a
simulation. Others do large-scale measurements to investi-
gate LoRaWANs. For example, Liu et al. [11] describe a
real-world LoRaWAN deployment in Shanghai with 66,000
sensors over an area of 140 km2. Their study includes the
examination of packet loss characteristics and sources. A
large scale real-world experimental evaluation is also done
for Bangkok in [12]. Several gateway placement approaches
focus on coverage and cost reduction. Recent works among
those are based on k-means, c-means [13] or other clustering
approaches [14]. Mnguni [15] surveys the area. Ousat et
al. [16] present an approach based on mixed-integer non-linear
optimization, which can be used only for small networks. In
contrast to related work, our approach focuses on robustness
against increasing load. Our main target is not primarily to re-
duce the number of placed gateways but reducing the collision
probability by an in-depth analysis of the received placement
and the placement parameters. With different parameters and
different sensor settings and scenarios, we focus on future
increase in the number of sensors in the network and thus,
the load. How to scale a LoRaWAN has, to the best of our
knowledge, not been studied so far.

III. METHODOLOGY

In this section, we present our approach for a robust gateway
placement for LoRaWANs and the methodology to receive
packet collision probabilities of the complete network.

A. Overview

Our methodology consists of three steps summarized in
Table I. The gateway placement is the first step, where we
place our gateways based on an input of sensors, possible
gateway locations, a transmission range and a sensor limit for
gateways. With this placement and additional LoRa transmis-
sion parameters, we set up a network configuration and map
each sensor to the closest gateway in step two. In step three, we
calculate the packet collision probability for each sensor and
the complete network. In the following we start with details
about our gateway placement approach.

B. Gateway Placement

1) Problem: Our goal is to model the problem of selecting
gateway positions for a LoRaWAN as a GEOMETRIC SET
COVER problem where the sensors are points that need to be
covered and the gateways are unit disks whose radius r equals
the sending range of a gateway. However, note that this model
is not suitable ad-hoc because in GEOMETRIC SET COVER,
a disk can cover an arbitrary number of points, whereas in a
LoRaWAN each gateway has a maximum number of sensors
it can serve reliably.

Consequently, we generalize GEOMETRIC SET COVER for
unit disks to what we call VORONOI COVER, where we are
given, besides (sensor) points P and (gateway) unit disks D
in the plane, an additional parameter ` specifying the limit
of (sensor) points being assigned to a (gateway) disk in the
cover C ⊆ D. We say a (sensor) point p is assigned to a
(gateway) disk c ∈ C if for all c′ ∈ C\{c} : d(p, c) < d(p, c′),
where d is the Euclidean distance function, in which (gateway)
disks are represented by their center points. We assume that,
for any given point in such an instance, all distances to the
disk centers are pairwise different. This is in line from what we
would expect from real world applications. In other words, p
is assigned to c if p lies in the Voronoi cell of c in the Voronoi
diagram constructed by the centers of C. Each Voronoi cell is
allowed to host at most ` points. For an example, see Figure 1.
Observe that GEOMETRIC SET COVER for unit disks is the
special case of the VORONOI COVER when ` =∞. VORONOI
COVER is similar to CAPACITATED DISK COVER [17], [18],
which is also GEOMETRIC SET COVER with a limit of (sensor)
points per (gateway) disk, but there, (sensor) points do not
need to be assigned to the closest (gateway) disk and the
algorithm is supposed to determine such an assignment beside
selecting (gateway) disks.

2) Algorithms: Next, we describe our new method
VoronoiLocalSearch built upon GeometricLocalSearch.
We proceed in the same way, but when we try to replace k
(gateway) disks by k−1 (gateway) disks, we accept only if for
all (gateway) disks, the number of (sensor) points assigned to
each of them does not exceed the capacity `. Note that, during
this replacement, not only the k − 1 new disks need to be
checked, but also the disks in the cover around, which may re-
ceive points that were previously assigned to one of the k disks
taken out from the cover. Moreover, we apply several speed-
up techniques to make this originally theoretical algorithm
considerably faster and usable for practical applications. Most



TABLE I: Overview over the methodology of our 3-step approach

# Input Methodology step Output Sect.

1 sensor and possible gateway locations, range r for gateways, sensor
limit ` per gateway

gateway placement sensor and gateway positions III-B

2 sensor and gateway positions, LoRa transmission parameters network configuration and
sensor mapping

for each sensor: used SF, best gateway,
number sensors in collision radius with SF

III-C

3 for each sensor: sensors in collision radius with SF, LoRa packet
parameters

packet collision calculation collision probability for each sensor and
within complete network

III-D

6.40 6.42 6.44 6.46 6.48 6.50 6.52
49.70

49.72

49.74

49.76

49.78

49.80

49.82

49.84

Fig. 1: VORONOI COVER (clipped) for Würzburg, Germany,
with 28,000 sensors (1 per building) using 25 gateways. Each
gateway defines a Voronoi cell; all sensors in this cell are
assigned to that gateway. The blue disks indicate the gateway
range (1.5 km). We used a capacity of ` = 2,000 per gateway;
some of the central cells come close to this limit.

notably, we start by removing unnecessary (gateway) disks
(k = 1); then we increment k. In our experience, going up to
k = 2 already yields good results and is still relatively fast,
whereas k = 3 yields only a rather small improvement at the
cost of a much higher running time. In practice, incrementing
k beyond 3 does not make sense. This is confirmed by a small
pre-study (see below). Moreover, we use a grid depending on
the radius r of the (gateway) disks since a set of disks can
only be replaced by disks in the neighborhood. With this easy
exploitation of the locality, we can save a significant amount
of time. Beside this, we randomize the order of disks we check
and we mark areas that are not affected by changes to save
re-computation time. We have implemented our algorithm in
Java which will be published after acceptance.

For comparison reasons, we have also implemented the
integer linear program (ILP) for VoronoiLocalSearch. For
each (gateway) disk c and for each pair of a (sensor) point p
and a (gateway) disk c, we have a variable corresponding to:

xc = 1⇔ c is in the cover
xp,c = 1⇔ p is assigned to c

We will also use the ordered set Dp, which contains all
(gateway) disks that a (sensor) point p lies in and is sorted
increasingly by distance from p (the ordering is denoted by
≺p), and the set Pc, which contains all (sensor) points that
lie within a (gateway) disk c. The objective is to minimize∑

c∈D xc subject to the following constraints.

– Each sensor is assigned to at least one gateway:∑
c∈Dp

xp,c ≥ 1 for p ∈ P

– At most ` sensor are assigned to each gateway:∑
p∈Pc

xp,c ≤ ` for c ∈ D

– Sensors can only be assigned to gateways in the cover:
xp,c ≤ xc for p ∈ P, c ∈ Dp

– Each sensor p is assigned to the closest gateway in the cover:∑
c′≺pc

xc′ ≤ (1− xp,c) · |Dp| for p ∈ P, c ∈ Dp

– Gateway c is either in the cover (xc = 1) or it isn’t.
xc ∈ {0, 1} for c ∈ D

– Sensor p is assigned to gateway c (xp,c = 1) or it isn’t.
xp,c ∈ {0, 1} for p ∈ P, c ∈ Dp

To solve the ILP, we have used IBM CPLEX, a commercial
state-of-the-art ILP solver. An ILP solution for VORONOI
COVER minimizes the number of chosen disks.

C. LoRaWAN Configuration and Sensor to Gateway Mapping
In this section, we introduce LoRa related parameters re-

quired for LoRaWAN configuration and determine the possible
transmission distance of a sensor in a LoRaWAN.

1) LoRa: LoRa is a low-power wide-area network modu-
lation technique based on the chirp spread spectrum. It uses
license-free radio frequencies as from 867 MHz to 869 MHz
in Europe and 125 kHz bandwidth (BW) for uplink. In the
following, we introduce several other variable parameters that
influence the transmission behavior in LoRaWAN.

Spreading Factor: The Spreading Factor (SF) in LoRa
defines the number of raw bits a symbol carries. Packets
transmitted with higher spreading factors can be transmitted
over longer distances and are more robust against interference
at the cost of increasing duration to transmit a single symbol.
This so called symbol duration is Ts = 2SF /BW and
influences the Time on Air (ToA) of a LoRa packet.

Time on Air: The ToA of a LoRa packet is

Tpacket = (npreamble + 4.25) · Ts + (nps · Ts), (1)

where the first term is the preamble duration. The payload
duration is (nps · Ts) with nps as number of payload symbols

nps = 8 +max(dnpayloade · (CR + 4), 0)

and

npayload =
8PL− 4SF + 28 + 16CRC − 20 IH

4SF − 8DE
.

The parameters used above are detailed in Table II.



TABLE II: Parameter overview

Parameters Variable Value

gateway height hT 5 m
sensor height hR 4.5 m
bandwidth BW 125 kHz
coding rate CR 4
payload PL variable; based on scenario
cyclic redundancy check CRC 1
enabled or disabled header IH 1
low datarate optimize DE 0
number of preamble symbols npreamble 8

Hata Path Loss Model: The Hata model is especially
developed to determine the transmission path loss within radio
access networks in urban environments. For that reason, the
urban version according to [19] is used here. The path loss
Ploss is calculated according to

Ploss = 69.55 + 26.16 log10(f)− 13.82 log10(hR)

−a(hT) + [44.9− 6.55 log10(hR)] log10(d)
(2)

with
a(hT) = 3.2 [log10(11.75 · hT)]

2 − 4.97

and f as the radio frequency of 867MHz for LoRa, hR as
receiver height in meters, hT as transmitter height in meters,
and d as distance between both in meters.

2) Sensor to Gateway Mapping: Next, we describe the sen-
sor to gateway mapping process like it is done in LoRaWAN.
This is required to receive information about interferences
between transmitting sensors.

Transmission Distance: First, we calculate the maximal
possible transmission distance for each LoRa sensor. The goal
for each sensor in a LoRaWAN is to transmit to the closest
gateway to transmit with the lowest possible SF and save
ToA. For that reason, we first calculate the distance to the
closest gateway for each sensor based on the gateway and
sensor locations and the sensor assignment received from
our algorithm VoronoiLocalSearch. Afterwards, we calculate
the possible transmission distance for each sensor which is
influenced by several factors, among others, the used path
loss model with the geography the network is located in,
the sensor- and gateway height, the transmission power and
the used SF for transmission. All required parameters we use
for a LoRa transmission in this work are summarized with
the respective value in Table II. For this study, we use a
bandwidth of 125 kHz. The sensor transmission power Tx
is set to 12 dBm stated as realistic parameter in [20]. The
RSSI tolerance for different SFs is received by adding the
transmission power to the radio frequency sensitivity from
literature [21]. By activating Equation 2 towards the distance,
the maximal transmission distance for different spreading
factors and RSSI values is received. The result is shown in
Table III. This means, a sensor transmitting with one specific
SF from the table can connect to gateways or interfere other
sensors in that specific range. With the distance to the closest
gateway calculated before, we receive a minimal SF for each
sensor that is used for transmitting packets. Additionally, for
a sensor x using SFx for transmission, all sensors k within its

TABLE III: Hata model results

Spreading
factor

RSSI
tolerance
[dBm]

Distance
[m]

Spreading
factor

RSSI
tolerance
[dBm]

Distance
[m]

7 -135 1175 10 -144 1964
8 -138 1394 11 -145 2079
9 -141 1655 12 -148 2468

transmission radius rx are interfered by x. Thus, we log for
all sensors k that they are interfered by x with SFx. The same
is done for the complete transmission path for sensor x to its
closest gateway to make sure interference takes place between
sensor and gateway. In this way, we iterate over all sensors x
in the complete network to receive all possible interferences
for each sensor with the respective SF. In the following, we
use this information for collision probability calculation.

D. Collision Probability Calculation

In LoRaWAN, an ALOHA-like random channel access
mechanisms is used which result into packet collisions. Since
this is an essential QoS parameter the last step in our method-
ology is the calculation of packet collision probabilities for
all sensors and the complete network. For simplicity reasons,
we only study a single LoRaWAN channel while the collision
probability determination for multi-channel investigations is
left as future work. Two packets p1 and p2 collide in a
LoRaWAN channel when the transmission interval I1 of p1
and I2 of p2 defined by transmission start t0 and transmission
end t1 overlap. For each sensor x in the network we receive
a number of sensors kx with the respective SF s potentially
interfering with x from step 2. We set the transmission rate to
one packet per hour. This is valid since changing the packet
transmission rate per sensor has the same influence on the
packet transmission rate in the network and thus the collision
probability as changing the number of sensors in the network
and vice versa. With this input, we calculate the transmission
start times for x and all kx as uniform random numbers
between 0 s and 3600 s. This is valid for a sufficiently large
number of sensors according to Metzger [22]. We calculate the
ToA Tpacket for each packet with the received SF from step 2
according to Equation 1. An overview of the used parameter
values is presented in Table II. The transmission end time for
each packet is received by t1 = t0+Tpacket. If the transmission
interval Ix of sensor x overlaps with any transmission interval
Ik of any kx in the transmission range, x collides. Because
of the randomness of transmission start times t0, we repeat
this 10,000 times to study the collision probability for packets
for each individual sensor and 10 times to study the overall
packet collision probability within the network.

IV. SCENARIOS

To simulate realistic scenarios, we derive the positions of
gateways and sensors from real-world data. More precisely,
we use the centroids of about 28,000 buildings of the city of
Würzburg, Germany, from OpenStreetMap as a base set of
geographic coordinates. For the potential gateway positions,



we use the grid points of a grid of cell side length 2r/
√
2 and

20% of the sensor positions uniformly at random. The former
guarantee that we can reach all sensors even in sparse areas,
while the latter provide enough candidate positions for dense
areas, where the capacity ` of a single gateway would quickly
be exceeded.

A. Scenario Definition

To study the applicability, the performance, and the ro-
bustness regarding future proof deployment, we study two
different scenario sets. First, we define a pre-study scenario
set to investigate the choice of the parameter k for our algo-
rithm VoronoiLocalSearch, the randomness of the presented
algorithm and the randomness of results for different sensor
input. An overview of all pre-study scenarios is presented
in Table IV. For all scenarios, we take a random subset
of size 2,800 as sensor positions. This number is a good
trade-off between a sufficiently large network and enough
potential for scaling up and out. Note that our algorithm
VoronoiLocalSearch also works for larger deployments in
larger cities. But then, due to exceeding runtimes of the ILP,
no comparison to an optimal solution is possible. The results
of the pre-study lead us to answer the question how many
runs are required for each scenario by evaluating each run
of each algorithm by its runtime, the number of selected
gateways, and the actual arrangement of the selected gateways
for usage in the robustness-study. Then, our robustness-study
contains three steps: (1) the initial placement study with input
parameters received in the pre-study, (2) the load increase to
study robustness towards future load and sensor increase, and
(3) the extension study where we add additional gateways with
our algorithm to avoid packet collision probability peaks.

B. Pre-Study for Algorithm Configuration

Parameter Choice for the Local Search Algorithm: One
input parameter for the placement algorithm is an integer
k, used in the VoronoiLocalSearch to specify up to which
number of disks the algorithm tries to replace k by k − 1
disks. To study this parameter, we fix all parameters of our
algorithm (r = 1.5 km, ` = 500) with a random input set
of 2,800 sensor positions, and the set of gateway position
candidates. For each of k = 1, 2, 3, 4, we perform 10 runs
with an algorithm timeout limit of 30min. For k = 3 this
timeout has been reached in 7 runs and for k = 4 in all 10
runs. The solution found until this point is taken. The average
time to run the test for k = 1 is 0.32 s and the output solution
consists of 20.5 (gateway) disks, for k = 2 it is 1.91 s with
17.8 (gateway) disks and for k = 3, it is 1690.21 s for 16.8
(gateway) disks. The additional time used for k = 4 in our tests
did not yield any improvement compared to k = 3. Since we
see the best trade-off between rumtime and quality for k = 2,
we use this value in the following.

Randomness Algorithm: Since VoronoiLocalSearch use
randomness internally, we cannot expect the results to be the
same every time. For that reason, in the randomness algorithm
scenario, we fix all parameters of our algorithms (r = 1.5 km,
` = 500), the set of 2,800 sensor positions, and the set of

TABLE IV: Pre-study overview

Study Study goal Study result

Choice of k receive best value of k for
the algorithm: trade-off run-
time and result

k = 2 as best value

Randomness
of the
algorithm

receive suitable number of
reruns by quantification of
algorithm randomness

10 reruns per scenario

Randomness
of the input

study influence of random
sensor position selection

randomness of algorithm
dominates randomness of
sensor selection

Algorithm
input

get meaningful parameter for
sensor limit ` and gateway
range r as algorithm input

r ∈ {1.5, 2.0, 2.5, 3.0} km
` ∈ {300, 400, . . . , 1000}
∪{∞}

gateway position candidates. We do 100 runs of the algorithm
to analyze the variance of the results among different runs
of the same scenario, with regards to number of gateways
per placement, and number of sensors interfering each other
according to step 2 of our methodology. Based on the result,
we calculate the approximation error to receive a suitable
number of reruns for our algorithm for later experiments. By
using a maximal approximation error of 5 % and 1,000 reruns,
we receive 5-6 runs with regard to the number of sensors
and 5-8 runs with regard to the number of gateways. For that
reason, we use 10 reruns for the following scenarios.

Randomness Input: In the next scenario, we fix all
parameters of our algorithms (r = 1.5 km, ` = 500), and use
a different set of 2,800 sensor positions chosen uniformly at
random from the larger base set of 28,000 building coordinates
for each run. We do 10 runs with the VoronoiLocalSearch
to receive different gateway placements. For each run, we
use 10 different random sensor sets and compare the number
of sensors interfering each other according to step 2 of our
methodology. The purpose of this test is to analyze how much
the actual choice of sensor positions affects the results of the
algorithms or if the randomness of the gateway placement
algorithm dominates the random sensor selection.

For a single run we receive a minimal average number
of potentially interfering sensors of 155, the maximum is
182. When we calculate the average amount of potentially
interfering sensors for each individual placement over the 10
random sensor selections we receive values between 160 to
177 of potentially interfering sensors and a standard deviation
of 3.0. Comparing different placements, we receive a standard
deviation of 6.2. Thus, the randomness of the algorithm
dominates the randomness of the chosen sensor positions.

Algorithm Input: In the last pre-study step, we aim on
finding meaningful values for the placement algorithm input
parameters r as the range a gateway covers and ` as the sensor
limit per gateway. In this test, we create in total 66 different
scenarios by testing all possible parameter combinations:
• range r of gateways: 0.5, 1.0, . . . , 3.0 km,
• sensor limit ` per gateway: 100, 200, . . . , 1,000, and ∞.

We have one run per scenario to receive an overall insight
in the behavior for different parameter settings. We use a
different random sets of 2,800 sensor positions for each run
of each scenario. This study is designed to limit the parameter



space for the following placement study. Thus, the influence of
algorithm randomness does not influence the overall statement.
In the tests, we see that r smaller than 1.5 km is too small for
a good placement since according to Table III a transmission
distance of less than 1.5 km only uses SF7 and SF8 which
limits the potential for network scaling. Furthermore, the
received gateway density is too high for a realistic deployment.
The results show that on average up to 24 gateways are in
the range for each sensor for 0.5 km distance and 7 to 12
gateways for each sensor with 1.0 km distance. Furthermore,
we see that sensor limits per gateway of less than 300 show the
same behavior. There, on average 10 gateways are available
for each sensor for ` = 100 and 5 gateways for ` = 200.
Based on these preliminary studies, we study gateway ranges
r = 1.5 km, 2.0 km, 2.5 km, 3.0 km and sensor limits ` = 300
to 1000, step width 100 and ` =∞ in the following.

C. Placement Study

The placement study is our main investigation and consists
of three parts: initial placement study, future robustness study,
and additional placement study. Here, we sketch these steps
and in the next section, we describe their results.

Initial Placement Study: Here, we discuss the influence
of the different input parameters of our placement algorithm on
the placement and thus, the collision probability. Therefore, we
study all combinations of the gateway range r and the sensor
limit ` we received in the pre-study. We always use a random
set of 2,800 sensor positions and do 10 repetitions of each con-
figuration. Based on the presented collision calculation III-D,
we evaluate the placement algorithm input parameter towards
an optimal solution. To solely focus on this goal, we use 1B
payload. This guarantees that our evaluations hold true for the
smallest possible LoRa payload size while larger payloads are
studied in the future robustness study afterwards.

Future Robustness Study: We define future robustness
in this work by robustness of the gateway placement against
increasing collision probability in increasing load situations.
In a LoRaWAN, the load is defined by the number of sent
packets, and thus number of sensors, and the packet size. In
this study, we increase the number of sensors in the network
and study the influence on the collision probability. Further-
more, we study the influence of different packet payload sizes
of 1B, 4B, 8B, 16B, and 32B on the network.

Additional Placement Study: At the end, in the additional
placement study, we show the performance of our placement
algorithm to place additional gateways in overload situations
within an existing network. We use the existing placement, de-
fine new algorithm input parameters and recalculate the overall
packet loss in the network after the additional placement.

V. EVALUATION

First, we present our evaluation of the placement study.
Then, we discuss our placement strategy concerning robust-
ness and compare it with an optimal placement with the goal
of minimizing the number of gateways received by our ILP.

A. Initial Placement Study

Our algorithm VoronoiLocalSearch has two essential vari-
able parameters. The gateway range r and the sensor limit `.
In the following, we study the influence of both parameters
on the collision probability starting with the gateway range r.

Gateway Range: In this study, we test gateway ranges
of 1.5 km, 2.0 km, 2.5 km, and 3.0 km. Figure 2 shows the
results based on the range, independent on the sensor limit as
Empirical Cumulative Distribution Function (ECDF) with the
average collision probability for the whole network on the x-
axis. The figure shows that the collision probability increases
with larger gateway ranges since then, a higher SF is used for
transmission according to Table III. In this case, each sensor
interferes other sensors in a larger radius. Additionally, we
see this influence in the maximal packet collision probability
for single sensors. For r =1.5 km, the highest number of
sensors in the collision range of a single sensor is 509 while
none of these sensors is transmitting its data with a SF larger
than 9. Thus, we see a collision probability of 0.78 % for
1B payload. Here, the average value over all sensors and
runs is 0.30 %. For r =3.0 km, a maximum of 853 other
sensors are in the interference range of one sensor, and 107
transmit data with SF 10, 49 with SF 11, and 171 with SF 12.
There, the collision probability for 1B payload is 12.56 %. The
overall average for r =3.0 km is 2.02 %. Regarding the total
number of placed gateways, we see that less gateways must
be placed for larger gateway ranges r with on average 17.22
gateways for the scenarios with r =1.5 km, 11.83 gateways
on average for r =2.0 km, 9.33 gateways for r =2.5 km, and
only 8.12 gateways for r =3.0 km. Thus, we show that it is not
essential to minimize the number of gateways by maximizing
the transmission distances in LoRaWAN to decrease collision
probability but set up a placement to minimize the SF and
thus the ToA for each transmission. While the pre-study shows
that too small distances are not meaningful, leave no space for
future scaling, or even overload the network with gateways,
gateway distances of 1.5 km and 2.0 km are useful for our
algorithm. Additionally, only for r =1.5 km and r =2.0 km,
all sensors are covered based on the Hata transmission model.
Thus, we only consider r =1.5 km and r =2.0 km in detail.

Sensor Limit: The second input parameter for our gate-
way placement is the sensor limit `. Since we see only little
variance in the overall collision probability for r =1.5 km,
we study the collision probability based on the sensor limit `
on the x-axis for r =2.0 km in Figure 3. We see a slightly
smaller collision probability for a sensor limit of 300 up to
500 compared to larger limits. The smallest median collision
probability is received by ` = 500 with 0.29 %. For higher
sensor limits, no tendency towards increasing or decreasing
probabilities is possible anymore. Furthermore, sensor limits
of more than 500 were never reached or exceeded during the
gateway placement. For r =2.0 km, the largest number of
sensors connected to a gateway is 401, thus much larger sensor
limits are never relevant for initial placement calculation in our
scenario. In addition, we see that the gateway range r is more
important for the placement compared to the sensor limit.
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B. Future Robustness Study

Based on the result of the placement study, our future
robustness investigation for ranges of 1.5 km and 2.0 km and
all sensor limits studies the influence of load increase on the
collision probability.

Increased Number Sensors: To study future robustness,
we increase the load with more sensors in our network.
Therefore, we define three increase steps: in increase step S1,
we double the number of sensors in the network to 5,600
randomly selected sensors from our sensor pool. This is 20 %
of all available sensors in our pool. In the second increase
step S2, we use 14,000 sensors which is 50 % of all available
sensors and in increase step S3, we use all 28,000 sensors. In
Figure 4, we present the influence of the load increase on the
collision probability for increase step S1 and S2 compared to
no load increase (denoted as base) for gateway range limits
r =1.5 km and r =2.0 km as boxplot. The figure shows that
the load increase influences the collision probabilities for both
gateway range limits. For r =1.5 km, starting at a lower level
with 0.30 % mean collision probability over all scenarios with
the baseline, the collision probability for S1 is approximately
doubled with 0.63 %. For S2, a much higher increase to an
average collision probability of 3.01 % is visible. Furthermore,
we see only a little variance in collision probability for the
scenarios for each r =1.5 km result and only some outliers
for S2. In contrast, for r =2.0 km, an increase from 0.58 %
for the baseline to 1.15 % for S1, and 5.61 % for S2 is received
and a much higher increase of the variance, especially for S2.
There, the collision probability is between 3.01 % and 10.25 %.
Thus, we see that a range limit of r =1.5 km is better towards
future scalability. This is, based on the Hata model for path
loss, in the range of a transmission with SF 9.
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Fig. 5: collision probability for S2 based on payload size and
r = 1.5 km for all sensor limits

Increased Payload per LoRa Packet: We present the
result of the payload increase in Figure 5 as ECDF for a
gateway range limit r =1.5 km over all sensor limit scenarios
for load increase step S2. The same evaluation is also possible
with the baseline without increasing the number of sensors, but
the collision probability differences are much smaller. We see,
like expected, a collision probability increase with increasing
payload size but doubling the payload sizes does not double
or more than double the collision probability. For 1B payload,
we receive an average collision probability of 3.01 %, for 4B,
it is 3.91 %, for 8B it is 4.69 %, for 16B, it is 6.96 %, and for
32B, it is 10.12 %. This is a result of the aggregation benefit
of several small payloads into one. As a last step, we use all
possible 28,000 sensor positions in the increase step S3 to
determine the network limits. The range limit for this study
is again r =1.5 km. There, we receive an average collision
probability between 24 % and 28 % per placement when using
1B payload per LoRa packet. With payloads of 16B and 32B,
in some situations more than 50 % of all packets are colliding.
In the next step, we try to solve this overload situation by
placing additional gateways with our algorithm.

C. Additional Placement Study

Here, we use the initial gateway placement positions of one
placement scenario with a gateway range of r =1.5 km and a
sensor limit of 500 sensors. We increase the sensor limit per
gateway to 2,000 and place additional gateways with the goal
of removing load from the gateways in the network center. We
use 10 different runs and the initial placement has 18 gateways.
After we extend the placement, we receive an average of 28.5
gateways, with a minimum of 27 and a maximum of 30. The
average collision probability after the extension is 2.64 % for
a payload of 1B. Thus, we see a massive decrease in the
collision probability due to the additional placement. When we
compare the result with a complete new placement without re-
using the gateway position of the initial placement, we receive
a number of 24 to 29 and an average of 25.8 gateways to
cover the network. With the new placement, we receive a
collision probability of 2.59 %. But note that the extension
is not possible without any limits. If all sensors are trans-
mitting with SF 7, additional mechanisms like transmission
power control are required. Furthermore, a small impairment
for each network extension step compared to a completely
new placement is received. Thus, we prefer a robust initial
placement compared to many additional placement steps.



D. Discussion

In related works, we see that maximizing the distances
between sensors and gateway can minimize the number of
required gateways for full network coverage. But usually no
robustness towards future load, sensor numbers, and traffic
increase is studied. Since minimizing the number of gateways
is usually the goal in state of the art literature, we used our ILP
to obtain a placement with the minimum number of gateways.
There, we set the sensor limit ` = ∞ and use r =2.468 km
as the maximal gateway range with the Hata model according
to Table III. For this scenario, again, we use a subset of 2,800
randomly selected sensors. We receive an optimal placement
of 7 gateways. In contrast, with a gateway range of r =1.5 km,
we received 17.22 gateways on average. But with the optimal
placement, many sensors transmit with large SFs and long
ToAs. There, the packet collision probability is 2.62 % with
1B payload, that is far from optimal. By increasing the
number of sensors, we also study the future robustness of the
optimal placement. For load increase step S1, we receive 5,3 %
collision probability and 23.80 % for S2. Thus, an optimal
placement in terms of minimizing the number of gateways is
not robust against future load increase. Although it is possible
to add gateways on demand, our evaluation shows that the
overall number of required gateways is then higher compared
to a near-optimal initial placement. For that reason, for a real
deployment, we suggest a robust initial gateway placement
capable of dealing with future load increase. This requires
only few larger network extensions in the more distant future.
To study the quality of the presented placement, we compare
the result with an optimal placement computed by our ILP.
There, we study the collision probability for 1B payload for
a placement with a subset of 2800 randomly selected sensors,
r =1.5 km, and 500 sensors as gateway limit. We receive an
optimal placement of 14 or 15 gateways compared to 17 or 18
with our VoronoiLocalSearch, based on the random sensor
input. The average collision probability in the network is
0.41 % for the initial placement scenario without load increase,
0.75 % for load increase step S1, and 3.54 % for S2. This
is slightly higher than our approximation result. Furthermore,
the runtime of the ILP lies between 129.52 s and almost 5 h.
The maximal runtime of our VoronoiLocalSearch is 4.77 s.
This gap increases for larger instances making the ILP, though
comparable in terms of collision probabilities for the computed
placement, only applicable for small networks. Our algorithm
is very fast, is close to optimal with regard to number of placed
gateways, and the increase in placed gateways additionally
increases the robustness towards future load increase.

VI. CONCLUSION

It is essential to consider potential load increase when
planning and deploying IoT networks. Our results show that
merely minimizing the number of gateways does not yield
robust gateway placements for LoRaWANs. In our case study
we showed that increasing the number of gateways by a factor
of 2.5 allowed us to increase the number of sensors by a
factor of 5 until the packet collision probability surpassed
that of the gateway-minimal placement. Our evaluation shows

that for a LoRaWAN deployment in a small city such as
Würzburg, a gateway range of 1.5 km is preferable for a
future-robust placement. Certainly, this value depends on,
among others, the sensor density, the geography, and the
used path loss model. The overall goal is to minimize the
required SFs when transmitting LoRa packages for all sensors
without overloading the network with gateways. Additionally,
we see that limiting the number of sensors per gateway in
the placement has less influence. In future works, a more
detailed study of gateway ranges and capacities is essential
to further reduce the collision probability in various parts of
the networks. We are considering to use a hybrid approach
between the denser, inner network and the sparser periphery.
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